kumoai 2.12.0.dev202511031731__cp313-cp313-macosx_11_0_arm64.whl → 2.13.0.dev202512061731__cp313-cp313-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +18 -9
- kumoai/_version.py +1 -1
- kumoai/client/client.py +9 -13
- kumoai/client/endpoints.py +1 -0
- kumoai/client/rfm.py +35 -7
- kumoai/connector/utils.py +23 -2
- kumoai/experimental/rfm/__init__.py +164 -46
- kumoai/experimental/rfm/backend/__init__.py +0 -0
- kumoai/experimental/rfm/backend/local/__init__.py +42 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +20 -30
- kumoai/experimental/rfm/backend/local/sampler.py +131 -0
- kumoai/experimental/rfm/backend/local/table.py +109 -0
- kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
- kumoai/experimental/rfm/backend/snow/table.py +117 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
- kumoai/experimental/rfm/base/__init__.py +14 -0
- kumoai/experimental/rfm/base/column.py +66 -0
- kumoai/experimental/rfm/base/sampler.py +287 -0
- kumoai/experimental/rfm/base/source.py +18 -0
- kumoai/experimental/rfm/{local_table.py → base/table.py} +139 -139
- kumoai/experimental/rfm/{local_graph.py → graph.py} +334 -79
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +79 -0
- kumoai/experimental/rfm/infer/pkey.py +126 -0
- kumoai/experimental/rfm/infer/time_col.py +62 -0
- kumoai/experimental/rfm/local_graph_sampler.py +43 -4
- kumoai/experimental/rfm/local_pquery_driver.py +222 -27
- kumoai/experimental/rfm/pquery/__init__.py +0 -4
- kumoai/experimental/rfm/pquery/pandas_executor.py +34 -8
- kumoai/experimental/rfm/rfm.py +153 -96
- kumoai/experimental/rfm/sagemaker.py +138 -0
- kumoai/spcs.py +1 -3
- kumoai/testing/decorators.py +1 -1
- kumoai/utils/progress_logger.py +10 -4
- {kumoai-2.12.0.dev202511031731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/METADATA +12 -2
- {kumoai-2.12.0.dev202511031731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/RECORD +40 -27
- kumoai/experimental/rfm/pquery/backend.py +0 -136
- kumoai/experimental/rfm/pquery/pandas_backend.py +0 -478
- kumoai/experimental/rfm/utils.py +0 -344
- {kumoai-2.12.0.dev202511031731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/WHEEL +0 -0
- {kumoai-2.12.0.dev202511031731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.12.0.dev202511031731.dist-info → kumoai-2.13.0.dev202512061731.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
from typing import Dict
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
import pyarrow as pa
|
|
6
|
+
from kumoapi.typing import Dtype
|
|
7
|
+
|
|
8
|
+
PANDAS_TO_DTYPE: Dict[str, Dtype] = {
|
|
9
|
+
'bool': Dtype.bool,
|
|
10
|
+
'boolean': Dtype.bool,
|
|
11
|
+
'int8': Dtype.int,
|
|
12
|
+
'int16': Dtype.int,
|
|
13
|
+
'int32': Dtype.int,
|
|
14
|
+
'int64': Dtype.int,
|
|
15
|
+
'float16': Dtype.float,
|
|
16
|
+
'float32': Dtype.float,
|
|
17
|
+
'float64': Dtype.float,
|
|
18
|
+
'object': Dtype.string,
|
|
19
|
+
'string': Dtype.string,
|
|
20
|
+
'string[python]': Dtype.string,
|
|
21
|
+
'string[pyarrow]': Dtype.string,
|
|
22
|
+
'binary': Dtype.binary,
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def infer_dtype(ser: pd.Series) -> Dtype:
|
|
27
|
+
"""Extracts the :class:`Dtype` from a :class:`pandas.Series`.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
ser: A :class:`pandas.Series` to analyze.
