kumoai 2.13.0.dev202511131731__cp310-cp310-macosx_11_0_arm64.whl → 2.14.0.dev202512271732__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. kumoai/__init__.py +18 -9
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +15 -13
  4. kumoai/client/jobs.py +24 -0
  5. kumoai/client/pquery.py +6 -2
  6. kumoai/connector/utils.py +23 -2
  7. kumoai/experimental/rfm/__init__.py +191 -50
  8. kumoai/experimental/rfm/authenticate.py +3 -4
  9. kumoai/experimental/rfm/backend/__init__.py +0 -0
  10. kumoai/experimental/rfm/backend/local/__init__.py +42 -0
  11. kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +65 -127
  12. kumoai/experimental/rfm/backend/local/sampler.py +312 -0
  13. kumoai/experimental/rfm/backend/local/table.py +113 -0
  14. kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
  15. kumoai/experimental/rfm/backend/snow/sampler.py +297 -0
  16. kumoai/experimental/rfm/backend/snow/table.py +242 -0
  17. kumoai/experimental/rfm/backend/sqlite/__init__.py +32 -0
  18. kumoai/experimental/rfm/backend/sqlite/sampler.py +398 -0
  19. kumoai/experimental/rfm/backend/sqlite/table.py +184 -0
  20. kumoai/experimental/rfm/base/__init__.py +30 -0
  21. kumoai/experimental/rfm/base/column.py +152 -0
  22. kumoai/experimental/rfm/base/expression.py +44 -0
  23. kumoai/experimental/rfm/base/sampler.py +761 -0
  24. kumoai/experimental/rfm/base/source.py +19 -0
  25. kumoai/experimental/rfm/base/sql_sampler.py +143 -0
  26. kumoai/experimental/rfm/base/table.py +753 -0
  27. kumoai/experimental/rfm/{local_graph.py → graph.py} +546 -116
  28. kumoai/experimental/rfm/infer/__init__.py +8 -0
  29. kumoai/experimental/rfm/infer/dtype.py +81 -0
  30. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  31. kumoai/experimental/rfm/infer/pkey.py +128 -0
  32. kumoai/experimental/rfm/infer/stype.py +35 -0
  33. kumoai/experimental/rfm/infer/time_col.py +61 -0
  34. kumoai/experimental/rfm/pquery/executor.py +27 -27
  35. kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
  36. kumoai/experimental/rfm/rfm.py +322 -252
  37. kumoai/experimental/rfm/sagemaker.py +138 -0
  38. kumoai/pquery/predictive_query.py +10 -6
  39. kumoai/spcs.py +1 -3
  40. kumoai/testing/decorators.py +1 -1
  41. kumoai/testing/snow.py +50 -0
  42. kumoai/trainer/distilled_trainer.py +175 -0
  43. kumoai/utils/__init__.py +3 -2
  44. kumoai/utils/progress_logger.py +178 -12
  45. kumoai/utils/sql.py +3 -0
  46. {kumoai-2.13.0.dev202511131731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/METADATA +13 -2
  47. {kumoai-2.13.0.dev202511131731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/RECORD +50 -29
  48. kumoai/experimental/rfm/local_graph_sampler.py +0 -184
  49. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  50. kumoai/experimental/rfm/local_table.py +0 -545
  51. kumoai/experimental/rfm/utils.py +0 -344
  52. {kumoai-2.13.0.dev202511131731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/WHEEL +0 -0
  53. {kumoai-2.13.0.dev202511131731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/licenses/LICENSE +0 -0
  54. {kumoai-2.13.0.dev202511131731.dist-info → kumoai-2.14.0.dev202512271732.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,753 @@
1
+ import warnings
2
+ from abc import ABC, abstractmethod
3
+ from collections.abc import Sequence
4
+ from functools import cached_property
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from kumoapi.model_plan import MissingType
9
+ from kumoapi.source_table import UnavailableSourceTable
10
+ from kumoapi.table import Column as ColumnDefinition
11
+ from kumoapi.table import TableDefinition
12
+ from kumoapi.typing import Dtype, Stype
13
+ from typing_extensions import Self
14
+
15
+ from kumoai import in_notebook, in_snowflake_notebook
16
+ from kumoai.experimental.rfm.base import (
17
+ Column,
18
+ ColumnSpec,
19
+ ColumnSpecType,
20
+ DataBackend,
21
+ SourceColumn,
22
+ SourceForeignKey,
23
+ )
24
+ from kumoai.experimental.rfm.infer import (
25
+ infer_dtype,
26
+ infer_primary_key,
27
+ infer_stype,
28
+ infer_time_column,
29
+ )
30
+ from kumoai.utils import quote_ident
31
+
32
+
33
+ class Table(ABC):
34
+ r"""A :class:`Table` fully specifies the relevant metadata of a single
35
+ table, *i.e.* its selected columns, data types, semantic types, primary
36
+ keys and time columns.
