kumoai 2.13.0.dev202511161731__cp312-cp312-macosx_11_0_arm64.whl → 2.13.0.dev202512011731__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
kumoai/__init__.py CHANGED
@@ -184,15 +184,12 @@ def init(
184
184
  snowflake_credentials
185
185
  ) if not api_key and snowflake_credentials else None
186
186
  client = KumoClient(url=url, api_key=api_key, spcs_token=spcs_token)
187
- if client.authenticate():
188
- global_state._url = client._url
189
- global_state._api_key = client._api_key
190
- global_state._snowflake_credentials = snowflake_credentials
191
- global_state._spcs_token = client._spcs_token
192
- global_state._snowpark_session = snowpark_session
193
- else:
194
- raise ValueError("Client authentication failed. Please check if you "
195
- "have a valid API key.")
187
+ client.authenticate()
188
+ global_state._url = client._url
189
+ global_state._api_key = client._api_key
190
+ global_state._snowflake_credentials = snowflake_credentials
191
+ global_state._spcs_token = client._spcs_token
192
+ global_state._snowpark_session = snowpark_session
196
193
 
197
194
  if not api_key and snowflake_credentials:
198
195
  # Refresh token every 10 minutes (expires in 1 hour):
kumoai/_version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '2.13.0.dev202511161731'
1
+ __version__ = '2.13.0.dev202512011731'
kumoai/client/client.py CHANGED
@@ -20,7 +20,6 @@ if TYPE_CHECKING:
20
20
  )
21
21
  from kumoai.client.online import OnlineServingEndpointAPI
22
22
  from kumoai.client.pquery import PQueryAPI
23
- from kumoai.client.rfm import RFMAPI
24
23
  from kumoai.client.source_table import SourceTableAPI
25
24
  from kumoai.client.table import TableAPI
26
25
 
@@ -73,12 +72,15 @@ class KumoClient:
73
72
  self._session.headers.update(
74
73
  {'Authorization': f'Snowflake Token={self._spcs_token}'})
75
74
 
76
- def authenticate(self) -> bool:
77
- r"""Raises an exception if authentication fails. Succeeds if the
78
- client is properly formed.
79
- """
80
- return self._session.get(f"{self._url}/v1/connectors",
81
- verify=self._verify_ssl).ok
75
+ def authenticate(self) -> None:
76
+ """Raises an exception if authentication fails."""
77
+ try:
78
+ self._session.get(self._url + '/v1/connectors',
79
+ verify=self._verify_ssl).raise_for_status()
80
+ except Exception:
81
+ raise ValueError(
82
+ "Client authentication failed. Please check if you "
83
+ "have a valid API key/credentials.")
82
84
 
83
85
  def set_spcs_token(self, spcs_token: str) -> None:
84
86
  r"""Sets the SPCS token for the client and updates the session
@@ -163,12 +165,6 @@ class KumoClient:
163
165
  from kumoai.client.online import OnlineServingEndpointAPI
164
166
  return OnlineServingEndpointAPI(self)
165
167
 
166
- @property
167
- def rfm_api(self) -> 'RFMAPI':
168
- r"""Returns the typed RFM API."""
169
- from kumoai.client.rfm import RFMAPI
170
- return RFMAPI(self)
171
-
172
168
  def _request(self, endpoint: Endpoint, **kwargs: Any) -> requests.Response:
173
169
  r"""Send a HTTP request to the specified endpoint."""
174
170
  endpoint_str = endpoint.get_path()
kumoai/connector/utils.py CHANGED
@@ -381,8 +381,29 @@ def _handle_duplicate_names(names: List[str]) -> List[str]:
381
381
 
