kuhl-haus-mdp 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kuhl_haus/mdp/analyzers/massive_data_analyzer.py +48 -57
- kuhl_haus/mdp/analyzers/top_stocks.py +3 -151
- kuhl_haus/mdp/integ/massive_data_processor.py +2 -2
- kuhl_haus/mdp/models/market_data_cache_ttl.py +19 -0
- kuhl_haus/mdp/models/top_stocks_cache_item.py +143 -0
- {kuhl_haus_mdp-0.1.1.dist-info → kuhl_haus_mdp-0.1.3.dist-info}/METADATA +1 -1
- {kuhl_haus_mdp-0.1.1.dist-info → kuhl_haus_mdp-0.1.3.dist-info}/RECORD +10 -8
- {kuhl_haus_mdp-0.1.1.dist-info → kuhl_haus_mdp-0.1.3.dist-info}/WHEEL +0 -0
- {kuhl_haus_mdp-0.1.1.dist-info → kuhl_haus_mdp-0.1.3.dist-info}/entry_points.txt +0 -0
- {kuhl_haus_mdp-0.1.1.dist-info → kuhl_haus_mdp-0.1.3.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -5,6 +5,7 @@ from massive.websocket.models import EventType
|
|
|
5
5
|
|
|
6
6
|
from kuhl_haus.mdp.models.market_data_analyzer_result import MarketDataAnalyzerResult
|
|
7
7
|
from kuhl_haus.mdp.models.market_data_cache_keys import MarketDataCacheKeys
|
|
8
|
+
from kuhl_haus.mdp.models.market_data_cache_ttl import MarketDataCacheTTL
|
|
8
9
|
|
|
9
10
|
|
|
10
11
|
class MassiveDataAnalyzer:
|
|
@@ -18,7 +19,7 @@ class MassiveDataAnalyzer:
|
|
|
18
19
|
EventType.EquityQuote.value: self.handle_equity_quote_event,
|
|
19
20
|
}
|
|
20
21
|
|
|
21
|
-
|
|
22
|
+
def analyze_data(self, data: dict) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
22
23
|
"""
|
|
23
24
|
Process raw market data message
|
|
24
25
|
|
|
@@ -30,73 +31,63 @@ class MassiveDataAnalyzer:
|
|
|
30
31
|
"""
|
|
31
32
|
if "event_type" not in data:
|
|
32
33
|
self.logger.info("Message missing 'event_type'")
|
|
33
|
-
return
|
|
34
|
+
return self.handle_unknown_event(data)
|
|
34
35
|
event_type = data.get("event_type")
|
|
35
36
|
|
|
36
37
|
if "symbol" not in data:
|
|
37
38
|
self.logger.info("Message missing 'symbol'")
|
|
38
|
-
return
|
|
39
|
+
return self.handle_unknown_event(data)
|
|
39
40
|
symbol = data.get("symbol")
|
|
40
41
|
|
|
41
42
|
if event_type in self.event_handlers:
|
|
42
|
-
return
|
|
43
|
+
return self.event_handlers[event_type](**{"data": data, "symbol": symbol})
|
|
43
44
|
else:
|
|
44
45
|
self.logger.warning(f"Unsupported message type: {event_type}")
|
|
45
|
-
return
|
|
46
|
+
return self.handle_unknown_event(data)
|
|
46
47
|
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
except Exception as e:
|
|
56
|
-
self.logger.error(f"Error processing LULD message for {symbol}: {data}", e)
|
|
48
|
+
@staticmethod
|
|
49
|
+
def handle_luld_event(data: dict, symbol: str) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
50
|
+
return [MarketDataAnalyzerResult(
|
|
51
|
+
data=data,
|
|
52
|
+
cache_key=f"{MarketDataCacheKeys.HALTS.value}:{symbol}",
|
|
53
|
+
cache_ttl=MarketDataCacheTTL.THREE_DAYS.value,
|
|
54
|
+
publish_key=f"{MarketDataCacheKeys.HALTS.value}:{symbol}",
|
|
55
|
+
)]
|
|
57
56
|
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
except Exception as e:
|
|
67
|
-
self.logger.error(f"Error processing EquityAgg message for {symbol}: {data}", e)
|
|
57
|
+
@staticmethod
|
|
58
|
+
def handle_equity_agg_event(data: dict, symbol: str) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
59
|
+
return [MarketDataAnalyzerResult(
|
|
60
|
+
data=data,
|
|
61
|
+
cache_key=f"{MarketDataCacheKeys.AGGREGATE.value}:{symbol}",
|
|
62
|
+
cache_ttl=MarketDataCacheTTL.THREE_DAYS.value,
|
|
63
|
+
publish_key=f"{MarketDataCacheKeys.AGGREGATE.value}:{symbol}",
|
|
64
|
+
)]
|
|
68
65
|