37
+
38
+ Args:
39
+ name: The name of this table.
40
+ source_name: The source name of this table. If set to ``None``,
41
+ ``name`` is being used.
42
+ columns: The selected columns of this table.
43
+ primary_key: The name of the primary key of this table, if it exists.
44
+ time_column: The name of the time column of this table, if it exists.
45
+ end_time_column: The name of the end time column of this table, if it
46
+ exists.
47
+ """
48
+ _NUM_SAMPLE_ROWS = 1_000
49
+
50
+ def __init__(
51
+ self,
52
+ name: str,
53
+ source_name: str | None = None,
54
+ columns: Sequence[ColumnSpecType] | None = None,
55
+ primary_key: MissingType | str | None = MissingType.VALUE,
56
+ time_column: str | None = None,
57
+ end_time_column: str | None = None,
58
+ ) -> None:
59
+
60
+ self._name = name
61
+ self._source_name = source_name or name
62
+ self._column_dict: dict[str, Column] = {}
63
+ self._primary_key: str | None = None
64
+ self._time_column: str | None = None
65
+ self._end_time_column: str | None = None
66
+ self._expr_sample_df = pd.DataFrame(index=range(self._NUM_SAMPLE_ROWS))
67
+
68
+ if columns is None:
69
+ columns = list(self._source_column_dict.keys())
70
+
71
+ self.add_columns(columns)
72
+
73
+ if isinstance(primary_key, MissingType):
74
+ # Infer primary key from source metadata, but only set it in case
75
+ # it is already part of the column set (don't magically add it):
76
+ if any(column.is_source for column in self.columns):
77
+ primary_key = self._source_primary_key
78
+ if (primary_key is not None and primary_key in self
79
+ and self[primary_key].is_source):
80
+ self.primary_key = primary_key
81
+ elif primary_key is not None:
82
+ if primary_key not in self:
83
+ self.add_column(primary_key)
84
+ self.primary_key = primary_key
85
+
86
+ if time_column is not None:
87
+ if time_column not in self:
88
+ self.add_column(time_column)
89
+ self.time_column = time_column
90
+
91
+ if end_time_column is not None:
92
+ if end_time_column not in self:
93
+ self.add_column(end_time_column)
94
+ self.end_time_column = end_time_column
95
+
96
+ @property
97
+ def name(self) -> str:
98
+ r"""The name of this table."""
99
+ return self._name
100
+
101
+ @property
102
+ def source_name(self) -> str:
103
+ r"""The source name of this table."""
104
+ return self._source_name
105
+
106
+ @property
107
+ def _quoted_source_name(self) -> str:
108
+ return quote_ident(self._source_name)
109
+
110
+ # Column ##################################################################
111
+
112
+ def has_column(self, name: str) -> bool:
113
+ r"""Returns ``True`` if this table holds a column with name ``name``;
114
+ ``False`` otherwise.