382
382
 
383
383
  def _sanitize_columns(names: List[str]) -> Tuple[List[str], bool]:
384
- _SAN_RE = re.compile(r"[^0-9A-Za-z]+")
384
+ """Normalize column names in a CSV or Parquet file.
385
+
386
+ Rules:
387
+ - Replace any non-alphanumeric character with "_"
388
+ - Strip leading/trailing underscores
389
+ - Ensure uniqueness by appending suffixes: _1, _2, ...
390
+ - Auto-name empty columns as auto_named_<n>
391
+
392
+ Returns:
393
+ (new_column_names, changed)
394
+ """
395
+ _SAN_RE = re.compile(r"[^0-9A-Za-z,\t]")
396
+ # 1) Replace non-alphanumeric sequences with underscore
385
397
  new = [_SAN_RE.sub("_", n).strip("_") for n in names]
398
+
399
+ # 2) Auto-name any empty column names to match UI behavior
400
+ unnamed_counter = 0
401
+ for i, n in enumerate(new):
402
+ if not n:
403
+ new[i] = f"auto_named_{unnamed_counter}"
404
+ unnamed_counter += 1
405
+
406
+ # 3) Ensure uniqueness (append suffixes where needed)
386
407
  new = _handle_duplicate_names(new)
387
408
  return new, new != names
388
409
 
