kreuzberg 3.3.0__py3-none-any.whl → 3.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kreuzberg/__init__.py +9 -2
- kreuzberg/_api/__init__.py +0 -0
- kreuzberg/_api/main.py +87 -0
- kreuzberg/_entity_extraction.py +238 -0
- kreuzberg/_extractors/_base.py +39 -1
- kreuzberg/_extractors/_email.py +149 -0
- kreuzberg/_extractors/_html.py +15 -3
- kreuzberg/_extractors/_image.py +27 -22
- kreuzberg/_extractors/_pandoc.py +3 -14
- kreuzberg/_extractors/_pdf.py +97 -34
- kreuzberg/_extractors/_presentation.py +62 -10
- kreuzberg/_extractors/_spread_sheet.py +181 -6
- kreuzberg/_extractors/_structured.py +148 -0
- kreuzberg/_gmft.py +318 -11
- kreuzberg/_language_detection.py +95 -0
- kreuzberg/_mcp/__init__.py +5 -0
- kreuzberg/_mcp/server.py +227 -0
- kreuzberg/_mime_types.py +27 -1
- kreuzberg/_ocr/__init__.py +10 -1
- kreuzberg/_ocr/_base.py +59 -0
- kreuzberg/_ocr/_easyocr.py +92 -1
- kreuzberg/_ocr/_paddleocr.py +89 -0
- kreuzberg/_ocr/_tesseract.py +569 -5
- kreuzberg/_registry.py +4 -0
- kreuzberg/_types.py +181 -4
- kreuzberg/_utils/_cache.py +52 -4
- kreuzberg/_utils/_device.py +2 -2
- kreuzberg/_utils/_errors.py +3 -7
- kreuzberg/_utils/_process_pool.py +182 -9
- kreuzberg/_utils/_quality.py +237 -0
- kreuzberg/_utils/_serialization.py +4 -2
- kreuzberg/_utils/_string.py +153 -10
- kreuzberg/_utils/_sync.py +6 -7
- kreuzberg/_utils/_table.py +261 -0
- kreuzberg/_utils/_tmp.py +2 -2
- kreuzberg/cli.py +1 -2
- kreuzberg/extraction.py +43 -34
- kreuzberg-3.8.1.dist-info/METADATA +301 -0
- kreuzberg-3.8.1.dist-info/RECORD +53 -0
- {kreuzberg-3.3.0.dist-info → kreuzberg-3.8.1.dist-info}/entry_points.txt +1 -0
- kreuzberg/_multiprocessing/__init__.py +0 -6
- kreuzberg/_multiprocessing/gmft_isolated.py +0 -332
- kreuzberg/_multiprocessing/process_manager.py +0 -188
- kreuzberg/_multiprocessing/sync_tesseract.py +0 -261
- kreuzberg/_multiprocessing/tesseract_pool.py +0 -359
- kreuzberg-3.3.0.dist-info/METADATA +0 -235
- kreuzberg-3.3.0.dist-info/RECORD +0 -48
- {kreuzberg-3.3.0.dist-info → kreuzberg-3.8.1.dist-info}/WHEEL +0 -0
- {kreuzberg-3.3.0.dist-info → kreuzberg-3.8.1.dist-info}/licenses/LICENSE +0 -0
kreuzberg/_mcp/server.py
ADDED
@@ -0,0 +1,227 @@
|
|
1
|
+
"""Kreuzberg MCP server implementation."""
