kumoai 2.10.0.dev202509291830__cp312-cp312-macosx_11_0_arm64.whl → 2.13.0.dev202511161731__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +4 -2
- kumoai/_version.py +1 -1
- kumoai/client/client.py +10 -5
- kumoai/client/endpoints.py +1 -0
- kumoai/client/rfm.py +37 -8
- kumoai/experimental/rfm/__init__.py +5 -3
- kumoai/experimental/rfm/infer/timestamp.py +5 -4
- kumoai/experimental/rfm/local_graph.py +90 -74
- kumoai/experimental/rfm/local_graph_sampler.py +16 -8
- kumoai/experimental/rfm/local_graph_store.py +13 -1
- kumoai/experimental/rfm/local_pquery_driver.py +323 -38
- kumoai/experimental/rfm/local_table.py +100 -22
- kumoai/experimental/rfm/pquery/__init__.py +4 -4
- kumoai/experimental/rfm/pquery/{backend.py → executor.py} +24 -58
- kumoai/experimental/rfm/pquery/{pandas_backend.py → pandas_executor.py} +277 -223
- kumoai/experimental/rfm/rfm.py +313 -84
- kumoai/jobs.py +1 -0
- kumoai/trainer/trainer.py +12 -10
- kumoai/utils/progress_logger.py +13 -0
- {kumoai-2.10.0.dev202509291830.dist-info → kumoai-2.13.0.dev202511161731.dist-info}/METADATA +4 -5
- {kumoai-2.10.0.dev202509291830.dist-info → kumoai-2.13.0.dev202511161731.dist-info}/RECORD +24 -24
- {kumoai-2.10.0.dev202509291830.dist-info → kumoai-2.13.0.dev202511161731.dist-info}/WHEEL +0 -0
- {kumoai-2.10.0.dev202509291830.dist-info → kumoai-2.13.0.dev202511161731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.10.0.dev202509291830.dist-info → kumoai-2.13.0.dev202511161731.dist-info}/top_level.txt +0 -0
|
@@ -1,24 +1,41 @@
|
|
|
1
1
|
import warnings
|
|
2
|
-
from typing import Dict, List, Literal, Optional, Tuple, Union
|
|
2
|
+
from typing import Dict, List, Literal, NamedTuple, Optional, Set, Tuple, Union
|
|
3
3
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
import pandas as pd
|
|
6
|
-
from kumoapi.pquery import QueryType
|
|
7
|
-
from kumoapi.
|
|
6
|
+
from kumoapi.pquery import QueryType, ValidatedPredictiveQuery
|
|
7
|
+
from kumoapi.pquery.AST import (
|
|
8
|
+
Aggregation,
|
|
9
|
+
ASTNode,
|
|
10
|
+
Column,
|
|
11
|
+
Condition,
|
|
12
|
+
Filter,
|
|
13
|
+
Join,
|
|
14
|
+
LogicalOperation,
|
|
15
|
+
)
|
|
16
|
+
from kumoapi.task import TaskType
|
|
17
|
+
from kumoapi.typing import AggregationType, DateOffset, Stype
|
|
8
18
|
|
|
9
19
|
import kumoai.kumolib as kumolib
|
|
10
20
|
from kumoai.experimental.rfm.local_graph_store import LocalGraphStore
|
|
11
|
-
from kumoai.experimental.rfm.pquery import
|
|
21
|
+
from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
|
|
12
22
|
|
|
13
23
|
_coverage_warned = False
|
|
14
24
|
|
|
15
25
|
|
|
26
|
+
class SamplingSpec(NamedTuple):
|
|
27
|
+
edge_type: Tuple[str, str, str]
|
|
28
|
+
hop: int
|
|
29
|
+
start_offset: Optional[DateOffset]
|
|
30
|
+
end_offset: Optional[DateOffset]
|
|
31
|
+
|
|
32
|
+
|
|
16
33
|
class LocalPQueryDriver:
|
|
17
34
|
def __init__(
|
|
18
35
|
self,
|
|
19
36
|
graph_store: LocalGraphStore,
|
|
20
|
-
query:
|
|
21
|
-
random_seed: Optional[int],
|
|
37
|
+
query: ValidatedPredictiveQuery,
|
|
38
|
+
random_seed: Optional[int] = None,
|
|
22
39
|
) -> None:
|
|
23
40
|
self._graph_store = graph_store
|
|
24
41
|
self._query = query
|
|
@@ -27,14 +44,13 @@ class LocalPQueryDriver:
|
|
|
27
44
|
|
|
28
45
|
def _get_candidates(
|
|
29
46
|
self,
|
|
30
|
-
anchor_time: Union[pd.Timestamp, Literal['entity']],
|
|
31
47
|
exclude_node: Optional[np.ndarray] = None,
|
|
32
48
|
) -> np.ndarray:
|
|
33
49
|
|
|
34
50
|
if self._query.query_type == QueryType.TEMPORAL:
|
|
35
51
|
assert exclude_node is None
|
|
36
52
|
|
|
37
|
-
table_name = self._query.