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
except Exception as e:
|
|
78
|
-
self.logger.error(f"Error processing EquityTrade message for {symbol}: {data}", e)
|
|
66
|
+
@staticmethod
|
|
67
|
+
def handle_equity_trade_event(data: dict, symbol: str) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
68
|
+
return [MarketDataAnalyzerResult(
|
|
69
|
+
data=data,
|
|
70
|
+
cache_key=f"{MarketDataCacheKeys.TRADES.value}:{symbol}",
|
|
71
|
+
cache_ttl=MarketDataCacheTTL.EIGHT_HOURS.value,
|
|
72
|
+
publish_key=f"{MarketDataCacheKeys.TRADES.value}:{symbol}",
|
|
73
|
+
)]
|
|
79
74
|
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
except Exception as e:
|
|
89
|
-
self.logger.error(f"Error processing EquityQuote message for {symbol}: {data}", e)
|
|
75
|
+
@staticmethod
|
|
76
|
+
def handle_equity_quote_event(data: dict, symbol: str) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
77
|
+
return [MarketDataAnalyzerResult(
|
|
78
|
+
data=data,
|
|
79
|
+
cache_key=f"{MarketDataCacheKeys.QUOTES.value}:{symbol}",
|
|
80
|
+
cache_ttl=MarketDataCacheTTL.THREE_DAYS.value,
|
|
81
|
+
publish_key=f"{MarketDataCacheKeys.QUOTES.value}:{symbol}",
|
|
82
|
+
)]
|
|
90
83
|
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
except Exception as e:
|
|
102
|
-
self.logger.error(f"Error processing unknown message type: {data}", e)
|
|
84
|
+
@staticmethod
|
|
85
|
+
def handle_unknown_event(data: dict) -> Optional[List[MarketDataAnalyzerResult]]:
|
|
86
|
+
timestamp = f"{time()}".replace('.','')
|
|
87
|
+
cache_key = f"{MarketDataCacheKeys.UNKNOWN.value}:{timestamp}"
|
|
88
|
+
return [MarketDataAnalyzerResult(
|
|
89
|
+
data=data,
|
|
90
|
+
cache_key=cache_key,
|
|
91
|
+
cache_ttl=MarketDataCacheTTL.ONE_DAY.value,
|
|
92
|
+
publish_key=f"{MarketDataCacheKeys.UNKNOWN.value}",
|
|
93
|
+
)]
|
|
@@ -1,167 +1,25 @@
|
|
|
1
1
|
import logging
|
|
2
2
|
import time
|
|
3
|
-
from collections import defaultdict
|
|
4
|
-
from dataclasses import dataclass, field
|
|
5
3
|
from datetime import datetime, timezone, timedelta
|
|
6
|
-
from typing import
|
|
4
|
+
from typing import Optional, List, Iterator
|
|
7
5
|
from zoneinfo import ZoneInfo
|
|
8
6
|
|
|
7
|
+
from massive.exceptions import BadResponse
|
|
9
8
|
from massive.rest import RESTClient
|
|
10
9
|
from massive.rest.models import (
|
|
11
10
|
TickerSnapshot,
|
|
12
11
|
Agg,
|
|
13
12
|
)
|
|
14
13
|
from massive.websocket.models import (
|
|
15
|
-
EquityTrade,
|
|
16
14
|
EquityAgg,
|
|
17
15
|
EventType
|
|
18
16
|
)
|
|
19
|
-
from massive.exceptions import BadResponse
|
|
20
17
|
|
|
21
18
|
from kuhl_haus.mdp.analyzers.analyzer import Analyzer
|
|
22
19
|
from kuhl_haus.mdp.models.market_data_analyzer_result import MarketDataAnalyzerResult
|
|
23
20
|
from kuhl_haus.mdp.models.market_data_cache_keys import MarketDataCacheKeys
|
|
24
21
|
from kuhl_haus.mdp.models.market_data_pubsub_keys import MarketDataPubSubKeys
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
# docs
|
|
28
|
-
# https://massive.com/docs/stocks/ws_stocks_am
|
|
29
|
-
# https://massive.com/docs/websocket/stocks/trades
|
|
30
|
-
|
|
31
|
-
@dataclass()
|
|
32
|
-
class TopStocksCacheItem:
|
|
33
|
-
day_start_time: Optional[float] = 0.0
|
|
34
|
-
|
|
35
|
-
# Cached details for each ticker
|
|
36
|
-
symbol_data_cache: Optional[Dict[str, dict]] = field(default_factory=lambda: defaultdict(dict))
|
|
37
|
-
|
|
38
|
-
# Top Volume map
|
|
39
|
-
top_volume_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
40
|
-
|
|
41
|
-
# Top Gappers map
|
