kumoai 2.12.0.dev202511061731__cp311-cp311-win_amd64.whl → 2.14.0.dev202512311733__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. kumoai/__init__.py +41 -35
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +15 -13
  4. kumoai/client/jobs.py +24 -0
  5. kumoai/client/pquery.py +6 -2
  6. kumoai/client/rfm.py +15 -7
  7. kumoai/connector/utils.py +23 -2
  8. kumoai/experimental/rfm/__init__.py +191 -48
  9. kumoai/experimental/rfm/authenticate.py +3 -4
  10. kumoai/experimental/rfm/backend/__init__.py +0 -0
  11. kumoai/experimental/rfm/backend/local/__init__.py +42 -0
  12. kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +65 -127
  13. kumoai/experimental/rfm/backend/local/sampler.py +312 -0
  14. kumoai/experimental/rfm/backend/local/table.py +113 -0
  15. kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
  16. kumoai/experimental/rfm/backend/snow/sampler.py +297 -0
  17. kumoai/experimental/rfm/backend/snow/table.py +242 -0
  18. kumoai/experimental/rfm/backend/sqlite/__init__.py +32 -0
  19. kumoai/experimental/rfm/backend/sqlite/sampler.py +398 -0
  20. kumoai/experimental/rfm/backend/sqlite/table.py +184 -0
  21. kumoai/experimental/rfm/base/__init__.py +30 -0
  22. kumoai/experimental/rfm/base/column.py +152 -0
  23. kumoai/experimental/rfm/base/expression.py +44 -0
  24. kumoai/experimental/rfm/base/sampler.py +761 -0
  25. kumoai/experimental/rfm/base/source.py +19 -0
  26. kumoai/experimental/rfm/base/sql_sampler.py +143 -0
  27. kumoai/experimental/rfm/base/table.py +735 -0
  28. kumoai/experimental/rfm/graph.py +1237 -0
  29. kumoai/experimental/rfm/infer/__init__.py +8 -0
  30. kumoai/experimental/rfm/infer/dtype.py +82 -0
  31. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  32. kumoai/experimental/rfm/infer/pkey.py +128 -0
  33. kumoai/experimental/rfm/infer/stype.py +35 -0
  34. kumoai/experimental/rfm/infer/time_col.py +61 -0
  35. kumoai/experimental/rfm/pquery/executor.py +27 -27
  36. kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
  37. kumoai/experimental/rfm/relbench.py +76 -0
  38. kumoai/experimental/rfm/rfm.py +346 -248
  39. kumoai/experimental/rfm/sagemaker.py +138 -0
  40. kumoai/kumolib.cp311-win_amd64.pyd +0 -0
  41. kumoai/pquery/predictive_query.py +10 -6
  42. kumoai/spcs.py +1 -3
  43. kumoai/testing/decorators.py +1 -1
  44. kumoai/testing/snow.py +50 -0
  45. kumoai/trainer/distilled_trainer.py +175 -0
  46. kumoai/utils/__init__.py +3 -2
  47. kumoai/utils/display.py +51 -0
  48. kumoai/utils/progress_logger.py +188 -16
  49. kumoai/utils/sql.py +3 -0
  50. {kumoai-2.12.0.dev202511061731.dist-info → kumoai-2.14.0.dev202512311733.dist-info}/METADATA +13 -2
  51. {kumoai-2.12.0.dev202511061731.dist-info → kumoai-2.14.0.dev202512311733.dist-info}/RECORD +54 -31
  52. kumoai/experimental/rfm/local_graph.py +0 -810
  53. kumoai/experimental/rfm/local_graph_sampler.py +0 -184
  54. kumoai/experimental/rfm/local_pquery_driver.py +0 -689
  55. kumoai/experimental/rfm/local_table.py +0 -545
  56. kumoai/experimental/rfm/utils.py +0 -344
  57. {kumoai-2.12.0.dev202511061731.dist-info → kumoai-2.14.0.dev202512311733.dist-info}/WHEEL +0 -0
  58. {kumoai-2.12.0.dev202511061731.dist-info → kumoai-2.14.0.dev202512311733.dist-info}/licenses/LICENSE +0 -0