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
The data type.
|
|
34
|
+
"""
|
|
35
|
+
if pd.api.types.is_datetime64_any_dtype(ser.dtype):
|
|
36
|
+
return Dtype.date
|
|
37
|
+
if pd.api.types.is_timedelta64_dtype(ser.dtype):
|
|
38
|
+
return Dtype.timedelta
|
|
39
|
+
if isinstance(ser.dtype, pd.CategoricalDtype):
|
|
40
|
+
return Dtype.string
|
|
41
|
+
|
|
42
|
+
if (pd.api.types.is_object_dtype(ser.dtype)
|
|
43
|
+
and not isinstance(ser.dtype, pd.ArrowDtype)):
|
|
44
|
+
index = ser.iloc[:1000].first_valid_index()
|
|
45
|
+
if index is not None and pd.api.types.is_list_like(ser[index]):
|
|
46
|
+
pos = ser.index.get_loc(index)
|
|
47
|
+
assert isinstance(pos, int)
|
|
48
|
+
ser = ser.iloc[pos:pos + 1000].dropna()
|
|
49
|
+
arr = pa.array(ser.tolist())
|
|
50
|
+
ser = pd.Series(arr, dtype=pd.ArrowDtype(arr.type))
|
|
51
|
+
|
|
52
|
+
if isinstance(ser.dtype, pd.ArrowDtype):
|
|
53
|
+
if pa.types.is_list(ser.dtype.pyarrow_dtype):
|
|
54
|
+
elem_dtype = ser.dtype.pyarrow_dtype.value_type
|
|
55
|
+
if pa.types.is_integer(elem_dtype):
|
|
56
|
+
return Dtype.intlist
|
|
57
|
+
if pa.types.is_floating(elem_dtype):
|
|
58
|
+
return Dtype.floatlist
|
|
59
|
+
if pa.types.is_decimal(elem_dtype):
|
|
60
|
+
return Dtype.floatlist
|
|
61
|
+
if pa.types.is_string(elem_dtype):
|
|
62
|
+
return Dtype.stringlist
|
|
63
|
+
if pa.types.is_null(elem_dtype):
|
|
64
|
+
return Dtype.floatlist
|
|
65
|
+
|
|
66
|
+
if isinstance(ser.dtype, np.dtype):
|
|
67
|
+
dtype_str = str(ser.dtype).lower()
|
|
68
|
+
elif isinstance(ser.dtype, pd.api.extensions.ExtensionDtype):
|
|
69
|
+
dtype_str = ser.dtype.name.lower()
|
|
70
|
+
dtype_str = dtype_str.split('[')[0] # Remove backend metadata
|
|
71
|
+
elif isinstance(ser.dtype, pa.DataType):
|
|
72
|
+
dtype_str = str(ser.dtype).lower()
|
|
73
|
+
else:
|
|
74
|
+
dtype_str = 'object'
|
|
75
|
+
|
|
76
|
+
if dtype_str not in PANDAS_TO_DTYPE:
|
|
77
|
+
raise ValueError(f"Unsupported data type '{ser.dtype}'")
|
|
78
|
+
|
|
79
|
+
return PANDAS_TO_DTYPE[dtype_str]
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
import re
|
|
2
|
+
import warnings
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def infer_primary_key(
|
|
9
|
+
table_name: str,
|
|
10
|
+
df: pd.DataFrame,
|
|
11
|
+
candidates: list[str],
|
|
12
|
+
) -> Optional[str]:
|
|
13
|
+
r"""Auto-detect potential primary key column.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
table_name: The table name.
|
|
17
|
+
df: The pandas DataFrame to analyze.
|
|
18
|
+
candidates: A list of potential candidates.
|
|
19
|
+
|
|
20
|
+
Returns:
|
|
21
|
+
The name of the detected primary key, or ``None`` if not found.