|
|
53
|
+
table_name = self._query.entity_table
|
|
38
54
|
num_nodes = len(self._graph_store.df_dict[table_name])
|
|
39
55
|
mask_dict = self._graph_store.mask_dict
|
|
40
56
|
|
|
@@ -61,6 +77,30 @@ class LocalPQueryDriver:
|
|
|
61
77
|
|
|
62
78
|
return candidate
|
|
63
79
|
|
|
80
|
+
def _filter_candidates_by_time(
|
|
81
|
+
self,
|
|
82
|
+
candidate: np.ndarray,
|
|
83
|
+
anchor_time: pd.Timestamp,
|
|
84
|
+
) -> np.ndarray:
|
|
85
|
+
|
|
86
|
+
entity = self._query.entity_table
|
|
87
|
+
|
|
88
|
+
# Filter out entities that do not exist yet in time:
|
|
89
|
+
time_sec = self._graph_store.time_dict.get(entity)
|
|
90
|
+
if time_sec is not None:
|
|
91
|
+
mask = time_sec[candidate] <= (anchor_time.value // (1000**3))
|
|
92
|
+
candidate = candidate[mask]
|
|
93
|
+
|
|
94
|
+
# Filter out entities that no longer exist in time:
|
|
95
|
+
end_time_col = self._graph_store.end_time_column_dict.get(entity)
|
|
96
|
+
if end_time_col is not None:
|
|
97
|
+
ser = self._graph_store.df_dict[entity][end_time_col]
|
|
98
|
+
ser = ser.iloc[candidate]
|
|
99
|
+
mask = (anchor_time < ser) | ser.isna().to_numpy()
|
|
100
|
+
candidate = candidate[mask]
|
|
101
|
+
|
|
102
|
+
return candidate
|
|
103
|
+
|
|
64
104
|
def collect_test(
|
|
65
105
|
self,
|
|
66
106
|
size: int,
|
|
@@ -84,7 +124,7 @@ class LocalPQueryDriver:
|
|
|
84
124
|
"""
|
|
85
125
|
batch_size = size if batch_size is None else batch_size
|
|
86
126
|
|
|
87
|
-
candidate = self._get_candidates(
|
|
127
|
+
candidate = self._get_candidates()
|
|
88
128
|
|
|
89
129
|
nodes: List[np.ndarray] = []
|
|
90
130
|
times: List[pd.Series] = []
|
|
@@ -96,19 +136,12 @@ class LocalPQueryDriver:
|
|
|
96
136
|
node = candidate[candidate_offset:candidate_offset + batch_size]
|
|
97
137
|
|
|
98
138
|
if isinstance(anchor_time, pd.Timestamp):
|
|
99
|
-
|
|
100
|
-
time = self._graph_store.time_dict.get(
|
|
101
|
-
self._query.entity.pkey.table_name)
|
|
102
|
-
if time is not None:
|
|
103
|
-
node = node[time[node] <= (anchor_time.value // (1000**3))]
|
|
104
|
-
|
|
105
|
-
if isinstance(anchor_time, pd.Timestamp):
|
|
139
|
+
node = self._filter_candidates_by_time(node, anchor_time)
|
|
106
140
|
time = pd.Series(anchor_time).repeat(len(node))
|
|
107
141
|
time = time.astype('datetime64[ns]').reset_index(drop=True)
|
|
108
142
|
else:
|
|
109
143
|
assert anchor_time == 'entity'
|
|
110
|
-
time = self._graph_store.time_dict[
|
|
111
|
-
self._query.entity.pkey.table_name]
|
|
144
|
+
time = self._graph_store.time_dict[self._query.entity_table]
|
|
112
145
|
time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