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
import base64
|
6
|
+
from typing import Any
|
7
|
+
|
8
|
+
from mcp.server import FastMCP
|
9
|
+
from mcp.types import TextContent
|
10
|
+
|
11
|
+
from kreuzberg._types import ExtractionConfig, OcrBackendType
|
12
|
+
from kreuzberg.extraction import extract_bytes_sync, extract_file_sync
|
13
|
+
|
14
|
+
# Create the MCP server
|
15
|
+
mcp = FastMCP("Kreuzberg Text Extraction")
|
16
|
+
|
17
|
+
|
18
|
+
@mcp.tool()
|
19
|
+
def extract_document( # noqa: PLR0913
|
20
|
+
file_path: str,
|
21
|
+
mime_type: str | None = None,
|
22
|
+
force_ocr: bool = False,
|
23
|
+
chunk_content: bool = False,
|
24
|
+
extract_tables: bool = False,
|
25
|
+
extract_entities: bool = False,
|
26
|
+
extract_keywords: bool = False,
|
27
|
+
ocr_backend: OcrBackendType = "tesseract",
|
28
|
+
max_chars: int = 1000,
|
29
|
+
max_overlap: int = 200,
|
30
|
+
keyword_count: int = 10,
|
31
|
+
auto_detect_language: bool = False,
|
32
|
+
) -> dict[str, Any]:
|
33
|
+
"""Extract text content from a document file.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
file_path: Path to the document file
|
37
|
+
mime_type: MIME type of the document (auto-detected if not provided)
|
38
|
+
force_ocr: Force OCR even for text-based documents
|
39
|
+
chunk_content: Split content into chunks
|
40
|
+
extract_tables: Extract tables from the document
|
41
|
+
extract_entities: Extract named entities
|
42
|
+
extract_keywords: Extract keywords
|
43
|
+
ocr_backend: OCR backend to use (tesseract, easyocr, paddleocr)
|
44
|
+
max_chars: Maximum characters per chunk
|
45
|
+
max_overlap: Character overlap between chunks
|
46
|
+
keyword_count: Number of keywords to extract
|
47
|
+
auto_detect_language: Auto-detect document language
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
Extracted content with metadata, tables, chunks, entities, and keywords
|
51
|
+
"""
|
52
|
+
config = ExtractionConfig(
|
53
|
+
force_ocr=force_ocr,
|
54
|
+
chunk_content=chunk_content,
|
55
|
+
extract_tables=extract_tables,
|
56
|
+
extract_entities=extract_entities,
|
57
|
+
extract_keywords=extract_keywords,
|
58
|
+
ocr_backend=ocr_backend,
|
59
|
+
max_chars=max_chars,
|
60
|
+
max_overlap=max_overlap,
|
61
|
+
keyword_count=keyword_count,
|
62
|
+
auto_detect_language=auto_detect_language,
|
63
|
+
)
|
64
|
+
|
65
|
+
result = extract_file_sync(file_path, mime_type, config)
|
66
|
+
return result.to_dict()
|
67
|
+
|
68
|
+
|
69
|
+
@mcp.tool()
|
70
|
+
def extract_bytes( # noqa: PLR0913
|
71
|
+
content_base64: str,
|
72
|
+
mime_type: str,
|
73
|
+
force_ocr: bool = False,
|
74
|
+
chunk_content: bool = False,
|
75
|
+
extract_tables: bool = False,
|
76
|
+
extract_entities: bool = False,
|
77
|
+
extract_keywords: bool = False,
|
78
|
+
ocr_backend: OcrBackendType = "tesseract",
|
79
|
+
max_chars: int = 1000,
|
80
|
+
max_overlap: int = 200,
|
81
|
+
keyword_count: int = 10,
|
82
|
+
auto_detect_language: bool = False,
|
83
|
+
) -> dict[str, Any]:
|
84
|
+
"""Extract text content from document bytes.
|
85
|
+
|
86
|
+
Args:
|
87
|
+
content_base64: Base64-encoded document content
|
88
|
+
mime_type: MIME type of the document
|
89
|
+
force_ocr: Force OCR even for text-based documents
|
90
|
+
chunk_content: Split content into chunks
|
91
|
+
extract_tables: Extract tables from the document
|
92
|
+
extract_entities: Extract named entities
|
93
|
+
extract_keywords: Extract keywords
|
94
|
+
ocr_backend: OCR backend to use (tesseract, easyocr, paddleocr)
|
95
|
+
max_chars: Maximum characters per chunk
|
96
|
+
max_overlap: Character overlap between chunks
|
97
|
+
keyword_count: Number of keywords to extract
|
98
|
+
auto_detect_language: Auto-detect document language
|
99
|
+
|
100
|
+
Returns:
|
101
|
+
Extracted content with metadata, tables, chunks, entities, and keywords
|
102
|
+