  59. {kumoai-2.12.0.dev202511061731.dist-info → kumoai-2.14.0.dev202512311733.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,735 @@
1
+ import warnings
2
+ from abc import ABC, abstractmethod
3
+ from collections.abc import Sequence
4
+ from functools import cached_property
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from kumoapi.model_plan import MissingType
9
+ from kumoapi.source_table import UnavailableSourceTable
10
+ from kumoapi.table import Column as ColumnDefinition
11
+ from kumoapi.table import TableDefinition
12
+ from kumoapi.typing import Dtype, Stype
13
+ from typing_extensions import Self
14
+
15
+ from kumoai.experimental.rfm.base import (
16
+ Column,
17
+ ColumnSpec,
18
+ ColumnSpecType,
19
+ DataBackend,
20
+ SourceColumn,
21
+ SourceForeignKey,
22
+ )
23
+ from kumoai.experimental.rfm.infer import (
24
+ infer_dtype,
25
+ infer_primary_key,
26
+ infer_stype,
27
+ infer_time_column,
28
+ )
29
+ from kumoai.utils import display, quote_ident
30
+
31
+
32
+ class Table(ABC):
33
+ r"""A :class:`Table` fully specifies the relevant metadata of a single
34
+ table, *i.e.* its selected columns, data types, semantic types, primary
35
+ keys and time columns.
36
+
37
+ Args:
38
+ name: The name of this table.
39
+ source_name: The source name of this table. If set to ``None``,
40
+ ``name`` is being used.
41
+ columns: The selected columns of this table.
42
+ primary_key: The name of the primary key of this table, if it exists.
43
+ time_column: The name of the time column of this table, if it exists.
44
+ end_time_column: The name of the end time column of this table, if it
45
+ exists.
46
+ """
47
+ _NUM_SAMPLE_ROWS = 1_000
48
+
49
+ def __init__(
50
+ self,
51
+ name: str,
52
+ source_name: str | None = None,
53
+ columns: Sequence[ColumnSpecType] | None = None,
54
+ primary_key: MissingType | str | None = MissingType.VALUE,
55
+ time_column: str | None = None,
56
+ end_time_column: str | None = None,
57
+ ) -> None:
58
+
59
+ self._name = name
60
+ self._source_name = source_name or name
61
+ self._column_dict: dict[str, Column] = {}
62
+ self._primary_key: str | None = None
63
+ self._time_column: str | None = None
64
+ self._end_time_column: str | None = None
65
+ self._expr_sample_df = pd.DataFrame(index=range(self._NUM_SAMPLE_ROWS))
66
+
67
+ if columns is None:
68
+ columns = list(self._source_column_dict.keys())
69
+
70
+ self.add_columns(columns)
71
+
72
+ if isinstance(primary_key, MissingType):
73
+ # Infer primary key from source metadata, but only set it in case
74
+ # it is already part of the column set (don't magically add it):
75
+ if any(column.is_source for column in self.columns):
76
+ primary_key = self._source_primary_key
77
+ if (primary_key is not None and primary_key in self
78
+ and self[primary_key].is_source):
79
+ self.primary_key = primary_key
80
+ elif primary_key is not None:
81
+ if primary_key not in self:
82
+ self.add_column(primary_key)
83
+ self.primary_key = primary_key
84
+
85
+ if time_column is not None:
86
+ if time_column not in self:
87
+ self.add_column(time_column)
88
+ self.time_column = time_column
89
+
90
+ if end_time_column is not None:
91
+ if end_time_column not in self:
92
+ self.add_column(end_time_column)
93
+ self.end_time_column = end_time_column
94
+
95
+ @property
96
+ def name(self) -> str:
97
+ r"""The name of this table."""