115
+ """
116
+ return name in self._column_dict
117
+
118
+ def column(self, name: str) -> Column:
119
+ r"""Returns the data column named with name ``name`` in this table.
120
+
121
+ Args:
122
+ name: The name of the column.
123
+
124
+ Raises:
125
+ KeyError: If ``name`` is not present in this table.
126
+ """
127
+ if not self.has_column(name):
128
+ raise KeyError(f"Column '{name}' not found in table '{self.name}'")
129
+ return self._column_dict[name]
130
+
131
+ @property
132
+ def columns(self) -> list[Column]:
133
+ r"""Returns a list of :class:`Column` objects that represent the
134
+ columns in this table.
135
+ """
136
+ return list(self._column_dict.values())
137
+
138
+ def add_columns(self, columns: Sequence[ColumnSpecType]) -> None:
139
+ r"""Adds a set of columns to this table.
140
+
141
+ Args:
142
+ columns: The columns to add.
143
+
144
+ Raises:
145
+ KeyError: If any of the column names already exist in this table.
146
+ """
147
+ if len(columns) == 0:
148
+ return
149
+
150
+ column_specs = [ColumnSpec.coerce(column) for column in columns]
151
+
152
+ # Obtain a batch-wise sample for all column expressions:
153
+ expr_specs = [spec for spec in column_specs if not spec.is_source]
154
+ if len(expr_specs) > 0:
155
+ dfs = [
156
+ self._expr_sample_df,
157
+ self._get_expr_sample_df(expr_specs).reset_index(drop=True),
158
+ ]
159
+ size = min(map(len, dfs))
160
+ df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
161
+ df = df.loc[:, ~df.columns.duplicated(keep='last')]
162
+ self._expr_sample_df = df
163
+
164
+ for column_spec in column_specs:
165
+ if column_spec.name in self:
166
+ raise KeyError(f"Column '{column_spec.name}' already exists "
167
+ f"in table '{self.name}'")
168
+
169
+ dtype = column_spec.dtype
170
+ stype = column_spec.stype
171
+
172
+ if column_spec.is_source:
173
+ if column_spec.name not in self._source_column_dict:
174
+ raise ValueError(
175
+ f"Column '{column_spec.name}' does not exist in the "
176
+ f"underlying source table")
177
+
178
+ if dtype is None:
179
+ dtype = self._source_column_dict[column_spec.name].dtype
180
+
181
+ if dtype == Dtype.unsupported:
182
+ raise ValueError(
183
+ f"Encountered unsupported data type for column "
184
+ f"'{column_spec.name}' in table '{self.name}'. Please "
185
+ f"either change the column's data type or remove the "
186
+ f"column from this table.")
187
+
188
+ if dtype is None:
189
+ if column_spec.is_source:
190
+ ser = self._source_sample_df[column_spec.name]
191
+ else:
192
+ ser = self._expr_sample_df[column_spec.name]
193
+ try:
194
+ dtype = infer_dtype(ser)
195
+ except Exception as e:
196
+ raise RuntimeError(
197
+ f"Encountered unsupported data type '{ser.dtype}' for "
198
+ f"column '{column_spec.name}' in table '{self.name}'. "
199
+ f"Please either manually specify the columns's data "
200
+ f"type or remove the column from this table.") from e
201
+
202
+ if stype is None:
203
+ if column_spec.is_source:
204
+ ser = self._source_sample_df[column_spec.name]
205
+ else:
206
+ ser = self._expr_sample_df[column_spec.name]
207
+ try:
208
+ stype = infer_stype(ser, column_spec.name, dtype)
209
+ except Exception as e:
210
+ raise RuntimeError(
211
+ f"Could not determine semantic type for column "
212
+ f"'{column_spec.name}' with data type '{dtype}' in "
213
+ f"table '{self.name}'. Please either change the "
214
+ f"column's data type or remove the column from this "
215
+ f"table.") from e
216
+
217
+ self._column_dict[column_spec.name] = Column(
218
+ name=column_spec.name,
219
+ expr=column_spec.expr,
220
+ dtype=dtype,
221
+ stype=stype,
222
+ )
223
+
224
+ def add_column(self, column: ColumnSpecType) -> Column:
225
+ r"""Adds a column to this table.