@@ -1168,7 +1189,7 @@ def _detect_and_validate_csv(head_bytes: bytes) -> str:
1168
1189
  - Re-serializes those rows and validates with pandas (small nrows) to catch
1169
1190
  malformed inputs.
1170
1191
  - Raises ValueError on empty input or if parsing fails with the chosen
1171
- delimiter.
1192
+ delimiter.
1172
1193
  """
1173
1194
  if not head_bytes:
1174
1195
  raise ValueError("Could not auto-detect a delimiter: file is empty.")
@@ -1,43 +1,123 @@
1
- try:
2
- import kumoai.kumolib # noqa: F401
3
- except Exception as e:
4
- import platform
5
-
6
- _msg = f"""RFM is not supported in your environment.
7
-
8
- 💻 Your Environment:
9
- Python version: {platform.python_version()}
10
- Operating system: {platform.system()}
11
- CPU architecture: {platform.machine()}
12
- glibc version: {platform.libc_ver()[1]}
13
-
14
- ✅ Supported Environments:
15
- * Python versions: 3.10, 3.11, 3.12, 3.13
16
- * Operating systems and CPU architectures:
17
- * Linux (x86_64)
18
- * macOS (arm64)
19
- * Windows (x86_64)
20
- * glibc versions: >=2.28
21
-
22
- ❌ Unsupported Environments:
23
- * Python versions: 3.8, 3.9, 3.14
24
- * Operating systems and CPU architectures:
25
- * Linux (arm64)
26
- * macOS (x86_64)
27
- * Windows (arm64)
28
- * glibc versions: <2.28
29
-
30
- Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
-
32
- raise RuntimeError(_msg) from e
33
-
34
- from typing import Optional, Dict
1
+ import ipaddress
2
+ import logging
35
3
  import os
4
+ import re
5
+ import socket
6
+ import threading
7
+ from dataclasses import dataclass
8
+ from enum import Enum
9
+ from typing import Dict, Optional, Tuple
10
+ from urllib.parse import urlparse
11
+
36
12
  import kumoai
37
- from .local_table import LocalTable
38
- from .local_graph import LocalGraph
39
- from .rfm import ExplainConfig, Explanation, KumoRFM
13
+ from kumoai.client.client import KumoClient
14
+
40
15
  from .authenticate import authenticate
16
+ from .sagemaker import (
17
+ KumoClient_SageMakerAdapter,
18
+ KumoClient_SageMakerProxy_Local,
19
+ )
20
+ from .base import Table
21
+ from .backend.local import LocalTable
22
+ from .graph import Graph
23
+ from .rfm import ExplainConfig, Explanation, KumoRFM
24
+
25
+ logger = logging.getLogger('kumoai_rfm')
26
+
27
+
28
+ def _is_local_address(host: str | None) -> bool:
29
+ """Return True if the hostname/IP refers to the local machine."""
30
+ if not host:
31
+ return False
32
+ try:
33
+ infos = socket.getaddrinfo(host, None)
34
+ for _, _, _, _, sockaddr in infos:
35
+ ip = sockaddr[0]
36
+ ip_obj = ipaddress.ip_address(ip)
37
+ if ip_obj.is_loopback or ip_obj.is_unspecified:
38
+ return True
39
+ return False
40
+ except Exception:
41
+ return False
42
+
43
+
44
+ class InferenceBackend(str, Enum):
45
+ REST = "REST"
46
+ LOCAL_SAGEMAKER = "LOCAL_SAGEMAKER"
47
+ AWS_SAGEMAKER = "AWS_SAGEMAKER"
48
+ UNKNOWN = "UNKNOWN"
49
+
50
+
51
+ def _detect_backend(
52
+ url: str) -> Tuple[InferenceBackend, Optional[str], Optional[str]]:
53
+ parsed = urlparse(url)
54
+
55
+ # Remote SageMaker
56
+ if ("runtime.sagemaker" in parsed.netloc
57
+ and parsed.path.endswith("/invocations")):
58
+ # Example: https://runtime.sagemaker.us-west-2.amazonaws.com/
59
+ # endpoints/Name/invocations
60
+ match = re.search(r"runtime\.sagemaker\.([a-z0-9-]+)\.amazonaws\.com",
61
+ parsed.netloc)
62
+ region = match.group(1) if match else None
63
+ m = re.search(r"/endpoints/([^/]+)/invocations", parsed.path)
64
+ endpoint_name = m.group(1) if m else None
65
+ return InferenceBackend.AWS_SAGEMAKER, region, endpoint_name
66
+
67
+ # Local SageMaker
68
+ if parsed.port == 8080 and parsed.path.endswith(
69
+ "/invocations") and _is_local_address(parsed.hostname):
70
+ return InferenceBackend.LOCAL_SAGEMAKER, None, None
71
+
72
+ # Default: regular REST
73
+ return InferenceBackend.REST, None, None
74
+
75
+
76
+ @dataclass
77
+ class RfmGlobalState:
78
+ _url: str = '__url_not_provided__'
79
+ _backend: InferenceBackend = InferenceBackend.UNKNOWN
80
+ _region: Optional[str] = None
81
+ _endpoint_name: Optional[str] = None
82
+ _thread_local = threading.local()
83
+
84
+ # Thread-safe init-once.
85
+ _initialized: bool = False
86
+ _lock: threading.Lock = threading.Lock()
87
+
88
+ @property
89
+ def client(self) -> KumoClient:
90
+ if self._backend == InferenceBackend.REST:
91
+ return kumoai.global_state.client
92
+
93
+ if hasattr(self._thread_local, '_sagemaker'):
94
+ # Set the spcs token in the client to ensure it has the latest.
95
+ return self._thread_local._sagemaker
96
+
97
+ sagemaker_client: KumoClient
98
+ if self._backend == InferenceBackend.LOCAL_SAGEMAKER:
99
+ sagemaker_client = KumoClient_SageMakerProxy_Local(self._url)
100
+ else:
101
+ assert self._backend == InferenceBackend.AWS_SAGEMAKER
102
+ assert self._region
103
+ assert self._endpoint_name
104
+ sagemaker_client = KumoClient_SageMakerAdapter(
105
+ self._region, self._endpoint_name)
106
+
107
+ self._thread_local._sagemaker = sagemaker_client
108
+ return sagemaker_client
109
+
110
+ def reset(self) -> None: # For testing only.
111
+ with self._lock:
112
+ self._initialized = False
113
+ self._url = '__url_not_provided__'
114
+ self._backend = InferenceBackend.UNKNOWN
115
+ self._region = None
116
+ self._endpoint_name = None
117
+ self._thread_local = threading.local()
118
+
119
+
120
+ global_state = RfmGlobalState()
41
121
 