|
|
22
|
+
"""
|
|
23
|
+
# A list of (potentially modified) table names that are eligible to match
|
|
24
|
+
# with a primary key, i.e.:
|
|
25
|
+
# - UserInfo -> User
|
|
26
|
+
# - snakecase <-> camelcase
|
|
27
|
+
# - camelcase <-> snakecase
|
|
28
|
+
# - plural <-> singular (users -> user, eligibilities -> eligibility)
|
|
29
|
+
# - verb -> noun (qualifying -> qualify)
|
|
30
|
+
_table_names = {table_name}
|
|
31
|
+
if table_name.lower().endswith('_info'):
|
|
32
|
+
_table_names.add(table_name[:-5])
|
|
33
|
+
elif table_name.lower().endswith('info'):
|
|
34
|
+
_table_names.add(table_name[:-4])
|
|
35
|
+
|
|
36
|
+
table_names = set()
|
|
37
|
+
for _table_name in _table_names:
|
|
38
|
+
table_names.add(_table_name.lower())
|
|
39
|
+
snakecase = re.sub(r'(.)([A-Z][a-z]+)', r'\1_\2', _table_name)
|
|
40
|
+
snakecase = re.sub(r'([a-z0-9])([A-Z])', r'\1_\2', snakecase)
|
|
41
|
+
table_names.add(snakecase.lower())
|
|
42
|
+
camelcase = _table_name.replace('_', '')
|
|
43
|
+
table_names.add(camelcase.lower())
|
|
44
|
+
if _table_name.lower().endswith('s'):
|
|
45
|
+
table_names.add(_table_name.lower()[:-1])
|
|
46
|
+
table_names.add(snakecase.lower()[:-1])
|
|
47
|
+
table_names.add(camelcase.lower()[:-1])
|
|
48
|
+
else:
|
|
49
|
+
table_names.add(_table_name.lower() + 's')
|
|
50
|
+
table_names.add(snakecase.lower() + 's')
|
|
51
|
+
table_names.add(camelcase.lower() + 's')
|
|
52
|
+
if _table_name.lower().endswith('ies'):
|
|
53
|
+
table_names.add(_table_name.lower()[:-3] + 'y')
|
|
54
|
+
table_names.add(snakecase.lower()[:-3] + 'y')
|
|
55
|
+
table_names.add(camelcase.lower()[:-3] + 'y')
|
|
56
|
+
elif _table_name.lower().endswith('y'):
|
|
57
|
+
table_names.add(_table_name.lower()[:-1] + 'ies')
|
|
58
|
+
table_names.add(snakecase.lower()[:-1] + 'ies')
|
|
59
|
+
table_names.add(camelcase.lower()[:-1] + 'ies')
|
|
60
|
+
if _table_name.lower().endswith('ing'):
|
|
61
|
+
table_names.add(_table_name.lower()[:-3])
|
|
62
|
+
table_names.add(snakecase.lower()[:-3])
|
|
63
|
+
table_names.add(camelcase.lower()[:-3])
|
|
64
|
+
|
|
65
|
+
scores: list[tuple[str, int]] = []
|
|
66
|
+
for col_name in candidates:
|
|
67
|
+
col_name_lower = col_name.lower()
|
|
68
|
+
|
|
69
|
+
score = 0
|
|
70
|
+
|
|
71
|
+
if col_name_lower == 'id':
|
|
72
|
+
score += 4
|
|
73
|
+
|
|
74
|
+
for table_name_lower in table_names:
|
|
75
|
+
|
|
76
|
+
if col_name_lower == table_name_lower:
|
|
77
|
+
score += 4 # USER -> USER
|
|
78
|
+
break
|
|
79
|
+
|
|
80
|
+
for suffix in ['id', 'hash', 'key', 'code', 'uuid']:
|
|
81
|
+
if not col_name_lower.endswith(suffix):
|
|
82
|
+
continue
|
|
83
|
+
|
|
84
|
+
if col_name_lower == f'{table_name_lower}_{suffix}':
|
|
85
|
+
score += 5 # USER -> USER_ID
|
|
86
|
+
break
|
|
87
|
+
|
|
88
|
+
if col_name_lower == f'{table_name_lower}{suffix}':
|
|
89
|
+
score += 5 # User -> UserId
|
|
90
|
+
break
|
|
91
|
+
|
|
92
|
+
if col_name_lower.endswith(f'{table_name_lower}_{suffix}'):
|
|
93
|
+
score += 2
|
|
94
|
+
|
|
95
|
+
if col_name_lower.endswith(f'{table_name_lower}{suffix}'):
|
|
96
|
+
score += 2
|
|
97
|
+
|
|
98
|
+
# `rel-bench` hard-coding :(
|
|
99
|
+
if table_name == 'studies' and col_name == 'nct_id':
|
|
100
|
+
score += 1
|
|
101
|
+
|
|
102
|
+
ser = df[col_name].iloc[:1_000_000]
|
|
103
|
+
score += 3 * (ser.nunique() / len(ser))
|
|
104
|
+
|
|
105
|
+
scores.append((col_name, score))
|
|
106
|
+
|
|
107
|
+
scores = [x for x in scores if x[-1] >= 4]