226
+
227
+ Args:
228
+ column: The column to add.
229
+
230
+ Raises:
231
+ KeyError: If the column name already exists in this table.
232
+ """
233
+ column_spec = ColumnSpec.coerce(column)
234
+ self.add_columns([column_spec])
235
+ return self[column_spec.name]
236
+
237
+ def remove_column(self, name: str) -> Self:
238
+ r"""Removes a column from this table.
239
+
240
+ Args:
241
+ name: The name of the column.
242
+
243
+ Raises:
244
+ KeyError: If ``name`` is not present in this table.
245
+ """
246
+ if name not in self:
247
+ raise KeyError(f"Column '{name}' not found in table '{self.name}'")
248
+
249
+ if self._primary_key == name:
250
+ self.primary_key = None
251
+ if self._time_column == name:
252
+ self.time_column = None
253
+ if self._end_time_column == name:
254
+ self.end_time_column = None
255
+ del self._column_dict[name]
256
+
257
+ return self
258
+
259
+ # Primary key #############################################################
260
+
261
+ def has_primary_key(self) -> bool:
262
+ r"""Returns ``True``` if this table has a primary key; ``False``
263
+ otherwise.
264
+ """
265
+ return self._primary_key is not None
266
+
267
+ @property
268
+ def primary_key(self) -> Column | None:
269
+ r"""The primary key column of this table.
270
+
271
+ The getter returns the primary key column of this table, or ``None`` if
272
+ no such primary key is present.
273
+
274
+ The setter sets a column as a primary key on this table, and raises a
275
+ :class:`ValueError` if the primary key has a non-ID semantic type or
276
+ if the column name does not match a column in the data frame.
277
+ """
278
+ if self._primary_key is None:
279
+ return None
280
+ return self[self._primary_key]
281
+
282
+ @primary_key.setter
283
+ def primary_key(self, name: str | None) -> None:
284
+ if name is not None and name == self._time_column:
285
+ raise ValueError(f"Cannot specify column '{name}' as a primary "
286
+ f"key since it is already defined to be a time "
287
+ f"column")
288
+ if name is not None and name == self._end_time_column:
289
+ raise ValueError(f"Cannot specify column '{name}' as a primary "
290
+ f"key since it is already defined to be an end "
291
+ f"time column")
292
+
293
+ if self.primary_key is not None:
294
+ self.primary_key._is_primary_key = False
295
+
296
+ if name is None:
297
+ self._primary_key = None
298
+ return
299
+
300
+ self[name].stype = Stype.ID
301
+ self[name]._is_primary_key = True
302
+ self._primary_key = name
303
+
304
+ # Time column #############################################################
305
+
306
+ def has_time_column(self) -> bool:
307
+ r"""Returns ``True`` if this table has a time column; ``False``
308
+ otherwise.
309
+ """
310
+ return self._time_column is not None
311
+
312
+ @property
313
+ def time_column(self) -> Column | None:
314
+ r"""The time column of this table.
315
+
316
+ The getter returns the time column of this table, or ``None`` if no
317
+ such time column is present.
318
+
319
+ The setter sets a column as a time column on this table, and raises a
320
+ :class:`ValueError` if the time column has a non-timestamp semantic
321
+ type or if the column name does not match a column in the data frame.