"""
|
103
|
+
content_bytes = base64.b64decode(content_base64)
|
104
|
+
|
105
|
+
config = ExtractionConfig(
|
106
|
+
force_ocr=force_ocr,
|
107
|
+
chunk_content=chunk_content,
|
108
|
+
extract_tables=extract_tables,
|
109
|
+
extract_entities=extract_entities,
|
110
|
+
extract_keywords=extract_keywords,
|
111
|
+
ocr_backend=ocr_backend,
|
112
|
+
max_chars=max_chars,
|
113
|
+
max_overlap=max_overlap,
|
114
|
+
keyword_count=keyword_count,
|
115
|
+
auto_detect_language=auto_detect_language,
|
116
|
+
)
|
117
|
+
|
118
|
+
result = extract_bytes_sync(content_bytes, mime_type, config)
|
119
|
+
return result.to_dict()
|
120
|
+
|
121
|
+
|
122
|
+
@mcp.tool()
|
123
|
+
def extract_simple(
|
124
|
+
file_path: str,
|
125
|
+
mime_type: str | None = None,
|
126
|
+
) -> str:
|
127
|
+
"""Simple text extraction from a document file.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
file_path: Path to the document file
|
131
|
+
mime_type: MIME type of the document (auto-detected if not provided)
|
132
|
+
|
133
|
+
Returns:
|
134
|
+
Extracted text content as a string
|
135
|
+
"""
|
136
|
+
config = ExtractionConfig()
|
137
|
+
result = extract_file_sync(file_path, mime_type, config)
|
138
|
+
return result.content
|
139
|
+
|
140
|
+
|
141
|
+
@mcp.resource("config://default")
|
142
|
+
def get_default_config() -> str:
|
143
|
+
"""Get the default extraction configuration."""
|
144
|
+
config = ExtractionConfig()
|
145
|
+
return str(config.__dict__)
|
146
|
+
|
147
|
+
|
148
|
+
@mcp.resource("config://available-backends")
|
149
|
+
def get_available_backends() -> str:
|
150
|
+
"""Get available OCR backends."""
|
151
|
+
return "tesseract, easyocr, paddleocr"
|
152
|
+
|
153
|
+
|
154
|
+
@mcp.resource("extractors://supported-formats")
|
155
|
+
def get_supported_formats() -> str:
|
156
|
+
"""Get supported document formats."""
|
157
|
+
return """
|
158
|
+
Supported formats:
|
159
|
+
- PDF documents
|
160
|
+
- Images (PNG, JPG, JPEG, TIFF, BMP, WEBP)
|
161
|
+
- Office documents (DOCX, PPTX, XLSX)
|
162
|
+
- HTML files
|
163
|
+
- Text files (TXT, CSV, TSV)
|
164
|
+
- And more...
|
165
|
+
"""
|
166
|
+
|
167
|
+
|
168
|
+
@mcp.prompt()
|
169
|
+
def extract_and_summarize(file_path: str) -> list[TextContent]:
|
170
|
+
"""Extract text from a document and provide a summary prompt.
|
171
|
+
|
172
|
+
Args:
|
173
|
+
file_path: Path to the document file
|
174
|
+
|
175
|
+
Returns:
|
176
|
+
Extracted content with summarization prompt
|
177
|
+
"""
|
178
|
+
result = extract_file_sync(file_path, None, ExtractionConfig())
|
179
|
+
|
180
|
+
return [
|
181
|
+
TextContent(
|
182
|
+
type="text",
|
183
|
+
text=f"Document Content:\n{result.content}\n\nPlease provide a concise summary of this document.",
|
184
|
+
)
|
185
|
+
]
|
186
|
+
|
187
|
+
|
188
|
+
@mcp.prompt()
|
189
|
+
def extract_structured(file_path: str) -> list[TextContent]:
|
190
|
+
"""Extract text with structured analysis prompt.
|
191
|
+
|
192
|
+
Args:
|
193
|
+
file_path: Path to the document file
|
194
|
+
|
195
|
+
Returns:
|
196
|
+
Extracted content with structured analysis prompt
|
197
|
+
"""
|
198
|
+
config = ExtractionConfig(
|
199
|
+
extract_entities=True,
|
200
|
+
extract_keywords=True,
|
201
|
+
extract_tables=True,
|
202
|
+
)
|
203
|
+
result = extract_file_sync(file_path, None, config)
|
204
|
+
|
205
|
+
content = f"Document Content:\n{result.content}\n\n"
|
206
|
+
|
207
|
+
if result.entities:
|
208
|
+
content += f"Entities: {[f'{e.text} ({e.type})' for e in result.entities]}\n\n"
|
209
|
+
|
210
|
+
if result.keywords:
|
211
|
+
content += f"Keywords: {[f'{kw[0]} ({kw[1]:.2f})' for kw in result.keywords]}\n\n"
|
212
|
+
|
213
|
+
if result.tables:
|
214
|
+
content += f"Tables found: {len(result.tables)}\n\n"
|
215
|
+
|
216
|
+
content += "Please analyze this document and provide structured insights."