42
122
 
43
123
  def init(
@@ -47,21 +127,57 @@ def init(
47
127
  snowflake_application: Optional[str] = None,
48
128
  log_level: str = "INFO",
49
129
  ) -> None:
50
- if url is None:
51
- url = os.getenv("KUMO_API_URL", "https://kumorfm.ai/api")
130
+ with global_state._lock:
131
+ if global_state._initialized:
132
+ if url != global_state._url:
133
+ raise ValueError(
134
+ "Kumo RFM has already been initialized with a different "
135
+ "URL. Re-initialization with a different URL is not "
136
+ "supported.")
137
+ return
52
138
 
53
- kumoai.init(url=url, api_key=api_key,
54
- snowflake_credentials=snowflake_credentials,
55
- snowflake_application=snowflake_application,
56
- log_level=log_level)
139
+ if url is None:
140
+ url = os.getenv("RFM_API_URL", "https://kumorfm.ai/api")
57
141
 
142
+ backend, region, endpoint_name = _detect_backend(url)
143
+ if backend == InferenceBackend.REST:
144
+ # Initialize kumoai.global_state
145
+ if (kumoai.global_state.initialized
146
+ and kumoai.global_state._url != url):
147
+ raise ValueError(
148
+ "Kumo AI SDK has already been initialized with different "
149
+ "API URL. Please restart Python interpreter and "
150
+ "initialize via kumoai.rfm.init()")
151
+ kumoai.init(url=url, api_key=api_key,
152
+ snowflake_credentials=snowflake_credentials,
153
+ snowflake_application=snowflake_application,
154
+ log_level=log_level)
155
+ elif backend == InferenceBackend.AWS_SAGEMAKER:
156
+ assert region
157
+ assert endpoint_name
158
+ KumoClient_SageMakerAdapter(region, endpoint_name).authenticate()
159
+ else:
160
+ assert backend == InferenceBackend.LOCAL_SAGEMAKER
161
+ KumoClient_SageMakerProxy_Local(url).authenticate()
162
+
163
+ global_state._url = url
164
+ global_state._backend = backend
165
+ global_state._region = region
166
+ global_state._endpoint_name = endpoint_name
167
+ global_state._initialized = True
168
+ logger.info("Kumo RFM initialized with backend: %s, url: %s", backend,
169
+ url)
170
+
171
+
172
+ LocalGraph = Graph # NOTE Backward compatibility - do not use anymore.
58
173
 