98
+ return self._name
99
+
100
+ @property
101
+ def source_name(self) -> str:
102
+ r"""The source name of this table."""
103
+ return self._source_name
104
+
105
+ @property
106
+ def _quoted_source_name(self) -> str:
107
+ return quote_ident(self._source_name)
108
+
109
+ # Column ##################################################################
110
+
111
+ def has_column(self, name: str) -> bool:
112
+ r"""Returns ``True`` if this table holds a column with name ``name``;
113
+ ``False`` otherwise.
114
+ """
115
+ return name in self._column_dict
116
+
117
+ def column(self, name: str) -> Column:
118
+ r"""Returns the data column named with name ``name`` in this table.
119
+
120
+ Args:
121
+ name: The name of the column.
122
+
123
+ Raises:
124
+ KeyError: If ``name`` is not present in this table.
125
+ """
126
+ if not self.has_column(name):
127
+ raise KeyError(f"Column '{name}' not found in table '{self.name}'")
128
+ return self._column_dict[name]
129
+
130
+ @property
131
+ def columns(self) -> list[Column]:
132
+ r"""Returns a list of :class:`Column` objects that represent the
133
+ columns in this table.
134
+ """
135
+ return list(self._column_dict.values())
136
+
137
+ def add_columns(self, columns: Sequence[ColumnSpecType]) -> None:
138
+ r"""Adds a set of columns to this table.
139
+
140
+ Args:
141
+ columns: The columns to add.
142
+
143
+ Raises:
144
+ KeyError: If any of the column names already exist in this table.
145
+ """
146
+ if len(columns) == 0:
147
+ return
148
+
149
+ column_specs = [ColumnSpec.coerce(column) for column in columns]
150
+
151
+ # Obtain a batch-wise sample for all column expressions:
152
+ expr_specs = [spec for spec in column_specs if not spec.is_source]
153
+ if len(expr_specs) > 0:
154
+ dfs = [
155
+ self._expr_sample_df,
156
+ self._get_expr_sample_df(expr_specs).reset_index(drop=True),
157
+ ]
158
+ size = min(map(len, dfs))
159
+ df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
160
+ df = df.loc[:, ~df.columns.duplicated(keep='last')]
161
+ self._expr_sample_df = df
162
+
163
+ for column_spec in column_specs:
164
+ if column_spec.name in self:
165
+ raise KeyError(f"Column '{column_spec.name}' already exists "
166
+ f"in table '{self.name}'")
167
+
168
+ dtype = column_spec.dtype
169
+ stype = column_spec.stype
170
+
171
+ if column_spec.is_source:
172
+ if column_spec.name not in self._source_column_dict:
173
+ raise ValueError(
174
+ f"Column '{column_spec.name}' does not exist in the "
175
+ f"underlying source table")
176
+
177
+ if dtype is None:
178
+ dtype = self._source_column_dict[column_spec.name].dtype
179
+
180
+ if dtype == Dtype.unsupported:
181
+ raise ValueError(
182
+ f"Encountered unsupported data type for column "
183
+ f"'{column_spec.name}' in table '{self.name}'. Please "
184
+ f"either change the column's data type or remove the "
185
+ f"column from this table.")