|
42
|
-
top_gappers_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
43
|
-
|
|
44
|
-
# Top Gainers map
|
|
45
|
-
top_gainers_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
46
|
-
|
|
47
|
-
def to_dict(self):
|
|
48
|
-
ret = {
|
|
49
|
-
# Cache start time
|
|
50
|
-
"day_start_time": self.day_start_time,
|
|
51
|
-
|
|
52
|
-
# Maps
|
|
53
|
-
"symbol_data_cache": self.symbol_data_cache,
|
|
54
|
-
"top_volume_map": self.top_volume_map,
|
|
55
|
-
"top_gappers_map": self.top_gappers_map,
|
|
56
|
-
"top_gainers_map": self.top_gainers_map,
|
|
57
|
-
}
|
|
58
|
-
return ret
|
|
59
|
-
|
|
60
|
-
def top_volume(self, limit):
|
|
61
|
-
ret = []
|
|
62
|
-
for ticker, volume in sorted(self.top_volume_map.items(), key=lambda x: x[1], reverse=True)[
|
|
63
|
-
:limit
|
|
64
|
-
]:
|
|
65
|
-
try:
|
|
66
|
-
ret.append({
|
|
67
|
-
"symbol": ticker,
|
|
68
|
-
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
69
|
-
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
70
|
-
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
71
|
-
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
72
|
-
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
73
|
-
"open": self.symbol_data_cache[ticker]["open"],
|
|
74
|
-
"close": self.symbol_data_cache[ticker]["close"],
|
|
75
|
-
"high": self.symbol_data_cache[ticker]["high"],
|
|
76
|
-
"low": self.symbol_data_cache[ticker]["low"],
|
|
77
|
-
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
78
|
-
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
79
|
-
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
80
|
-
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
81
|
-
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
82
|
-
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
83
|
-
"change": self.symbol_data_cache[ticker]["change"],
|
|
84
|
-
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
85
|
-
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
86
|
-
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
87
|
-
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
88
|
-
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
89
|
-
})
|
|
90
|
-
except KeyError:
|
|
91
|
-
del self.top_volume_map[ticker]
|
|
92
|
-
return ret
|
|
93
|
-
|
|
94
|
-
def top_gappers(self, limit):
|
|
95
|
-
ret = []
|
|
96
|
-
for ticker, pct_change in sorted(self.top_gappers_map.items(), key=lambda x: x[1], reverse=True)[
|
|
97
|
-
:limit
|
|
98
|
-
]:
|
|
99
|
-
try:
|
|
100
|
-
if pct_change <= 0:
|
|
101
|
-
break
|
|
102
|
-
ret.append({
|
|
103
|
-
"symbol": ticker,
|
|
104
|
-
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
105
|
-
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
106
|
-
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
107
|
-
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
108
|
-
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
109
|
-
"open": self.symbol_data_cache[ticker]["open"],
|
|
110
|
-
"close": self.symbol_data_cache[ticker]["close"],
|
|
111
|
-
"high": self.symbol_data_cache[ticker]["high"],
|
|
112
|
-
"low": self.symbol_data_cache[ticker]["low"],
|
|
113
|
-
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
114
|
-
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
115
|
-
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
116
|
-
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
117
|
-
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
118
|
-
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
119
|
-