|
|
113
146
|
|
|
114
147
|
y, mask = self(node, time)
|
|
@@ -185,7 +218,7 @@ class LocalPQueryDriver:
|
|
|
185
218
|
"""
|
|
186
219
|
batch_size = size if batch_size is None else batch_size
|
|
187
220
|
|
|
188
|
-
candidate = self._get_candidates(
|
|
221
|
+
candidate = self._get_candidates(exclude_node)
|
|
189
222
|
|
|
190
223
|
if len(candidate) == 0:
|
|
191
224
|
raise RuntimeError("Failed to generate any context examples "
|
|
@@ -201,19 +234,12 @@ class LocalPQueryDriver:
|
|
|
201
234
|
node = candidate[candidate_offset:candidate_offset + batch_size]
|
|
202
235
|
|
|
203
236
|
if isinstance(anchor_time, pd.Timestamp):
|
|
204
|
-
|
|
205
|
-
time = self._graph_store.time_dict.get(
|
|
206
|
-
self._query.entity.pkey.table_name)
|
|
207
|
-
if time is not None:
|
|
208
|
-
node = node[time[node] <= (anchor_time.value // (1000**3))]
|
|
209
|
-
|
|
210
|
-
if isinstance(anchor_time, pd.Timestamp):
|
|
237
|
+
node = self._filter_candidates_by_time(node, anchor_time)
|
|
211
238
|
time = pd.Series(anchor_time).repeat(len(node))
|
|
212
239
|
time = time.astype('datetime64[ns]').reset_index(drop=True)
|
|
213
240
|
else:
|
|
214
241
|
assert anchor_time == 'entity'
|
|
215
|
-
time = self._graph_store.time_dict[
|
|
216
|
-
self._query.entity.pkey.table_name]
|
|
242
|
+
time = self._graph_store.time_dict[self._query.entity_table]
|
|
217
243
|
time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
|
|
218
244
|
|
|
219
245
|
y, mask = self(node, time)
|
|
@@ -238,7 +264,8 @@ class LocalPQueryDriver:
|
|
|
238
264
|
reached_end = True
|
|
239
265
|
break
|
|
240
266
|
candidate_offset = 0
|
|
241
|
-
|
|
267
|
+
time_frame = self._query.target_timeframe.timeframe
|
|
268
|
+
anchor_time = anchor_time - (time_frame *
|
|
242
269
|
self._query.num_forecasts)
|
|
243
270
|
if anchor_time < self._graph_store.min_time:
|
|
244
271
|
reached_end = True
|
|
@@ -268,13 +295,171 @@ class LocalPQueryDriver:
|
|
|
268
295
|
|
|
269
296
|
return node, time, y
|
|
270
297
|
|
|
271
|
-
def
|
|
298
|
+
def is_valid(
|
|
299
|
+
self,
|
|
300
|
+
node: np.ndarray,
|
|
301
|
+
anchor_time: Union[pd.Timestamp, Literal['entity']],
|
|
302
|
+
batch_size: int = 10_000,
|
|
303
|
+
) -> np.ndarray:
|
|
304
|
+
r"""Denotes which nodes are valid for a given anchor time, *e.g.*,
|
|
305
|
+
which nodes fulfill entity filter constraints.
|
|
306
|
+
|
|
307
|
+
Args:
|
|
308
|
+
node: The nodes to check for.
|
|
309
|
+
anchor_time: The anchor time.
|
|
310
|
+
batch_size: How many nodes to process in a single batch.
|
|
311
|
+
|
|
312
|
+
Returns:
|
|
313
|
+
The mask.
