kumoai 2.10.0.dev202510021830__py3-none-any.whl → 2.12.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,24 +1,41 @@
1
1
  import warnings
2
- from typing import Dict, List, Literal, Optional, Tuple, Union
2
+ from typing import Dict, List, Literal, NamedTuple, Optional, Set, Tuple, Union
3
3
 
4
4
  import numpy as np
5
5
  import pandas as pd
6
- from kumoapi.pquery import QueryType
7
- from kumoapi.rfm import PQueryDefinition
6
+ from kumoapi.pquery import QueryType, ValidatedPredictiveQuery
7
+ from kumoapi.pquery.AST import (
8
+ Aggregation,
9
+ ASTNode,
10
+ Column,
11
+ Condition,
12
+ Filter,
13
+ Join,
14
+ LogicalOperation,
15
+ )
16
+ from kumoapi.task import TaskType
17
+ from kumoapi.typing import AggregationType, DateOffset, Stype
8
18
 
9
19
  import kumoai.kumolib as kumolib
10
20
  from kumoai.experimental.rfm.local_graph_store import LocalGraphStore
11
- from kumoai.experimental.rfm.pquery import PQueryPandasBackend
21
+ from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
12
22
 
13
23
  _coverage_warned = False
14
24
 
15
25
 
26
+ class SamplingSpec(NamedTuple):
27
+ edge_type: Tuple[str, str, str]
28
+ hop: int
29
+ start_offset: Optional[DateOffset]
30
+ end_offset: Optional[DateOffset]
31
+
32
+
16
33
  class LocalPQueryDriver:
17
34
  def __init__(
18
35
  self,
19
36
  graph_store: LocalGraphStore,
20
- query: PQueryDefinition,
21
- random_seed: Optional[int],
37
+ query: ValidatedPredictiveQuery,
38
+ random_seed: Optional[int] = None,
22
39
  ) -> None:
23
40
  self._graph_store = graph_store
24
41
  self._query = query
@@ -27,14 +44,13 @@ class LocalPQueryDriver:
27
44
 
28
45
  def _get_candidates(
29
46
  self,
30
- anchor_time: Union[pd.Timestamp, Literal['entity']],
31
47
  exclude_node: Optional[np.ndarray] = None,
32
48
  ) -> np.ndarray:
33
49
 
34
50
  if self._query.query_type == QueryType.TEMPORAL:
35
51
  assert exclude_node is None
36
52
 
37
- table_name = self._query.entity.pkey.table_name
53
+ table_name = self._query.entity_table
38
54
  num_nodes = len(self._graph_store.df_dict[table_name])
39
55
  mask_dict = self._graph_store.mask_dict
40
56
 
@@ -61,6 +77,30 @@ class LocalPQueryDriver:
61
77
 
62
78
  return candidate
63
79
 
80
+ def _filter_candidates_by_time(
81
+ self,
82
+ candidate: np.ndarray,
83
+ anchor_time: pd.Timestamp,
84
+ ) -> np.ndarray:
85
+
86
+ entity = self._query.entity_table
87
+
88
+ # Filter out entities that do not exist yet in time:
89
+ time_sec = self._graph_store.time_dict.get(entity)
90
+ if time_sec is not None:
91
+ mask = time_sec[candidate] <= (anchor_time.value // (1000**3))
92
+ candidate = candidate[mask]
93
+
94
+ # Filter out entities that no longer exist in time:
95
+ end_time_col = self._graph_store.end_time_column_dict.get(entity)
96
+ if end_time_col is not None:
97
+ ser = self._graph_store.df_dict[entity][end_time_col]
98
+ ser = ser.iloc[candidate]
99
+ mask = (anchor_time < ser) | ser.isna().to_numpy()
100
+ candidate = candidate[mask]
101
+
102
+ return candidate
103
+
64
104
  def collect_test(
65
105
  self,
66
106
  size: int,
@@ -84,7 +124,7 @@ class LocalPQueryDriver:
84
124
  """
85
125
  batch_size = size if batch_size is None else batch_size
86
126
 
87
- candidate = self._get_candidates(anchor_time)
127
+ candidate = self._get_candidates()
88
128
 