322
+ """
323
+ if self._time_column is None:
324
+ return None
325
+ return self[self._time_column]
326
+
327
+ @time_column.setter
328
+ def time_column(self, name: str | None) -> None:
329
+ if name is not None and name == self._primary_key:
330
+ raise ValueError(f"Cannot specify column '{name}' as a time "
331
+ f"column since it is already defined to be a "
332
+ f"primary key")
333
+ if name is not None and name == self._end_time_column:
334
+ raise ValueError(f"Cannot specify column '{name}' as a time "
335
+ f"column since it is already defined to be an "
336
+ f"end time column")
337
+
338
+ if self.time_column is not None:
339
+ self.time_column._is_time_column = False
340
+
341
+ if name is None:
342
+ self._time_column = None
343
+ return
344
+
345
+ self[name].stype = Stype.timestamp
346
+ self[name]._is_time_column = True
347
+ self._time_column = name
348
+
349
+ # End Time column #########################################################
350
+
351
+ def has_end_time_column(self) -> bool:
352
+ r"""Returns ``True`` if this table has an end time column; ``False``
353
+ otherwise.
354
+ """
355
+ return self._end_time_column is not None
356
+
357
+ @property
358
+ def end_time_column(self) -> Column | None:
359
+ r"""The end time column of this table.
360
+
361
+ The getter returns the end time column of this table, or ``None`` if no
362
+ such end time column is present.
363
+
364
+ The setter sets a column as an end time column on this table, and
365
+ raises a :class:`ValueError` if the end time column has a non-timestamp
366
+ semantic type or if the column name does not match a column in the data
367
+ frame.
368
+ """
369
+ if self._end_time_column is None:
370
+ return None
371
+ return self[self._end_time_column]
372
+
373
+ @end_time_column.setter
374
+ def end_time_column(self, name: str | None) -> None:
375
+ if name is not None and name == self._primary_key:
376
+ raise ValueError(f"Cannot specify column '{name}' as an end time "
377
+ f"column since it is already defined to be a "
378
+ f"primary key")
379
+ if name is not None and name == self._time_column:
380
+ raise ValueError(f"Cannot specify column '{name}' as an end time "
381
+ f"column since it is already defined to be a "
382
+ f"time column")
383
+
384
+ if self.end_time_column is not None:
385
+ self.end_time_column._is_end_time_column = False
386
+
387
+ if name is None:
388
+ self._end_time_column = None
389
+ return
390
+
391
+ self[name].stype = Stype.timestamp
392
+ self[name]._is_end_time_column = True
393
+ self._end_time_column = name
394
+
395
+ # Metadata ################################################################
396
+
397
+ @property
398
+ def metadata(self) -> pd.DataFrame:
399
+ r"""Returns a :class:`pandas.DataFrame` object containing metadata
400
+ information about the columns in this table.
401
+
402
+ The returned dataframe has columns ``name``, ``dtype``, ``stype``,
403
+ ``is_primary_key``, ``is_time_column`` and ``is_end_time_column``,
404
+ which provide an aggregate view of the properties of the columns of
405
+ this table.
406
+
407
+ Example:
408
+ >>> # doctest: +SKIP
409
+ >>> import kumoai.experimental.rfm as rfm
410
+ >>> table = rfm.LocalTable(df=..., name=...).infer_metadata()
411
+ >>> table.metadata
412
+ name dtype stype is_primary_key is_time_column is_end_time_column
413
+ 0 CustomerID float64 ID True False False
414
+ """ # noqa: E501
415
+ cols = self.columns
416
+
417
+ return pd.DataFrame({
418
+ 'name':
419
+ pd.Series(dtype=str, data=[c.name for c in cols]),
420
+ 'dtype':
421
+ pd.Series(dtype=str, data=[c.dtype for c in cols]),
422
+ 'stype':
423
+ pd.Series(dtype=str, data=[c.stype for c in cols]),
424
+ 'is_primary_key':
425
+ pd.Series(
426
+ dtype=bool,
427
+ data=[self._primary_key == c.name for c in cols],
428
+ ),
429
+ 'is_time_column':
430
+ pd.Series(
431
+ dtype=bool,
432
+ data=[self._time_column == c.name for c in cols],
433
+ ),
434
+ 'is_end_time_column':
435
+ pd.Series(
436
+ dtype=bool,
437
+ data=[self._end_time_column == c.name for c in cols],
438
+ ),
439
+ })
440
+
441
+ def print_metadata(self) -> None:
442
+ r"""Prints the :meth:`~metadata` of this table."""