"change": self.symbol_data_cache[ticker]["change"],
|
|
120
|
-
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
121
|
-
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
122
|
-
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
123
|
-
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
124
|
-
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
125
|
-
})
|
|
126
|
-
except KeyError:
|
|
127
|
-
del self.top_gappers_map[ticker]
|
|
128
|
-
return ret
|
|
129
|
-
|
|
130
|
-
def top_gainers(self, limit):
|
|
131
|
-
ret = []
|
|
132
|
-
for ticker, pct_change in sorted(self.top_gainers_map.items(), key=lambda x: x[1], reverse=True)[
|
|
133
|
-
:limit
|
|
134
|
-
]:
|
|
135
|
-
try:
|
|
136
|
-
if pct_change <= 0:
|
|
137
|
-
break
|
|
138
|
-
ret.append({
|
|
139
|
-
"symbol": ticker,
|
|
140
|
-
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
141
|
-
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
142
|
-
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
143
|
-
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
144
|
-
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
145
|
-
"open": self.symbol_data_cache[ticker]["open"],
|
|
146
|
-
"close": self.symbol_data_cache[ticker]["close"],
|
|
147
|
-
"high": self.symbol_data_cache[ticker]["high"],
|
|
148
|
-
"low": self.symbol_data_cache[ticker]["low"],
|
|
149
|
-
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
150
|
-
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
151
|
-
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
152
|
-
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
153
|
-
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
154
|
-
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
155
|
-
"change": self.symbol_data_cache[ticker]["change"],
|
|
156
|
-
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
157
|
-
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
158
|
-
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
159
|
-
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
160
|
-
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
161
|
-
})
|
|
162
|
-
except KeyError:
|
|
163
|
-
del self.top_gainers_map[ticker]
|
|
164
|
-
return ret
|
|
22
|
+
from kuhl_haus.mdp.models.top_stocks_cache_item import TopStocksCacheItem
|
|
165
23
|
|
|
166
24
|
|
|
167
25
|
class TopStocksAnalyzer(Analyzer):
|
|
@@ -233,12 +91,6 @@ class TopStocksAnalyzer(Analyzer):
|
|
|
233
91
|
self.last_update_time = current_time
|
|
234
92
|
|
|
235
93
|
result = [
|
|
236
|
-
# MarketDataAnalyzerResult(
|
|
237
|
-
# data=data,
|
|
238
|
-
# cache_key=f"{MarketDataCacheKeys.AGGREGATE.value}:{symbol}",
|
|
239
|
-
# cache_ttl=86400, # 1 day
|
|
240
|
-
# # publish_key=f"{MarketDataCacheKeys.AGGREGATE.value}:{symbol}",
|
|
241
|
-
# ),
|
|
242
94
|
MarketDataAnalyzerResult(
|
|
243
95
|
data=self.cache_item.to_dict(),
|
|
244
96
|
cache_key=self.cache_key,
|
|
@@ -114,8 +114,8 @@ class MassiveDataProcessor:
|
|
|
114
114
|
web_socket_message = json.loads(message.body.decode())
|
|
115
115
|
data = WebSocketMessageSerde.to_dict(web_socket_message)
|
|
116
116
|
|
|
117
|
-
# Delegate to analyzer
|
|
118
|
-
analyzer_results =
|
|
117
|
+
# Delegate to analyzer
|
|
118
|
+
analyzer_results = self.analyzer.analyze_data(data)
|
|
119
119
|
if analyzer_results:
|
|
120
120
|
self.processed += 1
|
|
121
121
|
for analyzer_result in analyzer_results:
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
from enum import Enum
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class MarketDataCacheTTL(Enum):