59
174
  __all__ = [
175
+ 'authenticate',
176
+ 'init',
177
+ 'Table',
60
178
  'LocalTable',
61
- 'LocalGraph',
179
+ 'Graph',
62
180
  'KumoRFM',
63
181
  'ExplainConfig',
64
182
  'Explanation',
65
- 'authenticate',
66
- 'init',
67
183
  ]
File without changes
@@ -0,0 +1,38 @@
1
+ try:
2
+ import kumoai.kumolib # noqa: F401
3
+ except Exception as e:
4
+ import platform
5
+
6
+ _msg = f"""RFM is not supported in your environment.
7
+
8
+ 💻 Your Environment:
9
+ Python version: {platform.python_version()}
10
+ Operating system: {platform.system()}
11
+ CPU architecture: {platform.machine()}
12
+ glibc version: {platform.libc_ver()[1]}
13
+
14
+ ✅ Supported Environments:
15
+ * Python versions: 3.10, 3.11, 3.12, 3.13
16
+ * Operating systems and CPU architectures:
17
+ * Linux (x86_64)
18
+ * macOS (arm64)
19
+ * Windows (x86_64)
20
+ * glibc versions: >=2.28
21
+
22
+ ❌ Unsupported Environments:
23
+ * Python versions: 3.8, 3.9, 3.14
24
+ * Operating systems and CPU architectures:
25
+ * Linux (arm64)
26
+ * macOS (x86_64)
27
+ * Windows (arm64)
28
+ * glibc versions: <2.28
29
+
30
+ Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
31
+
32
+ raise RuntimeError(_msg) from e
33
+
34
+ from .table import LocalTable
35
+
36
+ __all__ = [
37
+ 'LocalTable',
38
+ ]
@@ -0,0 +1,151 @@
1
+ from typing import List, Optional
2
+
3
+ import pandas as pd
4
+ from kumoapi.typing import Dtype, Stype
5
+ from typing_extensions import Self
6
+
7
+ from kumoai.experimental.rfm import utils
8
+ from kumoai.experimental.rfm.base import Column, Table
9
+
10
+
11
+ class LocalTable(Table):
12
+ r"""A table backed by a :class:`pandas.DataFrame`.
13
+
14
+ A :class:`LocalTable` fully specifies the relevant metadata, *i.e.*
15
+ selected columns, column semantic types, primary keys and time columns.
16
+ :class:`LocalTable` is used to create a :class:`Graph`.
17
+
18
+ .. code-block:: python
19
+
20
+ import pandas as pd
21
+ import kumoai.experimental.rfm as rfm
22
+
23
+ # Load data from a CSV file:
24
+ df = pd.read_csv("data.csv")
25
+
26
+ # Create a table from a `pandas.DataFrame` and infer its metadata ...
27
+ table = rfm.LocalTable(df, name="my_table").infer_metadata()
28
+
29
+ # ... or create a table explicitly:
30
+ table = rfm.LocalTable(
31
+ df=df,
32
+ name="my_table",
33
+ primary_key="id",
34
+ time_column="time",
35
+ end_time_column=None,
36
+ )
37
+
38
+ # Verify metadata:
39
+ table.print_metadata()
40
+
41
+ # Change the semantic type of a column:
42
+ table[column].stype = "text"
43
+
44
+ Args:
45
+ df: The data frame to create this table from.
46
+ name: The name of this table.
47
+ primary_key: The name of the primary key of this table, if it exists.
48
+ time_column: The name of the time column of this table, if it exists.
49
+ end_time_column: The name of the end time column of this table, if it
50
+ exists.
51
+ """
52
+ def __init__(
53
+ self,
54
+ df: pd.DataFrame,
55
+ name: str,
56
+ primary_key: Optional[str] = None,
57
+ time_column: Optional[str] = None,
58
+ end_time_column: Optional[str] = None,
59
+ ) -> None:
60
+
61
+ if df.empty:
62
+ raise ValueError("Data frame must have at least one row")
63
+ if isinstance(df.columns, pd.MultiIndex):
64
+ raise ValueError("Data frame must not have a multi-index")
65
+ if not df.columns.is_unique:
66
+ raise ValueError("Data frame must have unique column names")
67
+ if any(col == '' for col in df.columns):
68
+ raise ValueError("Data frame must have non-empty column names")
69
+
70
+ self._data = df.copy(deep=False)
71
+
72
+ super().__init__(
73
+ name=name,
74
+ columns=list(df.columns),
75