|
217
|
+
|
218
|
+
return [TextContent(type="text", text=content)]
|
219
|
+
|
220
|
+
|
221
|
+
def main() -> None:
|
222
|
+
"""Main entry point for the MCP server."""
|
223
|
+
mcp.run()
|
224
|
+
|
225
|
+
|
226
|
+
if __name__ == "__main__":
|
227
|
+
main()
|
kreuzberg/_mime_types.py
CHANGED
@@ -17,6 +17,12 @@ PLAIN_TEXT_MIME_TYPE: Final = "text/plain"
|
|
17
17
|
POWER_POINT_MIME_TYPE: Final = "application/vnd.openxmlformats-officedocument.presentationml.presentation"
|
18
18
|
DOCX_MIME_TYPE: Final = "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
19
19
|
|
20
|
+
EML_MIME_TYPE: Final = "message/rfc822"
|
21
|
+
MSG_MIME_TYPE: Final = "application/vnd.ms-outlook"
|
22
|
+
JSON_MIME_TYPE: Final = "application/json"
|
23
|
+
YAML_MIME_TYPE: Final = "application/x-yaml"
|
24
|
+
TOML_MIME_TYPE: Final = "application/toml"
|
25
|
+
|
20
26
|
EXCEL_MIME_TYPE: Final = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
21
27
|
EXCEL_BINARY_MIME_TYPE: Final = "application/vnd.ms-excel"
|
22
28
|
EXCEL_MACRO_MIME_TYPE: Final = "application/vnd.ms-excel.sheet.macroEnabled.12"
|
@@ -127,6 +133,12 @@ EXT_TO_MIME_TYPE: Final[Mapping[str, str]] = {
|
|
127
133
|
".org": "text/x-org",
|
128
134
|
".epub": "application/epub+zip",
|
129
135
|
".rtf": "application/rtf",
|
136
|
+
".eml": EML_MIME_TYPE,
|
137
|
+
".msg": MSG_MIME_TYPE,
|
138
|
+
".json": JSON_MIME_TYPE,
|
139
|
+
".yaml": YAML_MIME_TYPE,
|
140
|
+
".yml": YAML_MIME_TYPE,
|
141
|
+
".toml": TOML_MIME_TYPE,
|
130
142
|
".odt": "application/vnd.oasis.opendocument.text",
|
131
143
|
".docx": DOCX_MIME_TYPE,
|
132
144
|
".bib": "application/x-bibtex",
|
@@ -139,7 +151,21 @@ SUPPORTED_MIME_TYPES: Final[set[str]] = (
|
|
139
151
|
| IMAGE_MIME_TYPES
|
140
152
|
| PANDOC_SUPPORTED_MIME_TYPES
|
141
153
|
| SPREADSHEET_MIME_TYPES
|
142
|
-
| {
|
154
|
+
| {
|
155
|
+
PDF_MIME_TYPE,
|
156
|
+
POWER_POINT_MIME_TYPE,
|
157
|
+
HTML_MIME_TYPE,
|
158
|
+
EML_MIME_TYPE,
|
159
|
+
MSG_MIME_TYPE,
|
160
|
+
JSON_MIME_TYPE,
|
161
|
+
YAML_MIME_TYPE,
|
162
|
+
TOML_MIME_TYPE,
|
163
|
+
"text/json",
|
164
|
+
"text/yaml",
|
165
|
+
"text/x-yaml",
|
166
|
+
"application/yaml",
|
167
|
+
"text/toml",
|
168
|
+
}
|
143
169
|
)
|
144
170
|
|
145
171
|
|
kreuzberg/_ocr/__init__.py
CHANGED
@@ -4,9 +4,18 @@ from typing import Any
|
|
4
4
|
from kreuzberg._ocr._base import OCRBackend
|
5
5
|
from kreuzberg._ocr._easyocr import EasyOCRBackend
|
6
6
|
from kreuzberg._ocr._paddleocr import PaddleBackend
|
7
|
-
from kreuzberg._ocr._tesseract import TesseractBackend
|
7
|
+
from kreuzberg._ocr._tesseract import TesseractBackend, TesseractProcessPool
|
8
8
|
from kreuzberg._types import OcrBackendType
|
9
9
|
|
10
|
+
__all__ = [
|
11
|
+
"EasyOCRBackend",
|
12
|
+
"OCRBackend",
|
13
|
+
"PaddleBackend",
|
14
|
+
"TesseractBackend",
|
15
|
+
"TesseractProcessPool",
|
16
|
+
"get_ocr_backend",
|
17
|
+
]
|
18
|
+
|
10
19
|
|
11
20
|
@lru_cache
|
12
21
|
def get_ocr_backend(backend: OcrBackendType) -> OCRBackend[Any]:
|
kreuzberg/_ocr/_base.py
CHANGED
@@ -49,6 +49,65 @@ class OCRBackend(ABC, Generic[T]):
|
|
49
49
|
"""
|
50
50
|
...