|
|
5
|
+
# Hours
|
|
6
|
+
ONE_HOUR = 3600
|
|
7
|
+
TWO_HOURS = 7200
|
|
8
|
+
FOUR_HOURS = 14400
|
|
9
|
+
SIX_HOURS = 21600
|
|
10
|
+
EIGHT_HOURS = 28800
|
|
11
|
+
|
|
12
|
+
# Days
|
|
13
|
+
ONE_DAY = 86400
|
|
14
|
+
TWO_DAYS = 172800
|
|
15
|
+
THREE_DAYS = 259200
|
|
16
|
+
FOUR_DAYS = 345600
|
|
17
|
+
FIVE_DAYS = 432000
|
|
18
|
+
SIX_DAYS = 518400
|
|
19
|
+
SEVEN_DAYS = 604800
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
from collections import defaultdict
|
|
2
|
+
from dataclasses import dataclass, field
|
|
3
|
+
from typing import Dict, Optional
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
# docs
|
|
7
|
+
# https://massive.com/docs/stocks/ws_stocks_am
|
|
8
|
+
# https://massive.com/docs/websocket/stocks/trades
|
|
9
|
+
|
|
10
|
+
@dataclass()
|
|
11
|
+
class TopStocksCacheItem:
|
|
12
|
+
day_start_time: Optional[float] = 0.0
|
|
13
|
+
|
|
14
|
+
# Cached details for each ticker
|
|
15
|
+
symbol_data_cache: Optional[Dict[str, dict]] = field(default_factory=lambda: defaultdict(dict))
|
|
16
|
+
|
|
17
|
+
# Top Volume map
|
|
18
|
+
top_volume_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
19
|
+
|
|
20
|
+
# Top Gappers map
|
|
21
|
+
top_gappers_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
22
|
+
|
|
23
|
+
# Top Gainers map
|
|
24
|
+
top_gainers_map: Optional[Dict[str, float]] = field(default_factory=lambda: defaultdict(dict))
|
|
25
|
+
|
|
26
|
+
def to_dict(self):
|
|
27
|
+
ret = {
|
|
28
|
+
# Cache start time
|
|
29
|
+
"day_start_time": self.day_start_time,
|
|
30
|
+
|
|
31
|
+
# Maps
|
|
32
|
+
"symbol_data_cache": self.symbol_data_cache,
|
|
33
|
+
"top_volume_map": self.top_volume_map,
|
|
34
|
+
"top_gappers_map": self.top_gappers_map,
|
|
35
|
+
"top_gainers_map": self.top_gainers_map,
|
|
36
|
+
}
|
|
37
|
+
return ret
|
|
38
|
+
|
|
39
|
+
def top_volume(self, limit):
|
|
40
|
+
ret = []
|
|
41
|
+
for ticker, volume in sorted(self.top_volume_map.items(), key=lambda x: x[1], reverse=True)[
|
|
42
|
+
:limit
|
|
43
|
+
]:
|
|
44
|
+
try:
|
|
45
|
+
ret.append({
|
|
46
|
+
"symbol": ticker,
|
|
47
|
+
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
48
|
+
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
49
|
+
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
50
|
+
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
51
|
+
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
52
|
+
"open": self.symbol_data_cache[ticker]["open"],
|
|
53
|
+
"close": self.symbol_data_cache[ticker]["close"],
|
|
54
|
+
"high": self.symbol_data_cache[ticker]["high"],
|
|
55
|
+
"low": self.symbol_data_cache[ticker]["low"],
|
|
56
|
+
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
57
|
+
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
58
|
+
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
59
|
+
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
60
|
+
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
61
|
+
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
62
|
+
"change": self.symbol_data_cache[ticker]["change"],
|
|
63
|
+
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
64
|
+
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
65
|
+
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
66
|
+
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
67
|
+
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
68
|
+
})
|
|
69
|
+
except KeyError:
|
|
70
|
+
del self.top_volume_map[ticker]
|
|
71
|
+
return ret
|
|
72
|
+
|
|
73
|
+