186
+
187
+ if dtype is None:
188
+ if column_spec.is_source:
189
+ ser = self._source_sample_df[column_spec.name]
190
+ else:
191
+ ser = self._expr_sample_df[column_spec.name]
192
+ try:
193
+ dtype = infer_dtype(ser)
194
+ except Exception as e:
195
+ raise RuntimeError(
196
+ f"Encountered unsupported data type '{ser.dtype}' for "
197
+ f"column '{column_spec.name}' in table '{self.name}'. "
198
+ f"Please either manually override the columns's data "
199
+ f"type or remove the column from this table.") from e
200
+
201
+ if stype is None:
202
+ if column_spec.is_source:
203
+ ser = self._source_sample_df[column_spec.name]
204
+ else:
205
+ ser = self._expr_sample_df[column_spec.name]
206
+ try:
207
+ stype = infer_stype(ser, column_spec.name, dtype)
208
+ except Exception as e:
209
+ raise RuntimeError(
210
+ f"Could not determine semantic type for column "
211
+ f"'{column_spec.name}' with data type '{dtype}' in "
212
+ f"table '{self.name}'. Please either change the "
213
+ f"column's data type or remove the column from this "
214
+ f"table.") from e
215
+
216
+ self._column_dict[column_spec.name] = Column(
217
+ name=column_spec.name,
218
+ expr=column_spec.expr,
219
+ dtype=dtype,
220
+ stype=stype,
221
+ )
222
+
223
+ def add_column(self, column: ColumnSpecType) -> Column:
224
+ r"""Adds a column to this table.
225
+
226
+ Args:
227
+ column: The column to add.
228
+
229
+ Raises:
230
+ KeyError: If the column name already exists in this table.
231
+ """
232
+ column_spec = ColumnSpec.coerce(column)
233
+ self.add_columns([column_spec])
234
+ return self[column_spec.name]
235
+
236
+ def remove_column(self, name: str) -> Self:
237
+ r"""Removes a column from this table.
238
+
239
+ Args:
240
+ name: The name of the column.
241
+
242
+ Raises:
243
+ KeyError: If ``name`` is not present in this table.
244
+ """
245
+ if name not in self:
246
+ raise KeyError(f"Column '{name}' not found in table '{self.name}'")
247
+
248
+ if self._primary_key == name:
249
+ self.primary_key = None
250
+ if self._time_column == name:
251
+ self.time_column = None
252
+ if self._end_time_column == name:
253
+ self.end_time_column = None
254
+ del self._column_dict[name]
255
+
256
+ return self
257
+
258
+ # Primary key #############################################################
259
+
260
+ def has_primary_key(self) -> bool:
261
+ r"""Returns ``True``` if this table has a primary key; ``False``
262
+ otherwise.
263
+ """
264
+ return self._primary_key is not None
265
+
266
+ @property
267
+ def primary_key(self) -> Column | None:
268
+ r"""The primary key column of this table.
269
+
270
+ The getter returns the primary key column of this table, or ``None`` if
271
+ no such primary key is present.
272
+
273
+ The setter sets a column as a primary key on this table, and raises a
274
+ :class:`ValueError` if the primary key has a non-ID semantic type or
275
+ if the column name does not match a column in the data frame.
276
+ """
277
+ if self._primary_key is None:
278
+ return None
279
+ return self[self._primary_key]
280
+
281
+ @primary_key.setter
282
+ def primary_key(self, name: str | None) -> None:
283
+ if name is not None and name == self._time_column:
284
+ raise ValueError(f"Cannot specify column '{name}' as a primary "
285
+ f"key since it is already defined to be a time "
286
+ f"column")
287
+ if name is not None and name == self._end_time_column:
288
+ raise ValueError(f"Cannot specify column '{name}' as a primary "
289
+ f"key since it is already defined to be an end "
290
+ f"time column")
291
+
292
+ if self.primary_key is not None:
293
+ self.primary_key._is_primary_key = False
294
+
295
+ if name is None:
296
+ self._primary_key = None
297
+ return
298
+
299
+ self[name].stype = Stype.ID
300
+ self[name]._is_primary_key = True
301
+ self._primary_key = name
302
+
303
+ # Time column #############################################################
304
+
305
+ def has_time_column(self) -> bool:
306
+ r"""Returns ``True`` if this table has a time column; ``False``
307
+ otherwise.
308
+ """
309
+ return self._time_column is not None
310
+
311
+ @property
312
+ def time_column(self) -> Column | None:
313
+ r"""The time column of this table.
314
+
315
+ The getter returns the time column of this table, or ``None`` if no
316
+ such time column is present.