|
|
314
|
+
"""
|
|
315
|
+
mask: Optional[np.ndarray] = None
|
|
316
|
+
|
|
317
|
+
if isinstance(anchor_time, pd.Timestamp):
|
|
318
|
+
node = self._filter_candidates_by_time(node, anchor_time)
|
|
319
|
+
time = pd.Series(anchor_time).repeat(len(node))
|
|
320
|
+
time = time.astype('datetime64[ns]').reset_index(drop=True)
|
|
321
|
+
else:
|
|
322
|
+
assert anchor_time == 'entity'
|
|
323
|
+
time = self._graph_store.time_dict[self._query.entity_table]
|
|
324
|
+
time = pd.Series(time[node] * 1000**3, dtype='datetime64[ns]')
|
|
325
|
+
|
|
326
|
+
if isinstance(self._query.entity_ast, Filter):
|
|
327
|
+
# Mask out via (temporal) entity filter:
|
|
328
|
+
executor = PQueryPandasExecutor()
|
|
329
|
+
masks: List[np.ndarray] = []
|
|
330
|
+
for start in range(0, len(node), batch_size):
|
|
331
|
+
feat_dict, time_dict, batch_dict = self._sample(
|
|
332
|
+
node[start:start + batch_size],
|
|
333
|
+
time.iloc[start:start + batch_size],
|
|
334
|
+
)
|
|
335
|
+
_mask = executor.execute_filter(
|
|
336
|
+
filter=self._query.entity_ast,
|
|
337
|
+
feat_dict=feat_dict,
|
|
338
|
+
time_dict=time_dict,
|
|
339
|
+
batch_dict=batch_dict,
|
|
340
|
+
anchor_time=time.iloc[start:start + batch_size],
|
|
341
|
+
)[1]
|
|
342
|
+
masks.append(_mask)
|
|
343
|
+
|
|
344
|
+
_mask = np.concatenate(masks)
|
|
345
|
+
mask = (mask & _mask) if mask is not None else _mask
|
|
346
|
+
|
|
347
|
+
if mask is None:
|
|
348
|
+
mask = np.ones(len(node), dtype=bool)
|
|
349
|
+
|
|
350
|
+
return mask
|
|
351
|
+
|
|
352
|
+
def _get_sampling_specs(
|
|
353
|
+
self,
|
|
354
|
+
node: ASTNode,
|
|
355
|
+
hop: int,
|
|
356
|
+
seed_table_name: str,
|
|
357
|
+
edge_types: List[Tuple[str, str, str]],
|
|
358
|
+
num_forecasts: int = 1,
|
|
359
|
+
) -> List[SamplingSpec]:
|
|
360
|
+
if isinstance(node, (Aggregation, Column)):
|
|
361
|
+
if isinstance(node, Column):
|
|
362
|
+
table_name = node.fqn.split('.')[0]
|
|
363
|
+
if seed_table_name == table_name:
|
|
364
|
+
return []
|
|
365
|
+
else:
|
|
366
|
+
table_name = node._get_target_column_name().split('.')[0]
|
|
367
|
+
|
|
368
|
+
target_edge_types = [
|
|
369
|
+
edge_type for edge_type in edge_types if
|
|
370
|
+
edge_type[2] == seed_table_name and edge_type[0] == table_name
|
|
371
|
+
]
|
|
372
|
+
if len(target_edge_types) != 1:
|
|
373
|
+
raise ValueError(
|
|
374
|
+
f"Could not find a unique foreign key from table "
|
|
375
|
+
f"'{seed_table_name}' to '{table_name}'")
|
|
376
|
+
|
|
377
|
+
if isinstance(node, Column):
|
|
378
|
+
return [
|
|
379
|
+
SamplingSpec(
|
|
380
|
+
edge_type=target_edge_types[0],
|
|
381
|
+
hop=hop + 1,
|
|
382
|
+
start_offset=None,
|
|
383
|
+
end_offset=None,
|
|
384
|
+
)
|
|
385
|
+
]
|
|
386
|
+
spec = SamplingSpec(
|
|
387
|
+
edge_type=target_edge_types[0],
|
|
388
|
+
hop=hop + 1,
|
|
389
|
+
start_offset=node.aggr_time_range.start_date_offset,
|
|
390
|
+
end_offset=node.aggr_time_range.end_date_offset *
|
|
391
|
+
num_forecasts,
|
|
392
|
+
)
|
|
393
|
+
return [spec] + self._get_sampling_specs(
|
|
394
|
+
node.target, hop=hop + 1, seed_table_name=table_name,