89
129
  nodes: List[np.ndarray] = []
90
130
  times: List[pd.Series] = []
@@ -96,19 +136,12 @@ class LocalPQueryDriver:
96
136
  node = candidate[candidate_offset:candidate_offset + batch_size]
97
137
 
98
138
  if isinstance(anchor_time, pd.Timestamp):
99
- # Filter out non-existent entities:
100
- time = self._graph_store.time_dict.get(
101
- self._query.entity.pkey.table_name)
102
- if time is not None:
103
- node = node[time[node] <= (anchor_time.value // (1000**3))]
104
-
105
- if isinstance(anchor_time, pd.Timestamp):
139
+ node = self._filter_candidates_by_time(node, anchor_time)
106
140
  time = pd.Series(anchor_time).repeat(len(node))
107
141
  time = time.astype('datetime64[ns]').reset_index(drop=True)
108
142
  else:
109
143
  assert anchor_time == 'entity'
110
- time = self._graph_store.time_dict[
111
- self._query.entity.pkey.table_name]
144
+ time = self._graph_store.time_dict[self._query.entity_table]
112
145
  time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
113
146
 
114
147
  y, mask = self(node, time)
@@ -185,7 +218,7 @@ class LocalPQueryDriver:
185
218
  """
186
219
  batch_size = size if batch_size is None else batch_size
187
220
 
188
- candidate = self._get_candidates(anchor_time, exclude_node)
221
+ candidate = self._get_candidates(exclude_node)
189
222
 
190
223
  if len(candidate) == 0:
191
224
  raise RuntimeError("Failed to generate any context examples "
@@ -201,19 +234,12 @@ class LocalPQueryDriver:
201
234
  node = candidate[candidate_offset:candidate_offset + batch_size]
202
235
 
203
236
  if isinstance(anchor_time, pd.Timestamp):
204
- # Filter out non-existent entities:
205
- time = self._graph_store.time_dict.get(
206
- self._query.entity.pkey.table_name)
207
- if time is not None:
208
- node = node[time[node] <= (anchor_time.value // (1000**3))]
209
-
210
- if isinstance(anchor_time, pd.Timestamp):
237
+ node = self._filter_candidates_by_time(node, anchor_time)
211
238
  time = pd.Series(anchor_time).repeat(len(node))
212
239
  time = time.astype('datetime64[ns]').reset_index(drop=True)
213
240
  else:
214
241
  assert anchor_time == 'entity'
215
- time = self._graph_store.time_dict[
216
- self._query.entity.pkey.table_name]
242
+ time = self._graph_store.time_dict[self._query.entity_table]
217
243
  time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
218
244
 
219
245
  y, mask = self(node, time)
@@ -238,7 +264,8 @@ class LocalPQueryDriver:
238
264
  reached_end = True
239
265
  break
240
266
  candidate_offset = 0
241
- anchor_time = anchor_time - (self._query.target.end_offset *
267
+ time_frame = self._query.target_timeframe.timeframe
268
+ anchor_time = anchor_time - (time_frame *
242
269
  self._query.num_forecasts)
243
270
  if anchor_time < self._graph_store.min_time:
244
271
  reached_end = True
@@ -268,13 +295,171 @@ class LocalPQueryDriver:
268
295
 