317
+
318
+ The setter sets a column as a time column on this table, and raises a
319
+ :class:`ValueError` if the time column has a non-timestamp semantic
320
+ type or if the column name does not match a column in the data frame.
321
+ """
322
+ if self._time_column is None:
323
+ return None
324
+ return self[self._time_column]
325
+
326
+ @time_column.setter
327
+ def time_column(self, name: str | None) -> None:
328
+ if name is not None and name == self._primary_key:
329
+ raise ValueError(f"Cannot specify column '{name}' as a time "
330
+ f"column since it is already defined to be a "
331
+ f"primary key")
332
+ if name is not None and name == self._end_time_column:
333
+ raise ValueError(f"Cannot specify column '{name}' as a time "
334
+ f"column since it is already defined to be an "
335
+ f"end time column")
336
+
337
+ if self.time_column is not None:
338
+ self.time_column._is_time_column = False
339
+
340
+ if name is None:
341
+ self._time_column = None
342
+ return
343
+
344
+ self[name].stype = Stype.timestamp
345
+ self[name]._is_time_column = True
346
+ self._time_column = name
347
+
348
+ # End Time column #########################################################
349
+
350
+ def has_end_time_column(self) -> bool:
351
+ r"""Returns ``True`` if this table has an end time column; ``False``
352
+ otherwise.
353
+ """
354
+ return self._end_time_column is not None
355
+
356
+ @property
357
+ def end_time_column(self) -> Column | None:
358
+ r"""The end time column of this table.
359
+
360
+ The getter returns the end time column of this table, or ``None`` if no
361
+ such end time column is present.
362
+
363
+ The setter sets a column as an end time column on this table, and
364
+ raises a :class:`ValueError` if the end time column has a non-timestamp
365
+ semantic type or if the column name does not match a column in the data
366
+ frame.
367
+ """
368
+ if self._end_time_column is None:
369
+ return None
370
+ return self[self._end_time_column]
371
+
372
+ @end_time_column.setter
373
+ def end_time_column(self, name: str | None) -> None:
374
+ if name is not None and name == self._primary_key:
375
+ raise ValueError(f"Cannot specify column '{name}' as an end time "
376
+ f"column since it is already defined to be a "
377
+ f"primary key")
378
+ if name is not None and name == self._time_column:
379
+ raise ValueError(f"Cannot specify column '{name}' as an end time "
380
+ f"column since it is already defined to be a "
381
+ f"time column")
382
+
383
+ if self.end_time_column is not None:
384
+ self.end_time_column._is_end_time_column = False
385
+
386
+ if name is None:
387
+ self._end_time_column = None
388
+ return
389
+
390
+ self[name].stype = Stype.timestamp
391
+ self[name]._is_end_time_column = True
392
+ self._end_time_column = name
393
+
394
+ # Metadata ################################################################
395
+
396
+ @property
397
+ def metadata(self) -> pd.DataFrame:
398
+ r"""Returns a :class:`pandas.DataFrame` object containing metadata
399
+ information about the columns in this table.
400
+
401
+ The returned dataframe has columns ``name``, ``dtype``, ``stype``,
402
+ ``is_primary_key``, ``is_time_column`` and ``is_end_time_column``,
403
+ which provide an aggregate view of the properties of the columns of
404
+ this table.