def top_gappers(self, limit):
|
|
74
|
+
ret = []
|
|
75
|
+
for ticker, pct_change in sorted(self.top_gappers_map.items(), key=lambda x: x[1], reverse=True)[
|
|
76
|
+
:limit
|
|
77
|
+
]:
|
|
78
|
+
try:
|
|
79
|
+
if pct_change <= 0:
|
|
80
|
+
break
|
|
81
|
+
ret.append({
|
|
82
|
+
"symbol": ticker,
|
|
83
|
+
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
84
|
+
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
85
|
+
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
86
|
+
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
87
|
+
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
88
|
+
"open": self.symbol_data_cache[ticker]["open"],
|
|
89
|
+
"close": self.symbol_data_cache[ticker]["close"],
|
|
90
|
+
"high": self.symbol_data_cache[ticker]["high"],
|
|
91
|
+
"low": self.symbol_data_cache[ticker]["low"],
|
|
92
|
+
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
93
|
+
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
94
|
+
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
95
|
+
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
96
|
+
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
97
|
+
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
98
|
+
"change": self.symbol_data_cache[ticker]["change"],
|
|
99
|
+
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
100
|
+
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
101
|
+
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
102
|
+
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
103
|
+
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
104
|
+
})
|
|
105
|
+
except KeyError:
|
|
106
|
+
del self.top_gappers_map[ticker]
|
|
107
|
+
return ret
|
|
108
|
+
|
|
109
|
+
def top_gainers(self, limit):
|
|
110
|
+
ret = []
|
|
111
|
+
for ticker, pct_change in sorted(self.top_gainers_map.items(), key=lambda x: x[1], reverse=True)[
|
|
112
|
+
:limit
|
|
113
|
+
]:
|
|
114
|
+
try:
|
|
115
|
+
if pct_change <= 0:
|
|
116
|
+
break
|
|
117
|
+
ret.append({
|
|
118
|
+
"symbol": ticker,
|
|
119
|
+
"volume": self.symbol_data_cache[ticker]["volume"],
|
|
120
|
+
"accumulated_volume": self.symbol_data_cache[ticker]["accumulated_volume"],
|
|
121
|
+
"relative_volume": self.symbol_data_cache[ticker]["relative_volume"],
|
|
122
|
+
"official_open_price": self.symbol_data_cache[ticker]["official_open_price"],
|
|
123
|
+
"vwap": self.symbol_data_cache[ticker]["vwap"],
|
|
124
|
+
"open": self.symbol_data_cache[ticker]["open"],
|
|
125
|
+
"close": self.symbol_data_cache[ticker]["close"],
|
|
126
|
+
"high": self.symbol_data_cache[ticker]["high"],
|
|
127
|
+
"low": self.symbol_data_cache[ticker]["low"],
|
|
128
|
+
"aggregate_vwap": self.symbol_data_cache[ticker]["aggregate_vwap"],
|
|
129
|
+
"average_size": self.symbol_data_cache[ticker]["average_size"],
|
|
130
|
+
"avg_volume": self.symbol_data_cache[ticker]["avg_volume"],
|
|
131
|
+
"prev_day_close": self.symbol_data_cache[ticker]["prev_day_close"],
|
|
132
|
+
"prev_day_volume": self.symbol_data_cache[ticker]["prev_day_volume"],
|
|
133
|
+
"prev_day_vwap": self.symbol_data_cache[ticker]["prev_day_vwap"],
|
|
134
|
+
"change": self.symbol_data_cache[ticker]["change"],
|
|
135
|
+
"pct_change": self.symbol_data_cache[ticker]["pct_change"],
|
|
136
|
+
"change_since_open": self.symbol_data_cache[ticker]["change_since_open"],
|
|
137
|
+
"pct_change_since_open": self.symbol_data_cache[ticker]["pct_change_since_open"],
|
|
138
|
+
"start_timestamp": self.symbol_data_cache[ticker]["start_timestamp"],
|
|
139
|
+