269
296
  return node, time, y
270
297
 
271
- def __call__(
298
+ def is_valid(
299
+ self,
300
+ node: np.ndarray,
301
+ anchor_time: Union[pd.Timestamp, Literal['entity']],
302
+ batch_size: int = 10_000,
303
+ ) -> np.ndarray:
304
+ r"""Denotes which nodes are valid for a given anchor time, *e.g.*,
305
+ which nodes fulfill entity filter constraints.
306
+
307
+ Args:
308
+ node: The nodes to check for.
309
+ anchor_time: The anchor time.
310
+ batch_size: How many nodes to process in a single batch.
311
+
312
+ Returns:
313
+ The mask.
314
+ """
315
+ mask: Optional[np.ndarray] = None
316
+
317
+ if isinstance(anchor_time, pd.Timestamp):
318
+ node = self._filter_candidates_by_time(node, anchor_time)
319
+ time = pd.Series(anchor_time).repeat(len(node))
320
+ time = time.astype('datetime64[ns]').reset_index(drop=True)
321
+ else:
322
+ assert anchor_time == 'entity'
323
+ time = self._graph_store.time_dict[self._query.entity_table]
324
+ time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
325
+
326
+ if isinstance(self._query.entity_ast, Filter):
327
+ # Mask out via (temporal) entity filter:
328
+ executor = PQueryPandasExecutor()
329
+ masks: List[np.ndarray] = []
330
+ for start in range(0, len(node), batch_size):
331
+ feat_dict, time_dict, batch_dict = self._sample(
332
+ node[start:start + batch_size],
333
+ time.iloc[start:start + batch_size],
334
+ )
335
+ _mask = executor.execute_filter(
336
+ filter=self._query.entity_ast,
337
+ feat_dict=feat_dict,
338
+ time_dict=time_dict,
339
+ batch_dict=batch_dict,
340
+ anchor_time=time.iloc[start:start + batch_size],
341
+ )[1]
342
+ masks.append(_mask)
343
+
344
+ _mask = np.concatenate(masks)
345
+ mask = (mask & _mask) if mask is not None else _mask
346
+
347
+ if mask is None:
348
+ mask = np.ones(len(node), dtype=bool)
349
+
350
+ return mask
351
+
352
+ def _get_sampling_specs(
353
+ self,
354
+ node: ASTNode,
355
+ hop: int,
356
+ seed_table_name: str,
357
+ edge_types: List[Tuple[str, str, str]],
358
+ num_forecasts: int = 1,
359
+ ) -> List[SamplingSpec]:
360
+ if isinstance(node, (Aggregation, Column)):
361
+ if isinstance(node, Column):
362
+ table_name = node.fqn.split('.')[0]
363
+ if seed_table_name == table_name:
364
+ return []
365
+ else:
366
+ table_name = node._get_target_column_name().split('.')[0]
367
+
368
+ target_edge_types = [
369
+ edge_type for edge_type in edge_types if
370
+ edge_type[2] == seed_table_name and edge_type[0] == table_name
371
+ ]
372
+ if len(target_edge_types) != 1:
373
+ raise ValueError(
374
+ f"Could not find a unique foreign key from table "
375
+ f"'{seed_table_name}' to '{table_name}'")
376
+
377
+ if isinstance(node, Column):
378
+ return [
379
+ SamplingSpec(
380
+ edge_type=target_edge_types[0],
381
+ hop=hop + 1,
382
+ start_offset=None,
383
+ end_offset=None,
384
+ )
385
+ ]
386
+ spec = SamplingSpec(
387
+ edge_type=target_edge_types[0],
388
+ hop=hop + 1,
389
+ start_offset=node.aggr_time_range.start_date_offset,
390
+ end_offset=node.aggr_time_range.end_date_offset *
391
+ num_forecasts,
392
+ )
393
+ return [spec] + self._get_sampling_specs(
394
+ node.target, hop=hop + 1, seed_table_name=table_name,
395
+ edge_types=edge_types, num_forecasts=num_forecasts)
396
+ specs = []
397
+ for child in node.children:
398
+ specs += self._get_sampling_specs(child, hop, seed_table_name,
399
+ edge_types, num_forecasts)
400
+ return specs
401
+
402
+ def get_sampling_specs(self) -> List[SamplingSpec]:
403
+ edge_types = self._graph_store.edge_types
404
+ specs = self._get_sampling_specs(
405
+ self._query.target_ast, hop=0,
406
+ seed_table_name=self._query.entity_table, edge_types=edge_types,
407
+ num_forecasts=self._query.num_forecasts)
408
+ specs += self._get_sampling_specs(
409
+ self._query.entity_ast, hop=0,
410
+ seed_table_name=self._query.entity_table, edge_types=edge_types)
411
+ if self._query.whatif_ast is not None:
412
+ specs += self._get_sampling_specs(
413
+ self._query.whatif_ast, hop=0,
414
+ seed_table_name=self._query.entity_table,
415
+ edge_types=edge_types)
416
+ # Group specs according to edge type and hop:
417
+ spec_dict: Dict[
418
+ Tuple[Tuple[str, str, str], int],
419
+ Tuple[Optional[DateOffset], Optional[DateOffset]],
420
+ ] = {}
421
+ for spec in specs:
422
+ if (spec.edge_type, spec.hop) not in spec_dict:
423
+ spec_dict[(spec.edge_type, spec.hop)] = (
424
+ spec.start_offset,
425
+ spec.end_offset,
426
+ )
427
+ else:
428
+ start_offset, end_offset = spec_dict[(
429
+ spec.edge_type,
430
+ spec.hop,
431
+ )]
432
+ spec_dict[(spec.edge_type, spec.hop)] = (
433
+ min_date_offset(start_offset, spec.start_offset),
434
+ max_date_offset(end_offset, spec.end_offset),
435
+ )
436
+
437
+ return [
438
+ SamplingSpec(edge, hop, start_offset, end_offset)
439
+ for (edge, hop), (start_offset, end_offset) in spec_dict.items()
440
+ ]
441
+
442
+ def _sample(
272
443
  self,
273
444
  node: np.ndarray,
274
445
  anchor_time: pd.Series,
275
- ) -> Tuple[pd.Series, np.ndarray]:
446
+ ) -> Tuple[
447
+ Dict[str, pd.DataFrame],
448
+ Dict[str, pd.Series],
449
+ Dict[str, np.ndarray],
450
+ ]:
451
+ r"""Samples a subgraph that contains all relevant information to
452
+ evaluate the predictive query.
276
453
 