|
|
395
|
+
edge_types=edge_types, num_forecasts=num_forecasts)
|
|
396
|
+
specs = []
|
|
397
|
+
for child in node.children:
|
|
398
|
+
specs += self._get_sampling_specs(child, hop, seed_table_name,
|
|
399
|
+
edge_types, num_forecasts)
|
|
400
|
+
return specs
|
|
401
|
+
|
|
402
|
+
def get_sampling_specs(self) -> List[SamplingSpec]:
|
|
403
|
+
edge_types = self._graph_store.edge_types
|
|
404
|
+
specs = self._get_sampling_specs(
|
|
405
|
+
self._query.target_ast, hop=0,
|
|
406
|
+
seed_table_name=self._query.entity_table, edge_types=edge_types,
|
|
407
|
+
num_forecasts=self._query.num_forecasts)
|
|
408
|
+
specs += self._get_sampling_specs(
|
|
409
|
+
self._query.entity_ast, hop=0,
|
|
410
|
+
seed_table_name=self._query.entity_table, edge_types=edge_types)
|
|
411
|
+
if self._query.whatif_ast is not None:
|
|
412
|
+
specs += self._get_sampling_specs(
|
|
413
|
+
self._query.whatif_ast, hop=0,
|
|
414
|
+
seed_table_name=self._query.entity_table,
|
|
415
|
+
edge_types=edge_types)
|
|
416
|
+
# Group specs according to edge type and hop:
|
|
417
|
+
spec_dict: Dict[
|
|
418
|
+
Tuple[Tuple[str, str, str], int],
|
|
419
|
+
Tuple[Optional[DateOffset], Optional[DateOffset]],
|
|
420
|
+
] = {}
|
|
421
|
+
for spec in specs:
|
|
422
|
+
if (spec.edge_type, spec.hop) not in spec_dict:
|
|
423
|
+
spec_dict[(spec.edge_type, spec.hop)] = (
|
|
424
|
+
spec.start_offset,
|
|
425
|
+
spec.end_offset,
|
|
426
|
+
)
|
|
427
|
+
else:
|
|
428
|
+
start_offset, end_offset = spec_dict[(
|
|
429
|
+
spec.edge_type,
|
|
430
|
+
spec.hop,
|
|
431
|
+
)]
|
|
432
|
+
spec_dict[(spec.edge_type, spec.hop)] = (
|
|
433
|
+
min_date_offset(start_offset, spec.start_offset),
|
|
434
|
+
max_date_offset(end_offset, spec.end_offset),
|
|
435
|
+
)
|
|
436
|
+
|
|
437
|
+
return [
|
|
438
|
+
SamplingSpec(edge, hop, start_offset, end_offset)
|
|
439
|
+
for (edge, hop), (start_offset, end_offset) in spec_dict.items()
|
|
440
|
+
]
|
|
441
|
+
|
|
442
|
+
def _sample(
|
|
272
443
|
self,
|
|
273
444
|
node: np.ndarray,
|
|
274
445
|
anchor_time: pd.Series,
|
|
275
|
-
) -> Tuple[
|
|
446
|
+
) -> Tuple[
|
|
447
|
+
Dict[str, pd.DataFrame],
|
|
448
|
+
Dict[str, pd.Series],
|
|
449
|
+
Dict[str, np.ndarray],
|
|
450
|
+
]:
|
|
451
|
+
r"""Samples a subgraph that contains all relevant information to
|
|
452
|
+
evaluate the predictive query.
|
|
276
453
|
|
|
277
|
-
|
|
454
|
+
Args:
|
|
455
|
+
node: The nodes to check for.
|
|
456
|
+
anchor_time: The anchor time.
|
|
457
|
+
|
|
458
|
+
Returns:
|
|
459
|
+
The feature dictionary, the time column dictionary and the batch
|
|
460
|
+
dictionary.
|
|
461
|
+
"""
|
|
462
|
+
specs = self.get_sampling_specs()
|
|
278
463
|
num_hops = max([spec.hop for spec in specs] + [0])
|
|
279
464
|
num_neighbors: Dict[Tuple[str, str, str], list[int]] = {}
|
|
280
465
|
time_offsets: Dict[
|
|
@@ -300,7 +485,7 @@ class LocalPQueryDriver:
|
|
|
300
485
|
|
|
301
486
|
edge_types = list(num_neighbors.keys()) + list(time_offsets.keys())
|
|
302
487
|
node_types = list(
|
|
303
|
-
set([self._query.