|
51
51
|
|
52
|
+
@abstractmethod
|
53
|
+
def process_image_sync(self, image: Image, **kwargs: Unpack[T]) -> ExtractionResult:
|
54
|
+
"""Synchronously process an image and extract its text and metadata.
|
55
|
+
|
56
|
+
Args:
|
57
|
+
image: An instance of PIL.Image representing the input image.
|
58
|
+
**kwargs: Any kwargs related to the given backend
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
The extraction result object
|
62
|
+
"""
|
63
|
+
...
|
64
|
+
|
65
|
+
@abstractmethod
|
66
|
+
def process_file_sync(self, path: Path, **kwargs: Unpack[T]) -> ExtractionResult:
|
67
|
+
"""Synchronously process a file and extract its text and metadata.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
path: A Path object representing the file to be processed.
|
71
|
+
**kwargs: Any kwargs related to the given backend
|
72
|
+
|
73
|
+
Returns:
|
74
|
+
The extraction result object
|
75
|
+
"""
|
76
|
+
...
|
77
|
+
|
78
|
+
def process_batch_sync(self, paths: list[Path], **kwargs: Unpack[T]) -> list[ExtractionResult]:
|
79
|
+
"""Synchronously process a batch of files and extract their text and metadata.
|
80
|
+
|
81
|
+
Default implementation processes files sequentially. Backends can override
|
82
|
+
for more efficient batch processing.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
paths: List of Path objects representing files to be processed.
|
86
|
+
**kwargs: Any kwargs related to the given backend
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
List of extraction result objects in the same order as input paths
|
90
|
+
"""
|
91
|
+
return [self.process_file_sync(path, **kwargs) for path in paths]
|
92
|
+
|
93
|
+
async def process_batch(self, paths: list[Path], **kwargs: Unpack[T]) -> list[ExtractionResult]:
|
94
|
+
"""Asynchronously process a batch of files and extract their text and metadata.
|
95
|
+
|
96
|
+
Default implementation processes files concurrently. Backends can override
|
97
|
+
for more efficient batch processing.
|
98
|
+
|
99
|
+
Args:
|
100
|
+
paths: List of Path objects representing files to be processed.
|
101
|
+
**kwargs: Any kwargs related to the given backend
|
102
|
+
|
103
|
+
Returns:
|
104
|
+
List of extraction result objects in the same order as input paths
|
105
|
+
"""
|
106
|
+
from kreuzberg._utils._sync import run_taskgroup
|
107
|
+
|
108
|
+
tasks = [self.process_file(path, **kwargs) for path in paths]
|
109
|
+
return await run_taskgroup(*tasks)
|
110
|
+
|
52
111
|
def __hash__(self) -> int:
|
53
112
|
"""Hash function for allowing caching."""