277
- specs = self._query.get_sampling_specs(self._graph_store.edge_types)
454
+ Args:
455
+ node: The nodes to check for.
456
+ anchor_time: The anchor time.
457
+
458
+ Returns:
459
+ The feature dictionary, the time column dictionary and the batch
460
+ dictionary.
461
+ """
462
+ specs = self.get_sampling_specs()
278
463
  num_hops = max([spec.hop for spec in specs] + [0])
279
464
  num_neighbors: Dict[Tuple[str, str, str], list[int]] = {}
280
465
  time_offsets: Dict[
@@ -300,7 +485,7 @@ class LocalPQueryDriver:
300
485
 
301
486
  edge_types = list(num_neighbors.keys()) + list(time_offsets.keys())
302
487
  node_types = list(
303
- set([self._query.entity.pkey.table_name])
488
+ set([self._query.entity_table])
304
489
  | set(src for src, _, _ in edge_types)
305
490
  | set(dst for _, _, dst in edge_types))
306
491
 
@@ -332,26 +517,48 @@ class LocalPQueryDriver:
332
517
  '__'.join(edge_type): np.array(values)
333
518
  for edge_type, values in time_offsets.items()
334
519
  },
335
- self._query.entity.pkey.table_name,
520
+ self._query.entity_table,
336
521
  node,
337
522
  anchor_time.astype(int).to_numpy() // 1000**3,
338
523
  )
339
524
 
340
525
  feat_dict: Dict[str, pd.DataFrame] = {}
341
526
  time_dict: Dict[str, pd.Series] = {}
342
- column_dict = self._query.column_dict
343
- time_tables = self._query.time_tables
527
+ column_dict: Dict[str, Set[str]] = {}
528
+ for col in self._query.all_query_columns:
529
+ table_name, col_name = col.split('.')
530
+ if table_name not in column_dict:
531
+ column_dict[table_name] = set()
532
+ if col_name != '*':
533
+ column_dict[table_name].add(col_name)
534
+ time_tables = self.find_time_tables()
344
535
  for table_name in set(list(column_dict.keys()) + time_tables):
345
536
  df = self._graph_store.df_dict[table_name]
346
537
  row_id = node_dict[table_name]
347
538
  df = df.iloc[row_id].reset_index(drop=True)
348
539
  if table_name in column_dict:
349
- feat_dict[table_name] = df[list(column_dict[table_name])]
540
+ if len(column_dict[table_name]) == 0:
541
+ # We are dealing with COUNT(table.*), insert a dummy col
542
+ # to ensure we don't lose the information on node count
543
+ feat_dict[table_name] = pd.DataFrame(
544
+ {'ones': [1] * len(df)})
545
+ else:
546
+ feat_dict[table_name] = df[list(column_dict[table_name])]
350
547
  if table_name in time_tables:
351
548
  time_col = self._graph_store.time_column_dict[table_name]
352
549
  time_dict[table_name] = df[time_col]
353
550
 