405
+
406
+ Example:
407
+ >>> # doctest: +SKIP
408
+ >>> import kumoai.experimental.rfm as rfm
409
+ >>> table = rfm.LocalTable(df=..., name=...).infer_metadata()
410
+ >>> table.metadata
411
+ name dtype stype is_primary_key is_time_column is_end_time_column
412
+ 0 CustomerID float64 ID True False False
413
+ """ # noqa: E501
414
+ cols = self.columns
415
+
416
+ return pd.DataFrame({
417
+ 'name':
418
+ pd.Series(dtype=str, data=[c.name for c in cols]),
419
+ 'dtype':
420
+ pd.Series(dtype=str, data=[c.dtype for c in cols]),
421
+ 'stype':
422
+ pd.Series(dtype=str, data=[c.stype for c in cols]),
423
+ 'is_primary_key':
424
+ pd.Series(
425
+ dtype=bool,
426
+ data=[self._primary_key == c.name for c in cols],
427
+ ),
428
+ 'is_time_column':
429
+ pd.Series(
430
+ dtype=bool,
431
+ data=[self._time_column == c.name for c in cols],
432
+ ),
433
+ 'is_end_time_column':
434
+ pd.Series(
435
+ dtype=bool,
436
+ data=[self._end_time_column == c.name for c in cols],
437
+ ),
438
+ })
439
+
440
+ def print_metadata(self) -> None:
441
+ r"""Prints the :meth:`~metadata` of this table."""
442
+ msg = f"🏷️ Metadata of Table `{self.name}`"
443
+ if num := self._num_rows:
444
+ msg += " (1 row)" if num == 1 else f" ({num:,} rows)"
445
+
446
+ display.title(msg)
447
+ display.dataframe(self.metadata)
448
+
449
+ def infer_primary_key(self, verbose: bool = True) -> Self:
450
+ r"""Infers the primary key in this table.
451
+
452
+ Args:
453
+ verbose: Whether to print verbose output.
454
+ """
455
+ if self.has_primary_key():
456
+ return self
457
+
458
+ def _set_primary_key(primary_key: str) -> None:
459
+ self.primary_key = primary_key
460
+ if verbose:
461
+ display.message(f"Inferred primary key `{primary_key}` for "
462
+ f"table `{self.name}`")
463
+
464
+ # Inference from source column metadata:
465
+ if any(column.is_source for column in self.columns):
466
+ primary_key = self._source_primary_key
467
+ if (primary_key is not None and primary_key in self
468
+ and self[primary_key].is_source):
469
+ _set_primary_key(primary_key)
470
+ return self
471
+
472
+ unique_keys = [
473
+ column.name for column in self._source_column_dict.values()
474
+ if column.is_unique_key
475
+ ]
476
+ if (len(unique_keys) == 1 # NOTE No composite keys yet.
477
+ and unique_keys[0] in self
478
+ and self[unique_keys[0]].is_source):
479
+ _set_primary_key(unique_keys[0])
480
+ return self
481
+
482
+ # Heuristic-based inference:
483
+ candidates = [
484
+ column.name for column in self.columns if column.stype == Stype.ID
485
+ ]
486
+ if len(candidates) == 0:
487
+ for column in self.columns:
488
+ if self.name.lower() == column.name.lower():
489
+ candidates.append(column.name)
490
+ elif (self.name.lower().endswith('s')
491
+ and self.name.lower()[:-1] == column.name.lower()):
492
+ candidates.append(column.name)
493
+
494
+ if primary_key := infer_primary_key(
495
+ table_name=self.name,
496
+ df=self._get_sample_df(),
497
+ candidates=candidates,
498
+ ):
499
+ _set_primary_key(primary_key)
500
+ return self
501
+
502
+ return self
503
+
504
+ def infer_time_column(self, verbose: bool = True) -> Self:
505
+ r"""Infers the time column in this table.
506
+
507
+ Args:
508
+ verbose: Whether to print verbose output.
509
+ """
510
+ if self.has_time_column():
511
+ return self
512
+
513
+ # Heuristic-based inference:
514
+ candidates = [
515
+ column.name for column in self.columns
516
+ if column.stype == Stype.timestamp
517
+ and column.name != self._end_time_column
518
+ ]
519
+
520
+ if time_column := infer_time_column(
521
+ df=self._get_sample_df(),
522
+ candidates=candidates,
523
+ ):
524
+ self.time_column = time_column
525
+
526
+ if verbose:
527
+ display.message(f"Inferred time column `{time_column}` for "
528
+ f"table `{self.name}`")
529
+
530
+ return self
531
+
532
+ def infer_metadata(self, verbose: bool = True) -> Self:
533
+ r"""Infers metadata, *i.e.*, primary keys and time columns, in this
534
+ table.