443
+ num_rows_repr = ''
444
+ if num := self._num_rows:
445
+ num_rows_repr = f' ({num} row)' if num == 1 else f' ({num:,} rows)'
446
+
447
+ if in_snowflake_notebook():
448
+ import streamlit as st
449
+ md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
450
+ st.markdown(md_repr)
451
+ st.dataframe(self.metadata, hide_index=True)
452
+ elif in_notebook():
453
+ from IPython.display import Markdown, display
454
+ md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
455
+ display(Markdown(md_repr))
456
+ df = self.metadata
457
+ try:
458
+ if hasattr(df.style, 'hide'):
459
+ display(df.style.hide(axis='index')) # pandas=2
460
+ else:
461
+ display(df.style.hide_index()) # pandas<1.3
462
+ except ImportError:
463
+ print(df.to_string(index=False)) # missing jinja2
464
+ else:
465
+ print(f"🏷️ Metadata of Table '{self.name}'{num_rows_repr}")
466
+ print(self.metadata.to_string(index=False))
467
+
468
+ def infer_primary_key(self, verbose: bool = True) -> Self:
469
+ r"""Infers the primary key in this table.
470
+
471
+ Args:
472
+ verbose: Whether to print verbose output.
473
+ """
474
+ if self.has_primary_key():
475
+ return self
476
+
477
+ def _set_primary_key(primary_key: str) -> None:
478
+ self.primary_key = primary_key
479
+ if verbose:
480
+ print(f"Inferred primary key '{primary_key}' for table "
481
+ f"'{self.name}'")
482
+
483
+ # Inference from source column metadata:
484
+ if any(column.is_source for column in self.columns):
485
+ primary_key = self._source_primary_key
486
+ if (primary_key is not None and primary_key in self
487
+ and self[primary_key].is_source):
488
+ _set_primary_key(primary_key)
489
+ return self
490
+
491
+ unique_keys = [
492
+ column.name for column in self._source_column_dict.values()
493
+ if column.is_unique_key
494
+ ]
495
+ if (len(unique_keys) == 1 # NOTE No composite keys yet.
496
+ and unique_keys[0] in self
497
+ and self[unique_keys[0]].is_source):
498
+ _set_primary_key(unique_keys[0])
499
+ return self
500
+
501
+ # Heuristic-based inference:
502
+ candidates = [
503
+ column.name for column in self.columns if column.stype == Stype.ID
504
+ ]
505
+ if len(candidates) == 0:
506
+ for column in self.columns:
507
+ if self.name.lower() == column.name.lower():
508
+ candidates.append(column.name)
509
+ elif (self.name.lower().endswith('s')
510
+ and self.name.lower()[:-1] == column.name.lower()):
511
+ candidates.append(column.name)
512
+
513
+ if primary_key := infer_primary_key(
514
+ table_name=self.name,
515
+ df=self._get_sample_df(),
516
+ candidates=candidates,
517
+ ):
518
+ _set_primary_key(primary_key)
519
+ return self
520
+
521
+ return self
522
+
523
+ def infer_time_column(self, verbose: bool = True) -> Self:
524
+ r"""Infers the time column in this table.
525
+
526
+ Args:
527
+ verbose: Whether to print verbose output.
528
+ """
529
+ if self.has_time_column():
530
+ return self
531
+
532
+ # Heuristic-based inference:
533
+ candidates = [
534
+ column.name for column in self.columns
535
+ if column.stype == Stype.timestamp
536
+ and column.name != self._end_time_column
537
+ ]
538
+
539
+ if time_column := infer_time_column(
540
+ df=self._get_sample_df(),
541
+ candidates=candidates,
542
+ ):
543
+ self.time_column = time_column
544
+
545
+ if verbose:
546
+ print(f"Inferred time column '{time_column}' for table "
547
+ f"'{self.name}'")
548
+
549
+ return self
550
+
551
+ def infer_metadata(self, verbose: bool = True) -> Self:
552
+ r"""Infers metadata, *i.e.*, primary keys and time columns, in this
553
+ table.