354
- y, mask = PQueryPandasBackend().eval_pquery(
551
+ return feat_dict, time_dict, batch_dict
552
+
553
+ def __call__(
554
+ self,
555
+ node: np.ndarray,
556
+ anchor_time: pd.Series,
557
+ ) -> Tuple[pd.Series, np.ndarray]:
558
+
559
+ feat_dict, time_dict, batch_dict = self._sample(node, anchor_time)
560
+
561
+ y, mask = PQueryPandasExecutor().execute(
355
562
  query=self._query,
356
563
  feat_dict=feat_dict,
357
564
  time_dict=time_dict,
@@ -362,6 +569,62 @@ class LocalPQueryDriver:
362
569
 
363
570
  return y, mask
364
571
 
572
+ def find_time_tables(self) -> List[str]:
573
+ def _find_time_tables(node: ASTNode) -> List[str]:
574
+ time_tables = []
575
+ if isinstance(node, Aggregation):
576
+ time_tables.append(
577
+ node._get_target_column_name().split('.')[0])
578
+ for child in node.children:
579
+ time_tables += _find_time_tables(child)
580
+ return time_tables
581
+
582
+ time_tables = _find_time_tables(
583
+ self._query.target_ast) + _find_time_tables(self._query.entity_ast)
584
+ if self._query.whatif_ast is not None:
585
+ time_tables += _find_time_tables(self._query.whatif_ast)
586
+ return list(set(time_tables))
587
+
588
+ @staticmethod
589
+ def get_task_type(
590
+ query: ValidatedPredictiveQuery,
591
+ edge_types: List[Tuple[str, str, str]],
592
+ ) -> TaskType:
593
+ if isinstance(query.target_ast, (Condition, LogicalOperation)):
594
+ return TaskType.BINARY_CLASSIFICATION
595
+
596
+ target = query.target_ast
597
+ if isinstance(target, Join):
598
+ target = target.rhs_target
599
+ if isinstance(target, Aggregation):
600
+ if target.aggr == AggregationType.LIST_DISTINCT:
601
+ table_name, col_name = target._get_target_column_name().split(
602
+ '.')
603
+ target_edge_types = [
604
+ edge_type for edge_type in edge_types
605
+ if edge_type[0] == table_name and edge_type[1] == col_name
606
+ ]
607
+ if len(target_edge_types) != 1:
608
+ raise NotImplementedError(
609
+ f"Multilabel-classification queries based on "
610
+ f"'LIST_DISTINCT' are not supported yet. If you "
611
+ f"planned to write a link prediction query instead, "
612
+ f"make sure to register '{col_name}' as a "
613
+ f"foreign key.")
614
+ return TaskType.TEMPORAL_LINK_PREDICTION
615
+
616
+ return TaskType.REGRESSION
617
+
618
+ assert isinstance(target, Column)
619
+
620
+ if target.stype in {Stype.ID, Stype.categorical}:
621
+ return TaskType.MULTICLASS_CLASSIFICATION
622
+
623
+ if target.stype in {Stype.numerical}:
624
+ return TaskType.REGRESSION
625
+
626
+ raise NotImplementedError("Task type not yet supported")
627
+
365
628
 
366
629
  def date_offset_to_seconds(offset: pd.DateOffset) -> int:
367
630
  r"""Convert a :class:`pandas.DateOffset` into a maximum number of
@@ -402,3 +665,25 @@ def date_offset_to_seconds(offset: pd.DateOffset) -> int:
402
665
  total_ns += scaled_value
403
666
 
404
667
  return total_ns
668
+
669
+
670
+ def min_date_offset(*args: Optional[DateOffset]) -> Optional[DateOffset]:
671
+ if any(arg is None for arg in args):
672
+ return None
673
+
674
+ anchor = pd.Timestamp('2000-01-01')
675
+ timestamps = [anchor + arg for arg in args]
676
+ assert len(timestamps) > 0
677
+ argmin = min(range(len(timestamps)), key=lambda i: timestamps[i])
678
+ return args[argmin]
679
+
680
+
681
+ def max_date_offset(*args: DateOffset) -> DateOffset:
682
+ if any(arg is None for arg in args):
683
+ return None
684
+
685
+ anchor = pd.Timestamp('2000-01-01')
686
+ timestamps = [anchor + arg for arg in args]
687
+ assert len(timestamps) > 0
688
+ argmax = max(range(len(timestamps)), key=lambda i: timestamps[i])
689
+ return args[argmax]