535
+
536
+ Args:
537
+ verbose: Whether to print verbose output.
538
+ """
539
+ logs = []
540
+
541
+ if not self.has_primary_key():
542
+ self.infer_primary_key(verbose=False)
543
+ if self.has_primary_key():
544
+ logs.append(f"primary key `{self._primary_key}`")
545
+
546
+ if not self.has_time_column():
547
+ self.infer_time_column(verbose=False)
548
+ if self.has_time_column():
549
+ logs.append(f"time column `{self._time_column}`")
550
+
551
+ if verbose and len(logs) > 0:
552
+ display.message(f"Inferred {' and '.join(logs)} for table "
553
+ f"`{self.name}`")
554
+
555
+ return self
556
+
557
+ # Helpers #################################################################
558
+
559
+ def _to_api_table_definition(self) -> TableDefinition:
560
+ return TableDefinition(
561
+ cols=[
562
+ ColumnDefinition(col.name, col.stype, col.dtype)
563
+ for col in self.columns
564
+ ],
565
+ source_table=UnavailableSourceTable(table=self.name),
566
+ pkey=self._primary_key,
567
+ time_col=self._time_column,
568
+ end_time_col=self._end_time_column,
569
+ )
570
+
571
+ @cached_property
572
+ def _source_column_dict(self) -> dict[str, SourceColumn]:
573
+ source_columns = self._get_source_columns()
574
+ if len(source_columns) == 0:
575
+ raise ValueError(f"Table '{self.name}' has no columns")
576
+ return {column.name: column for column in source_columns}
577
+
578
+ @cached_property
579
+ def _source_primary_key(self) -> str | None:
580
+ primary_keys = [
581
+ column.name for column in self._source_column_dict.values()
582
+ if column.is_primary_key
583
+ ]
584
+ # NOTE No composite keys yet.
585
+ return primary_keys[0] if len(primary_keys) == 1 else None
586
+
587
+ @cached_property
588
+ def _source_foreign_key_dict(self) -> dict[str, SourceForeignKey]:
589
+ return {key.name: key for key in self._get_source_foreign_keys()}
590
+
591
+ @cached_property
592
+ def _source_sample_df(self) -> pd.DataFrame:
593
+ return self._get_source_sample_df().reset_index(drop=True)
594
+
595
+ @cached_property
596
+ def _num_rows(self) -> int | None:
597
+ return self._get_num_rows()
598
+
599
+ def _get_sample_df(self) -> pd.DataFrame:
600
+ dfs: list[pd.DataFrame] = []
601
+ if any(column.is_source for column in self.columns):
602
+ dfs.append(self._source_sample_df)
603
+ if any(not column.is_source for column in self.columns):
604
+ dfs.append(self._expr_sample_df)
605
+
606
+ if len(dfs) == 0:
607
+ return pd.DataFrame(index=range(1000))
608
+ if len(dfs) == 1:
609
+ return dfs[0]
610
+
611
+ size = min(map(len, dfs))
612
+ df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
613
+ df = df.loc[:, ~df.columns.duplicated(keep='last')]
614
+ return df
615
+
616
+ @staticmethod
617
+ def _sanitize(
618
+ df: pd.DataFrame,
619
+ dtype_dict: dict[str, Dtype | None] | None = None,
620
+ stype_dict: dict[str, Stype | None] | None = None,
621
+ ) -> pd.DataFrame:
622
+ r"""Sanitzes a :class:`pandas.DataFrame` in-place such that its data
623
+ types match table data and semantic type specification.