554
+
555
+ Args:
556
+ verbose: Whether to print verbose output.
557
+ """
558
+ logs = []
559
+
560
+ if not self.has_primary_key():
561
+ self.infer_primary_key(verbose=False)
562
+ if self.has_primary_key():
563
+ logs.append(f"primary key '{self._primary_key}'")
564
+
565
+ if not self.has_time_column():
566
+ self.infer_time_column(verbose=False)
567
+ if self.has_time_column():
568
+ logs.append(f"time column '{self._time_column}'")
569
+
570
+ if verbose and len(logs) > 0:
571
+ print(f"Inferred {' and '.join(logs)} for table '{self.name}'")
572
+
573
+ return self
574
+
575
+ # Helpers #################################################################
576
+
577
+ def _to_api_table_definition(self) -> TableDefinition:
578
+ return TableDefinition(
579
+ cols=[
580
+ ColumnDefinition(col.name, col.stype, col.dtype)
581
+ for col in self.columns
582
+ ],
583
+ source_table=UnavailableSourceTable(table=self.name),
584
+ pkey=self._primary_key,
585
+ time_col=self._time_column,
586
+ end_time_col=self._end_time_column,
587
+ )
588
+
589
+ @cached_property
590
+ def _source_column_dict(self) -> dict[str, SourceColumn]:
591
+ source_columns = self._get_source_columns()
592
+ if len(source_columns) == 0:
593
+ raise ValueError(f"Table '{self.name}' has no columns")
594
+ return {column.name: column for column in source_columns}
595
+
596
+ @cached_property
597
+ def _source_primary_key(self) -> str | None:
598
+ primary_keys = [
599
+ column.name for column in self._source_column_dict.values()
600
+ if column.is_primary_key
601
+ ]
602
+ # NOTE No composite keys yet.
603
+ return primary_keys[0] if len(primary_keys) == 1 else None
604
+
605
+ @cached_property
606
+ def _source_foreign_key_dict(self) -> dict[str, SourceForeignKey]:
607
+ return {key.name: key for key in self._get_source_foreign_keys()}
608
+
609
+ @cached_property
610
+ def _source_sample_df(self) -> pd.DataFrame:
611
+ return self._get_source_sample_df().reset_index(drop=True)
612
+
613
+ @cached_property
614
+ def _num_rows(self) -> int | None:
615
+ return self._get_num_rows()
616
+
617
+ def _get_sample_df(self) -> pd.DataFrame:
618
+ dfs: list[pd.DataFrame] = []
619
+ if any(column.is_source for column in self.columns):
620
+ dfs.append(self._source_sample_df)
621
+ if any(not column.is_source for column in self.columns):
622
+ dfs.append(self._expr_sample_df)
623
+
624
+ if len(dfs) == 0:
625
+ return pd.DataFrame(index=range(1000))
626
+ if len(dfs) == 1:
627
+ return dfs[0]
628
+
629
+ size = min(map(len, dfs))
630
+ df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
631
+ df = df.loc[:, ~df.columns.duplicated(keep='last')]
632
+ return df
633
+
634
+ @staticmethod
635
+ def _sanitize(
636
+ df: pd.DataFrame,
637
+ dtype_dict: dict[str, Dtype | None] | None = None,
638
+ stype_dict: dict[str, Stype | None] | None = None,
639
+ ) -> pd.DataFrame:
640
+ r"""Sanitzes a :class:`pandas.DataFrame` in-place such that its data
641
+ types match table data and semantic type specification.