|
|
108
|
+
scores.sort(key=lambda x: x[-1], reverse=True)
|
|
109
|
+
|
|
110
|
+
if len(scores) == 0:
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
if len(scores) == 1:
|
|
114
|
+
return scores[0][0]
|
|
115
|
+
|
|
116
|
+
# In case of multiple candidates, only return one if its score is unique:
|
|
117
|
+
if scores[0][1] != scores[1][1]:
|
|
118
|
+
return scores[0][0]
|
|
119
|
+
|
|
120
|
+
max_score = max(scores, key=lambda x: x[1])
|
|
121
|
+
candidates = [col_name for col_name, score in scores if score == max_score]
|
|
122
|
+
warnings.warn(f"Found multiple potential primary keys in table "
|
|
123
|
+
f"'{table_name}': {candidates}. Please specify the primary "
|
|
124
|
+
f"key for this table manually.")
|
|
125
|
+
|
|
126
|
+
return None
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
import re
|
|
2
|
+
import warnings
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def infer_time_column(
|
|
9
|
+
df: pd.DataFrame,
|
|
10
|
+
candidates: list[str],
|
|
11
|
+
) -> Optional[str]:
|
|
12
|
+
r"""Auto-detect potential time column.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
df: The pandas DataFrame to analyze.
|
|
16
|
+
candidates: A list of potential candidates.
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
The name of the detected time column, or ``None`` if not found.
|
|
20
|
+
"""
|
|
21
|
+
candidates = [ # Exclude all candidates with `*last*` in column names:
|
|
22
|
+
col_name for col_name in candidates
|
|
23
|
+
if not re.search(r'(^|_)last(_|$)', col_name, re.IGNORECASE)
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
if len(candidates) == 0:
|
|
27
|
+
return None
|
|
28
|
+
|
|
29
|
+
if len(candidates) == 1:
|
|
30
|
+
return candidates[0]
|
|
31
|
+
|
|
32
|
+
# If there exists a dedicated `create*` column, use it as time column:
|
|
33
|
+
create_candidates = [
|
|
34
|
+
candidate for candidate in candidates
|
|
35
|
+
if candidate.lower().startswith('create')
|
|
36
|
+
]
|
|
37
|
+
if len(create_candidates) == 1:
|
|
38
|
+
return create_candidates[0]
|
|
39
|
+
if len(create_candidates) > 1:
|
|
40
|
+
candidates = create_candidates
|
|
41
|
+
|
|
42
|
+
# Find the most optimal time column. Usually, it is the one pointing to
|
|
43
|
+
# the oldest timestamps:
|
|
44
|
+
with warnings.catch_warnings():
|
|
45
|
+
warnings.filterwarnings('ignore', message='Could not infer format')
|
|
46
|
+
min_timestamp_dict = {
|
|
47
|
+
key: pd.to_datetime(df[key].iloc[:10_000], 'coerce')
|
|
48
|
+
for key in candidates
|
|
49
|
+
}
|
|
50
|
+
min_timestamp_dict = {
|
|
51
|
+
key: value.min().tz_localize(None)
|
|
52
|
+
for key, value in min_timestamp_dict.items()
|
|
53
|
+
}
|
|
54
|
+
min_timestamp_dict = {
|
|
55
|
+
key: value
|
|
56
|
+
for key, value in min_timestamp_dict.items() if not pd.isna(value)
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
if len(min_timestamp_dict) == 0:
|
|
60
|
+
return None
|
|
61
|
+
|
|
62
|
+
return min(min_timestamp_dict, key=min_timestamp_dict.get) # type: ignore
|
|
@@ -1,14 +1,54 @@
|
|
|
1
|
+
import re
|
|
1
2
|
from typing import Dict, List, Optional, Tuple
|
|
2
3
|
|
|
3
4
|
import numpy as np
|
|
4
5
|
import pandas as pd
|
|
5
|
-
from kumoapi.model_plan import RunMode
|
|
6
6
|
from kumoapi.rfm.context import EdgeLayout, Link, Subgraph, Table
|
|
7
7
|
from kumoapi.typing import Stype
|
|
8
8
|
|
|
9
9
|
import kumoai.kumolib as kumolib
|
|
10
|
-
from kumoai.experimental.rfm.