624
+ """
625
+ def _to_datetime(ser: pd.Series) -> pd.Series:
626
+ if not pd.api.types.is_datetime64_any_dtype(ser):
627
+ with warnings.catch_warnings():
628
+ warnings.filterwarnings(
629
+ 'ignore',
630
+ message='Could not infer format',
631
+ )
632
+ ser = pd.to_datetime(ser, errors='coerce')
633
+ if isinstance(ser.dtype, pd.DatetimeTZDtype):
634
+ ser = ser.dt.tz_localize(None)
635
+ if ser.dtype != 'datetime64[ns]':
636
+ ser = ser.astype('datetime64[ns]')
637
+ return ser
638
+
639
+ def _to_list(ser: pd.Series, dtype: Dtype | None) -> pd.Series:
640
+ if (pd.api.types.is_string_dtype(ser)
641
+ and dtype in {Dtype.intlist, Dtype.floatlist}):
642
+ try:
643
+ ser = ser.map(lambda row: np.fromstring(
644
+ row.strip('[]'),
645
+ sep=',',
646
+ dtype=int if dtype == Dtype.intlist else np.float32,
647
+ ) if row is not None else None)
648
+ except Exception:
649
+ pass
650
+
651
+ if pd.api.types.is_string_dtype(ser):
652
+ try:
653
+ import orjson as json
654
+ except ImportError:
655
+ import json
656
+ try:
657
+ ser = ser.map(lambda row: json.loads(row)
658
+ if row is not None else None)
659
+ except Exception:
660
+ pass
661
+
662
+ return ser
663
+
664
+ for column_name in df.columns:
665
+ dtype = (dtype_dict or {}).get(column_name)
666
+ stype = (stype_dict or {}).get(column_name)
667
+
668
+ if dtype == Dtype.time:
669
+ df[column_name] = _to_datetime(df[column_name])
670
+ elif stype == Stype.timestamp:
671
+ df[column_name] = _to_datetime(df[column_name])
672
+ elif dtype is not None and dtype.is_list():
673
+ df[column_name] = _to_list(df[column_name], dtype)
674
+ elif stype == Stype.sequence:
675
+ df[column_name] = _to_list(df[column_name], Dtype.floatlist)
676
+
677
+ return df
678
+
679
+ # Python builtins #########################################################
680
+
681
+ def __hash__(self) -> int:
682
+ special_columns = [
683
+ self.primary_key,
684
+ self.time_column,
685
+ self.end_time_column,
686
+ ]
687
+ return hash(tuple(self.columns + special_columns))
688
+
689
+ def __contains__(self, name: str) -> bool:
690
+ return self.has_column(name)
691
+
692
+ def __getitem__(self, name: str) -> Column:
693
+ return self.column(name)
694
+
695
+ def __delitem__(self, name: str) -> None:
696
+ self.remove_column(name)
697
+
698
+ def __repr__(self) -> str:
699
+ return (f'{self.__class__.__name__}(\n'
700
+ f' name={self.name},\n'
701
+ f' num_columns={len(self.columns)},\n'
702
+ f' primary_key={self._primary_key},\n'
703
+ f' time_column={self._time_column},\n'
704
+ f' end_time_column={self._end_time_column},\n'
705
+ f')')
706
+
707
+ # Abstract Methods ########################################################
708
+
709
+ @property
710
+ @abstractmethod
711
+ def backend(self) -> DataBackend:
712
+ r"""The data backend of this table."""
713
+
714
+ @abstractmethod
715
+ def _get_source_columns(self) -> list[SourceColumn]:
716
+ pass
717
+
718
+ @abstractmethod
719
+ def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
720
+ pass
721
+
722
+ @abstractmethod
723
+ def _get_source_sample_df(self) -> pd.DataFrame:
724
+ pass
725
+
726
+ @abstractmethod
727
+ def _get_expr_sample_df(
728
+ self,
729
+ columns: Sequence[ColumnSpec],
730
+ ) -> pd.DataFrame:
731
+ pass
732
+
733
+ @abstractmethod
734
+ def _get_num_rows(self) -> int | None:
735
+ pass