+ primary_key=primary_key,
76
+ time_column=time_column,
77
+ end_time_column=end_time_column,
78
+ )
79
+
80
+ def infer_metadata(self, verbose: bool = True) -> Self:
81
+ r"""Infers metadata, *i.e.*, primary keys and time columns, in the
82
+ table.
83
+
84
+ Args:
85
+ verbose: Whether to print verbose output.
86
+ """
87
+ logs = []
88
+
89
+ # Try to detect primary key if not set:
90
+ if not self.has_primary_key():
91
+
92
+ def is_candidate(column: Column) -> bool:
93
+ if column.stype == Stype.ID:
94
+ return True
95
+ if all(column.stype != Stype.ID for column in self.columns):
96
+ if self.name == column.name:
97
+ return True
98
+ if (self.name.endswith('s')
99
+ and self.name[:-1] == column.name):
100
+ return True
101
+ return False
102
+
103
+ candidates = [
104
+ column.name for column in self.columns if is_candidate(column)
105
+ ]
106
+
107
+ if primary_key := utils.detect_primary_key(
108
+ table_name=self.name,
109
+ df=self._data,
110
+ candidates=candidates,
111
+ ):
112
+ self.primary_key = primary_key
113
+ logs.append(f"primary key '{primary_key}'")
114
+
115
+ # Try to detect time column if not set:
116
+ if not self.has_time_column():
117
+ candidates = [
118
+ column.name for column in self.columns
119
+ if column.stype == Stype.timestamp
120
+ and column.name != self._end_time_column
121
+ ]
122
+ if time_column := utils.detect_time_column(self._data, candidates):
123
+ self.time_column = time_column
124
+ logs.append(f"time column '{time_column}'")
125
+
126
+ if verbose and len(logs) > 0:
127
+ print(f"Detected {' and '.join(logs)} in table '{self.name}'")
128
+
129
+ return self
130
+
131
+ def _has_source_column(self, name: str) -> bool:
132
+ return name in self._data.columns
133
+
134
+ def _get_source_dtype(self, name: str) -> Dtype:
135
+ return utils.to_dtype(self._data[name])
136
+
137
+ def _get_source_stype(self, name: str, dtype: Dtype) -> Stype:
138
+ return utils.infer_stype(self._data[name], name, dtype)
139
+
140
+ def _infer_primary_key(self, candidates: List[str]) -> Optional[str]:
141
+ return utils.detect_primary_key(
142
+ table_name=self.name,
143
+ df=self._data,
144
+ candidates=candidates,
145
+ )
146
+
147
+ def _infer_time_column(self, candidates: List[str]) -> Optional[str]:
148
+ return utils.detect_time_column(df=self._data, candidates=candidates)
149
+
150
+ def _num_rows(self) -> Optional[int]:
151
+ return len(self._data)
@@ -0,0 +1,23 @@
1
+ from pathlib import Path
2
+ from typing import Any, TypeAlias, Union
3
+
4
+ try:
5
+ import adbc_driver_sqlite.dbapi as adbc
6
+ except ImportError:
7
+ raise ImportError("No module named 'adbc_driver_sqlite'. Please install "
8
+ "Kumo SDK with the 'sqlite' extension via "
9
+ "`pip install kumoai[sqlite]`.")
10
+
11
+ Connection: TypeAlias = adbc.AdbcSqliteConnection
12
+
13
+
14
+ def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
15
+ return adbc.connect(uri, **kwargs)
16
+
17
+
18
+ from .table import SQLiteTable # noqa: E402
19
+
20
+ __all__ = [
21
+ 'Connection',
22
+ 'SQLiteTable',
23
+ ]
@@ -0,0 +1,117 @@
1
+ import re
2
+ from typing import Dict, List, Optional, Sequence
3
+
4
+ import pyarrow as pa
5
+ from kumoapi.typing import Dtype, Stype
6
+ from typing_extensions import Self
7
+
8
+ from kumoai.experimental.rfm import utils
9
+ from kumoai.experimental.rfm.backend.sqlite import Connection
10
+ from kumoai.experimental.rfm.base import Table
11
+
12
+
13
+ class SQLiteTable(Table):
14
+ r"""A table backed by a :class:`sqlite` database.
15
+
16
+ Args:
17
+ connection: The connection to a :class:`sqlite` database.
18
+ name: The name of this table.