|
|
11
|
-
|
|
10
|
+
from kumoai.experimental.rfm.backend.local import LocalGraphStore
|
|
11
|
+
|
|
12
|
+
PUNCTUATION = re.compile(r"[\'\"\.,\(\)\!\?\;\:]")
|
|
13
|
+
MULTISPACE = re.compile(r"\s+")
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def normalize_text(
|
|
17
|
+
ser: pd.Series,
|
|
18
|
+
max_words: Optional[int] = 50,
|
|
19
|
+
) -> pd.Series:
|
|
20
|
+
r"""Normalizes text into a list of lower-case words.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
ser: The :class:`pandas.Series` to normalize.
|
|
24
|
+
max_words: The maximum number of words to return.
|
|
25
|
+
This will auto-shrink any large text column to avoid blowing up
|
|
26
|
+
context size.
|
|
27
|
+
"""
|
|
28
|
+
if len(ser) == 0 or pd.api.types.is_list_like(ser.iloc[0]):
|
|
29
|
+
return ser
|
|
30
|
+
|
|
31
|
+
def normalize_fn(line: str) -> list[str]:
|
|
32
|
+
line = PUNCTUATION.sub(" ", line)
|
|
33
|
+
line = re.sub(r"<br\s*/?>", " ", line) # Handle <br /> or <br>
|
|
34
|
+
line = MULTISPACE.sub(" ", line)
|
|
35
|
+
words = line.split()
|
|
36
|
+
if max_words is not None:
|
|
37
|
+
words = words[:max_words]
|
|
38
|
+
return words
|
|
39
|
+
|
|
40
|
+
ser = ser.fillna('').astype(str)
|
|
41
|
+
|
|
42
|
+
if max_words is not None:
|
|
43
|
+
# We estimate the number of words as 5 characters + 1 space in an
|
|
44
|
+
# English text on average. We need this pre-filter here, as word
|
|
45
|
+
# splitting on a giant text can be very expensive:
|
|
46
|
+
ser = ser.str[:6 * max_words]
|
|
47
|
+
|
|
48
|
+
ser = ser.str.lower()
|
|
49
|
+
ser = ser.map(normalize_fn)
|
|
50
|
+
|
|
51
|
+
return ser
|
|
12
52
|
|
|
13
53
|
|
|
14
54
|
class LocalGraphSampler:
|
|
@@ -33,7 +73,6 @@ class LocalGraphSampler:
|
|
|
33
73
|
entity_table_names: Tuple[str, ...],
|
|
34
74
|
node: np.ndarray,
|
|
35
75
|
time: np.ndarray,
|
|
36
|
-
run_mode: RunMode,
|
|
37
76
|
num_neighbors: List[int],
|
|
38
77
|
exclude_cols_dict: Dict[str, List[str]],
|
|
39
78
|
) -> Subgraph:
|