|
54
113
|
return hash(type(self).__name__)
|
kreuzberg/_ocr/_easyocr.py
CHANGED
@@ -4,6 +4,7 @@ import warnings
|
|
4
4
|
from dataclasses import dataclass
|
5
5
|
from typing import TYPE_CHECKING, Any, ClassVar, Final, Literal
|
6
6
|
|
7
|
+
import numpy as np
|
7
8
|
from PIL import Image
|
8
9
|
|
9
10
|
from kreuzberg._mime_types import PLAIN_TEXT_MIME_TYPE
|
@@ -319,7 +320,7 @@ class EasyOCRBackend(OCRBackend[EasyOCRConfig]):
|
|
319
320
|
try:
|
320
321
|
import torch
|
321
322
|
|
322
|
-
return torch.cuda.is_available()
|
323
|
+
return bool(torch.cuda.is_available())
|
323
324
|
except ImportError:
|
324
325
|
return False
|
325
326
|
|
@@ -440,3 +441,93 @@ class EasyOCRBackend(OCRBackend[EasyOCRConfig]):
|
|
440
441
|
)
|
441
442
|
|
442
443
|
return languages
|
444
|
+
|
445
|
+
def process_image_sync(self, image: Image.Image, **kwargs: Unpack[EasyOCRConfig]) -> ExtractionResult:
|
446
|
+
"""Synchronously process an image and extract its text and metadata using EasyOCR.
|
447
|
+
|
448
|
+
Args:
|
449
|
+
image: An instance of PIL.Image representing the input image.
|
450
|
+
**kwargs: Configuration parameters for EasyOCR including language, detection thresholds, etc.
|
451
|
+
|
452
|
+
Returns:
|
453
|
+
ExtractionResult: The extraction result containing text content, mime type, and metadata.
|
454
|
+
|
455
|
+
Raises:
|
456
|
+
OCRError: If OCR processing fails.
|
457
|
+
"""
|
458
|
+
self._init_easyocr_sync(**kwargs)
|
459
|
+
|
460
|
+
beam_width = kwargs.pop("beam_width")
|
461
|
+
kwargs.pop("language", None)
|
462
|
+
kwargs.pop("use_gpu", None)
|
463
|
+
|
464
|
+
try:
|
465
|
+
result = self._reader.readtext(
|
466
|
+
np.array(image),
|
467
|
+
beamWidth=beam_width,
|
468
|
+
**kwargs,
|
469
|
+
)
|
470
|
+
|
471
|
+
return self._process_easyocr_result(result, image)
|
472
|
+
except Exception as e:
|
473
|
+
raise OCRError(f"Failed to OCR using EasyOCR: {e}") from e
|
474
|
+
|
475
|
+
def process_file_sync(self, path: Path, **kwargs: Unpack[EasyOCRConfig]) -> ExtractionResult:
|
476
|
+
"""Synchronously process a file and extract its text and metadata using EasyOCR.
|
477
|
+
|
478
|
+
Args:
|
479
|
+
path: A Path object representing the file to be processed.
|
480
|
+
**kwargs: Configuration parameters for EasyOCR including language, detection thresholds, etc.
|
481
|
+
|
482
|
+
Returns:
|
483
|
+
ExtractionResult: The extraction result containing text content, mime type, and metadata.
|
484
|
+
|
485
|
+
Raises:
|
486
|
+
OCRError: If file loading or OCR processing fails.
|
487
|
+
"""
|
488
|
+
self._init_easyocr_sync(**kwargs)
|
489
|
+
try:
|
490
|
+
image = Image.open(path)
|
491
|
+
return self.process_image_sync(image, **kwargs)
|
492
|
+
except Exception as e:
|
493
|
+
raise OCRError(f"Failed to load or process image using EasyOCR: {e}") from e
|
494
|
+
|
495
|
+
@classmethod
|
496
|
+
def _init_easyocr_sync(cls, **kwargs: Unpack[EasyOCRConfig]) -> None:
|
497
|
+
"""Synchronously initialize EasyOCR with the provided configuration.
|
498
|
+
|
499
|
+
Args:
|
500
|
+
**kwargs: Configuration parameters for EasyOCR including language, etc.
|
501
|
+
|
502
|
+
Raises:
|
503
|
+
MissingDependencyError: If EasyOCR is not installed.
|
504
|
+
OCRError: If initialization fails.