|
|
488
|
+
set([self._query.entity_table])
|
|
304
489
|
| set(src for src, _, _ in edge_types)
|
|
305
490
|
| set(dst for _, _, dst in edge_types))
|
|
306
491
|
|
|
@@ -332,26 +517,48 @@ class LocalPQueryDriver:
|
|
|
332
517
|
'__'.join(edge_type): np.array(values)
|
|
333
518
|
for edge_type, values in time_offsets.items()
|
|
334
519
|
},
|
|
335
|
-
self._query.
|
|
520
|
+
self._query.entity_table,
|
|
336
521
|
node,
|
|
337
522
|
anchor_time.astype(int).to_numpy() // 1000**3,
|
|
338
523
|
)
|
|
339
524
|
|
|
340
525
|
feat_dict: Dict[str, pd.DataFrame] = {}
|
|
341
526
|
time_dict: Dict[str, pd.Series] = {}
|
|
342
|
-
column_dict =
|
|
343
|
-
|
|
527
|
+
column_dict: Dict[str, Set[str]] = {}
|
|
528
|
+
for col in self._query.all_query_columns:
|
|
529
|
+
table_name, col_name = col.split('.')
|
|
530
|
+
if table_name not in column_dict:
|
|
531
|
+
column_dict[table_name] = set()
|
|
532
|
+
if col_name != '*':
|
|
533
|
+
column_dict[table_name].add(col_name)
|
|
534
|
+
time_tables = self.find_time_tables()
|
|
344
535
|
for table_name in set(list(column_dict.keys()) + time_tables):
|
|
345
536
|
df = self._graph_store.df_dict[table_name]
|
|
346
537
|
row_id = node_dict[table_name]
|
|
347
538
|
df = df.iloc[row_id].reset_index(drop=True)
|
|
348
539
|
if table_name in column_dict:
|
|
349
|
-
|
|
540
|
+
if len(column_dict[table_name]) == 0:
|
|
541
|
+
# We are dealing with COUNT(table.*), insert a dummy col
|
|
542
|
+
# to ensure we don't lose the information on node count
|
|
543
|
+
feat_dict[table_name] = pd.DataFrame(
|
|
544
|
+
{'ones': [1] * len(df)})
|
|
545
|
+
else:
|
|
546
|
+
feat_dict[table_name] = df[list(column_dict[table_name])]
|
|
350
547
|
if table_name in time_tables:
|
|
351
548
|
time_col = self._graph_store.time_column_dict[table_name]
|
|
352
549
|
time_dict[table_name] = df[time_col]
|
|
353
550
|
|
|
354
|
-
|
|
551
|
+
return feat_dict, time_dict, batch_dict
|
|
552
|
+
|
|
553
|
+
def __call__(
|
|
554
|
+
self,
|
|
555
|
+
node: np.ndarray,
|
|
556
|
+
anchor_time: pd.Series,
|
|
557
|
+
) -> Tuple[pd.Series, np.ndarray]:
|
|
558
|
+
|
|
559
|
+
feat_dict, time_dict, batch_dict = self._sample(node, anchor_time)
|
|
560
|
+
|
|
561
|
+
y, mask = PQueryPandasExecutor().execute(
|
|
355
562
|
query=self._query,
|
|
356
563
|
feat_dict=feat_dict,
|
|
357
564
|
time_dict=time_dict,
|
|
@@ -362,6 +569,62 @@ class LocalPQueryDriver:
|
|
|
362
569
|
|
|
363
570
|
return y, mask
|
|
364
571
|
|
|
572
|
+
def find_time_tables(self) -> List[str]:
|
|
573
|
+
def _find_time_tables(node: ASTNode) -> List[str]:
|
|
574
|
+
time_tables = []
|
|
575
|
+
if isinstance(node, Aggregation):
|
|
576
|
+
time_tables.append(
|
|
577
|
+
node._get_target_column_name().split('.')[0])
|
|
578
|
+
for child in node.children:
|
|
579
|
+
time_tables += _find_time_tables(child)
|
|
580
|
+
return time_tables
|
|
581
|
+
|
|
582
|
+
time_tables = _find_time_tables(
|
|
583
|
+
self._query.target_ast) + _find_time_tables(self._query.entity_ast)
|
|
584
|
+
if self._query.whatif_ast is not None:
|
|
585
|
+
time_tables += _find_time_tables(self._query.whatif_ast)
|
|
586
|
+
return list(set(time_tables))
|
|
587
|
+
|
|
588
|
+
@staticmethod
|
|
589
|
+
def get_task_type(
|
|
590
|
+
query: ValidatedPredictiveQuery,
|
|
591
|
+
edge_types: List[Tuple[str, str, str]],
|
|
592
|
+
) -> TaskType:
|
|
593
|
+
if isinstance(query.target_ast, (Condition, LogicalOperation)):
|
|
594
|
+
return TaskType.BINARY_CLASSIFICATION
|
|
595
|
+
|
|
596
|
+
target = query.target_ast
|
|
597
|
+
if isinstance(target, Join):
|
|
598
|
+
target = target.rhs_target
|
|
599
|
+
if isinstance(target, Aggregation):
|
|
600
|
+
if target.aggr == AggregationType.LIST_DISTINCT:
|
|
601
|
+
table_name, col_name = target._get_target_column_name().split(
|
|
602
|
+
'.')