19
+ columns: The selected columns of this table.
20
+ primary_key: The name of the primary key of this table, if it exists.
21
+ time_column: The name of the time column of this table, if it exists.
22
+ end_time_column: The name of the end time column of this table, if it
23
+ exists.
24
+ """
25
+ def __init__(
26
+ self,
27
+ connection: Connection,
28
+ name: str,
29
+ columns: Optional[Sequence[str]] = None,
30
+ primary_key: Optional[str] = None,
31
+ time_column: Optional[str] = None,
32
+ end_time_column: Optional[str] = None,
33
+ ) -> None:
34
+
35
+ self._connection = connection
36
+ self._dtype_dict: Dict[str, Dtype] = {}
37
+
38
+ with connection.cursor() as cursor:
39
+ cursor.execute(f"PRAGMA table_info({name})")
40
+ for _, column, dtype, _, _, is_pkey in cursor.fetchall():
41
+ if bool(is_pkey):
42
+ if primary_key is not None and primary_key != column:
43
+ raise ValueError(f"Found duplicate primary key "
44
+ f"definition '{primary_key}' and "
45
+ f"'{column}' in table '{name}'")
46
+ primary_key = column
47
+
48
+ # Determine colun affinity:
49
+ dtype = dtype.strip().upper()
50
+ if re.search('INT', dtype):
51
+ self._dtype_dict[column] = Dtype.int
52
+ elif re.search('TEXT|CHAR|CLOB', dtype):
53
+ self._dtype_dict[column] = Dtype.string
54
+ elif re.search('REAL|FLOA|DOUB', dtype):
55
+ self._dtype_dict[column] = Dtype.float
56
+ else: # NUMERIC affinity.
57
+ self._dtype_dict[column] = Dtype.unsupported
58
+
59
+ if len(self._dtype_dict) > 0:
60
+ column_names = ', '.join(self._dtype_dict.keys())
61
+ cursor.execute(f"SELECT {column_names} FROM {name} "
62
+ f"ORDER BY rowid LIMIT 1000")
63
+ self._sample = cursor.fetch_arrow_table()
64
+
65
+ for column_name in list(self._dtype_dict.keys()):
66
+ if self._dtype_dict[column_name] == Dtype.unsupported:
67
+ dtype = self._sample[column_name].type
68
+ if pa.types.is_integer(dtype):
69
+ self._dtype_dict[column_name] = Dtype.int
70
+ elif pa.types.is_floating(dtype):
71
+ self._dtype_dict[column_name] = Dtype.float
72
+ elif pa.types.is_decimal(dtype):
73
+ self._dtype_dict[column_name] = Dtype.float
74
+ elif pa.types.is_string(dtype):
75
+ self._dtype_dict[column_name] = Dtype.string
76
+ else:
77
+ del self._dtype_dict[column_name]
78
+
79
+ if len(self._dtype_dict) == 0:
80
+ raise RuntimeError(f"Table '{name}' does not exist or does not "
81
+ f"hold any column with a supported data type")
82
+
83
+ super().__init__(
84
+ name=name,
85
+ columns=columns or list(self._dtype_dict.keys()),
86
+ primary_key=primary_key,
87
+ time_column=time_column,
88
+ end_time_column=end_time_column,
89
+ )
90
+
91
+ def infer_metadata(self, verbose: bool = True) -> Self:
92
+ r"""Infers metadata, *i.e.*, primary keys and time columns, in the
93
+ table.
94
+
95
+ Args:
96
+ verbose: Whether to print verbose output.
97
+ """
98
+ return self
99
+
100
+ def _has_source_column(self, name: str) -> bool:
101
+ return name in self._dtype_dict
102
+
103
+ def _get_source_dtype(self, name: str) -> Dtype:
104
+ return self._dtype_dict[name]
105
+
106
+ def _get_source_stype(self, name: str, dtype: Dtype) -> Stype:
107
+ ser = self._sample[name].to_pandas()
108
+ return utils.infer_stype(ser, name, dtype)
109
+
110
+ def _infer_primary_key(self, candidates: List[str]) -> Optional[str]:
111
+ return None # TODO
112
+
113
+ def _infer_time_column(self, candidates: List[str]) -> Optional[str]:
114
+ return None # TODO
115
+
116
+ def _num_rows(self) -> Optional[int]:
117
+ return None
@@ -0,0 +1,7 @@
1
+ from .column import Column
2
+ from .table import Table
3
+
4
+ __all__ = [
5
+ 'Column',
6
+ 'Table',
7
+ ]