"end_timestamp": self.symbol_data_cache[ticker]["end_timestamp"],
|
|
140
|
+
})
|
|
141
|
+
except KeyError:
|
|
142
|
+
del self.top_gainers_map[ticker]
|
|
143
|
+
return ret
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
kuhl_haus/mdp/__init__.py,sha256=5dEpAdB3kypH8tCRECoXwbly1WV9kFU5kh8ldGSa0VI,349
|
|
2
2
|
kuhl_haus/mdp/analyzers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
kuhl_haus/mdp/analyzers/analyzer.py,sha256=eluYM2Iib5kgbpNZUSk2qEUL-j83ZTb3zmEmRazrmiM,404
|
|
4
|
-
kuhl_haus/mdp/analyzers/massive_data_analyzer.py,sha256=
|
|
5
|
-
kuhl_haus/mdp/analyzers/top_stocks.py,sha256=
|
|
4
|
+
kuhl_haus/mdp/analyzers/massive_data_analyzer.py,sha256=WSb7T8X4u2ue7Du7sf_fqxjgjEbR6ThllSNT1CncIM0,3866
|
|
5
|
+
kuhl_haus/mdp/analyzers/top_stocks.py,sha256=nvNA-NkxMjVO0MqFuAvG-v3UdSP7iWDRGI7GxpPBzWw,10876
|
|
6
6
|
kuhl_haus/mdp/components/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
kuhl_haus/mdp/components/market_data_cache.py,sha256=r5sJHuSuLiw9BVckW--aWZHHIMqOTCf-pFURA7kef3Q,1070
|
|
8
8
|
kuhl_haus/mdp/components/market_data_scanner.py,sha256=vA0HPqVIvuZb93wzJhtER6fcH6bf85AgXCbu7yVFOFE,9152
|
|
@@ -12,18 +12,20 @@ kuhl_haus/mdp/helpers/process_manager.py,sha256=Is3Jx8nlBWvywQ1acdsdaSJTAG0olKsk
|
|
|
12
12
|
kuhl_haus/mdp/helpers/queue_name_resolver.py,sha256=l_zfRLxrjR9uwRCV2VDO4vPWLK_lj5KVG2p4Lh8xWiw,770
|
|
13
13
|
kuhl_haus/mdp/integ/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
14
|
kuhl_haus/mdp/integ/massive_data_listener.py,sha256=fPEYc6zZzHzFFjbP3zFInajKtEGInj8UQKKo3nKQEwQ,5098
|
|
15
|
-
kuhl_haus/mdp/integ/massive_data_processor.py,sha256=
|
|
15
|
+
kuhl_haus/mdp/integ/massive_data_processor.py,sha256=qktzLfuqrOgE4C9iZs4mXFvHt2BckgevRP8pEakzggA,8694
|
|
16
16
|
kuhl_haus/mdp/integ/massive_data_queues.py,sha256=zC_uV2vwZCMyVerDQ18RAQwIMMF75iK4qUSqwuWqgwc,5050
|
|
17
17
|
kuhl_haus/mdp/integ/utils.py,sha256=9JEpl2yr2LghOLrJUDxi-4dtDK3DZ1wBTZ1uxBJsFbQ,1309
|
|
18
18
|
kuhl_haus/mdp/integ/web_socket_message_serde.py,sha256=XdaoaByc7IhtzbPDXBtXKOTjyDzfPSDuZVCoHSIaTl4,5468
|
|
19
19
|
kuhl_haus/mdp/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
20
20
|
kuhl_haus/mdp/models/market_data_analyzer_result.py,sha256=iICb5GVCtuqARNbR1JNCAfbxMijM3uppDNdL8_FB3eI,422
|
|
21
21
|
kuhl_haus/mdp/models/market_data_cache_keys.py,sha256=5iScBMhVQaG3p9P45veE-uRT7c6JY7k6j4DcvSEXENA,942
|
|
22
|
+
kuhl_haus/mdp/models/market_data_cache_ttl.py,sha256=4KvsPeg84-sp4viUX6reN8CZYiM2aF9FgfXQmPbj3hw,348
|
|
22
23
|
kuhl_haus/mdp/models/market_data_pubsub_keys.py,sha256=PEIPXK9jBehJB7G4pqoSuQZcfMZgOQq8Yho1itqv-1A,1306
|
|
23
24
|
kuhl_haus/mdp/models/market_data_scanner_names.py,sha256=BYn1C0rYgGF1Sq583BkHADKUu-28ytNZQ-XgptuCH-Y,260
|
|
24
25
|
kuhl_haus/mdp/models/massive_data_queue.py,sha256=MfYBcjVc4Fi61DWIvvhhWLUOiLmRpE9egtW-2KH6FTE,188
|
|
25
|
-
|
|
26
|
-
kuhl_haus_mdp-0.1.
|
|
27
|
-
kuhl_haus_mdp-0.1.
|
|
28
|
-
kuhl_haus_mdp-0.1.
|
|
29
|
-
kuhl_haus_mdp-0.1.
|
|
26
|
+
kuhl_haus/mdp/models/top_stocks_cache_item.py,sha256=4vwwPTMkRRf1ct6iFInJnLSbBadM-tRk-zhqdD_ITE0,7676
|
|
27
|
+
kuhl_haus_mdp-0.1.3.dist-info/METADATA,sha256=0SI4PelAQU2MlicnUa8LtzqrKLCKcNQxfONkjQldC3g,8688
|
|
28
|
+
kuhl_haus_mdp-0.1.3.dist-info/WHEEL,sha256=tsUv_t7BDeJeRHaSrczbGeuK-TtDpGsWi_JfpzD255I,90
|
|
29
|
+
kuhl_haus_mdp-0.1.3.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
|
30
|
+
kuhl_haus_mdp-0.1.3.dist-info/licenses/LICENSE.txt,sha256=DRkJftAJcMqoTkQ_Y6-HtKj3nm4pZah_p8XBZiYnw-c,1079
|
|
31
|
+
kuhl_haus_mdp-0.1.3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|