|
|
603
|
+
target_edge_types = [
|
|
604
|
+
edge_type for edge_type in edge_types
|
|
605
|
+
if edge_type[0] == table_name and edge_type[1] == col_name
|
|
606
|
+
]
|
|
607
|
+
if len(target_edge_types) != 1:
|
|
608
|
+
raise NotImplementedError(
|
|
609
|
+
f"Multilabel-classification queries based on "
|
|
610
|
+
f"'LIST_DISTINCT' are not supported yet. If you "
|
|
611
|
+
f"planned to write a link prediction query instead, "
|
|
612
|
+
f"make sure to register '{col_name}' as a "
|
|
613
|
+
f"foreign key.")
|
|
614
|
+
return TaskType.TEMPORAL_LINK_PREDICTION
|
|
615
|
+
|
|
616
|
+
return TaskType.REGRESSION
|
|
617
|
+
|
|
618
|
+
assert isinstance(target, Column)
|
|
619
|
+
|
|
620
|
+
if target.stype in {Stype.ID, Stype.categorical}:
|
|
621
|
+
return TaskType.MULTICLASS_CLASSIFICATION
|
|
622
|
+
|
|
623
|
+
if target.stype in {Stype.numerical}:
|
|
624
|
+
return TaskType.REGRESSION
|
|
625
|
+
|
|
626
|
+
raise NotImplementedError("Task type not yet supported")
|
|
627
|
+
|
|
365
628
|
|
|
366
629
|
def date_offset_to_seconds(offset: pd.DateOffset) -> int:
|
|
367
630
|
r"""Convert a :class:`pandas.DateOffset` into a maximum number of
|
|
@@ -402,3 +665,25 @@ def date_offset_to_seconds(offset: pd.DateOffset) -> int:
|
|
|
402
665
|
total_ns += scaled_value
|
|
403
666
|
|
|
404
667
|
return total_ns
|
|
668
|
+
|
|
669
|
+
|
|
670
|
+
def min_date_offset(*args: Optional[DateOffset]) -> Optional[DateOffset]:
|
|
671
|
+
if any(arg is None for arg in args):
|
|
672
|
+
return None
|
|
673
|
+
|
|
674
|
+
anchor = pd.Timestamp('2000-01-01')
|
|
675
|
+
timestamps = [anchor + arg for arg in args]
|
|
676
|
+
assert len(timestamps) > 0
|
|
677
|
+
argmin = min(range(len(timestamps)), key=lambda i: timestamps[i])
|
|
678
|
+
return args[argmin]
|
|
679
|
+
|
|
680
|
+
|
|
681
|
+
def max_date_offset(*args: DateOffset) -> DateOffset:
|
|
682
|
+
if any(arg is None for arg in args):
|
|
683
|
+
return None
|
|
684
|
+
|
|
685
|
+
anchor = pd.Timestamp('2000-01-01')
|
|
686
|
+
timestamps = [anchor + arg for arg in args]
|
|
687
|
+
assert len(timestamps) > 0
|
|
688
|
+
argmax = max(range(len(timestamps)), key=lambda i: timestamps[i])
|
|
689
|
+
return args[argmax]
|