642
+ """
643
+ def _to_datetime(ser: pd.Series) -> pd.Series:
644
+ if not pd.api.types.is_datetime64_any_dtype(ser):
645
+ with warnings.catch_warnings():
646
+ warnings.filterwarnings(
647
+ 'ignore',
648
+ message='Could not infer format',
649
+ )
650
+ ser = pd.to_datetime(ser, errors='coerce')
651
+ if isinstance(ser.dtype, pd.DatetimeTZDtype):
652
+ ser = ser.dt.tz_localize(None)
653
+ if ser.dtype != 'datetime64[ns]':
654
+ ser = ser.astype('datetime64[ns]')
655
+ return ser
656
+
657
+ def _to_list(ser: pd.Series, dtype: Dtype | None) -> pd.Series:
658
+ if (pd.api.types.is_string_dtype(ser)
659
+ and dtype in {Dtype.intlist, Dtype.floatlist}):
660
+ try:
661
+ ser = ser.map(lambda row: np.fromstring(
662
+ row.strip('[]'),
663
+ sep=',',
664
+ dtype=int if dtype == Dtype.intlist else np.float32,
665
+ ) if row is not None else None)
666
+ except Exception:
667
+ pass
668
+
669
+ if pd.api.types.is_string_dtype(ser):
670
+ try:
671
+ import orjson as json
672
+ except ImportError:
673
+ import json
674
+ try:
675
+ ser = ser.map(lambda row: json.loads(row)
676
+ if row is not None else None)
677
+ except Exception:
678
+ pass
679
+
680
+ return ser
681
+
682
+ for column_name in df.columns:
683
+ dtype = (dtype_dict or {}).get(column_name)
684
+ stype = (stype_dict or {}).get(column_name)
685
+
686
+ if dtype == Dtype.time:
687
+ df[column_name] = _to_datetime(df[column_name])
688
+ elif stype == Stype.timestamp:
689
+ df[column_name] = _to_datetime(df[column_name])
690
+ elif dtype is not None and dtype.is_list():
691
+ df[column_name] = _to_list(df[column_name], dtype)
692
+ elif stype == Stype.sequence:
693
+ df[column_name] = _to_list(df[column_name], Dtype.floatlist)
694
+
695
+ return df
696
+
697
+ # Python builtins #########################################################
698
+
699
+ def __hash__(self) -> int:
700
+ special_columns = [
701
+ self.primary_key,
702
+ self.time_column,
703
+ self.end_time_column,
704
+ ]
705
+ return hash(tuple(self.columns + special_columns))
706
+
707
+ def __contains__(self, name: str) -> bool:
708
+ return self.has_column(name)
709
+
710
+ def __getitem__(self, name: str) -> Column:
711
+ return self.column(name)
712
+
713
+ def __delitem__(self, name: str) -> None:
714
+ self.remove_column(name)
715
+
716
+ def __repr__(self) -> str:
717
+ return (f'{self.__class__.__name__}(\n'
718
+ f' name={self.name},\n'
719
+ f' num_columns={len(self.columns)},\n'
720
+ f' primary_key={self._primary_key},\n'
721
+ f' time_column={self._time_column},\n'
722
+ f' end_time_column={self._end_time_column},\n'
723
+ f')')
724
+
725
+ # Abstract Methods ########################################################
726
+
727
+ @property
728
+ @abstractmethod
729
+ def backend(self) -> DataBackend:
730
+ r"""The data backend of this table."""
731
+
732
+ @abstractmethod
733
+ def _get_source_columns(self) -> list[SourceColumn]:
734
+ pass
735
+
736
+ @abstractmethod
737
+ def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
738
+ pass
739
+
740
+ @abstractmethod
741
+ def _get_source_sample_df(self) -> pd.DataFrame:
742
+ pass
743
+
744
+ @abstractmethod
745
+ def _get_expr_sample_df(
746
+ self,
747
+ columns: Sequence[ColumnSpec],
748
+ ) -> pd.DataFrame:
749
+ pass
750
+
751
+ @abstractmethod
752
+ def _get_num_rows(self) -> int | None:
753
+ pass