|
505
|
+
"""
|
506
|
+
if cls._reader is not None:
|
507
|
+
return
|
508
|
+
|
509
|
+
try:
|
510
|
+
import easyocr
|
511
|
+
except ImportError as e:
|
512
|
+
raise MissingDependencyError.create_for_package(
|
513
|
+
dependency_group="easyocr", functionality="EasyOCR as an OCR backend", package_name="easyocr"
|
514
|
+
) from e
|
515
|
+
|
516
|
+
languages = cls._validate_language_code(kwargs.pop("language", "en"))
|
517
|
+
|
518
|
+
device_info = cls._resolve_device_config(**kwargs)
|
519
|
+
use_gpu = device_info.device_type in ("cuda", "mps")
|
520
|
+
|
521
|
+
kwargs.setdefault("detector", True)
|
522
|
+
kwargs.setdefault("recognizer", True)
|
523
|
+
kwargs.setdefault("download_enabled", True)
|
524
|
+
kwargs.setdefault("recog_network", "standard")
|
525
|
+
|
526
|
+
try:
|
527
|
+
cls._reader = easyocr.Reader(
|
528
|
+
languages,
|
529
|
+
gpu=use_gpu,
|
530
|
+
verbose=False,
|
531
|
+
)
|
532
|
+
except Exception as e:
|
533
|
+
raise OCRError(f"Failed to initialize EasyOCR: {e}") from e
|
kreuzberg/_ocr/_paddleocr.py
CHANGED
@@ -4,8 +4,10 @@ import platform
|
|
4
4
|
import warnings
|
5
5
|
from dataclasses import dataclass
|
6
6
|
from importlib.util import find_spec
|
7
|
+
from pathlib import Path
|
7
8
|
from typing import TYPE_CHECKING, Any, ClassVar, Final, Literal
|
8
9
|
|
10
|
+
import numpy as np
|
9
11
|
from PIL import Image
|
10
12
|
|
11
13
|
from kreuzberg._mime_types import PLAIN_TEXT_MIME_TYPE
|
@@ -364,3 +366,90 @@ class PaddleBackend(OCRBackend[PaddleOCRConfig]):
|
|
364
366
|
"supported_languages": ",".join(sorted(PADDLEOCR_SUPPORTED_LANGUAGE_CODES)),
|
365
367
|
},
|
366
368
|
)
|
369
|
+
|
370
|
+
def process_image_sync(self, image: Image.Image, **kwargs: Unpack[PaddleOCRConfig]) -> ExtractionResult:
|
371
|
+
"""Synchronously process an image and extract its text and metadata using PaddleOCR.
|
372
|
+
|
373
|
+
Args:
|
374
|
+
image: An instance of PIL.Image representing the input image.
|
375
|
+
**kwargs: Configuration parameters for PaddleOCR including language, detection thresholds, etc.
|
376
|
+
|
377
|
+
Returns:
|
378
|
+
ExtractionResult: The extraction result containing text content, mime type, and metadata.
|
379
|
+
|
380
|
+
Raises:
|
381
|
+
OCRError: If OCR processing fails.
|
382
|
+
"""
|
383
|
+
self._init_paddle_ocr_sync(**kwargs)
|
384
|
+
|
385
|
+
if image.mode != "RGB":
|
386
|
+
image = image.convert("RGB")
|
387
|
+
|
388
|
+
image_np = np.array(image)
|
389
|
+
try:
|
390
|
+
result = self._paddle_ocr.ocr(image_np, cls=kwargs.get("use_angle_cls", True))
|
391
|
+
return self._process_paddle_result(result, image)
|
392
|
+
except Exception as e:
|
393
|
+
raise OCRError(f"Failed to OCR using PaddleOCR: {e}") from e
|
394
|
+
|
395
|
+
def process_file_sync(self, path: Path, **kwargs: Unpack[PaddleOCRConfig]) -> ExtractionResult:
|
396
|
+
"""Synchronously process a file and extract its text and metadata using PaddleOCR.
|
397
|
+
|
398
|
+
Args:
|
399
|
+
path: A Path object representing the file to be processed.
|
400
|
+
**kwargs: Configuration parameters for PaddleOCR including language, detection thresholds, etc.
|
401
|
+
|
402
|
+
Returns:
|
403
|
+
ExtractionResult: The extraction result containing text content, mime type, and metadata.
|
404
|
+
|
405
|
+
Raises:
|
406
|
+
OCRError: If file loading or OCR processing fails.
|
407
|
+
"""
|
408
|
+
self._init_paddle_ocr_sync(**kwargs)
|
409
|
+
try:
|
410
|
+
image = Image.open(path)
|
411
|
+
return self.process_image_sync(image, **kwargs)
|
412
|
+
except Exception as e:
|
413
|
+
raise OCRError(f"Failed to load or process image using PaddleOCR: {e}") from e
|
414
|
+
|
415
|
+
@classmethod
|
416
|
+
def _init_paddle_ocr_sync(cls, **kwargs: Unpack[PaddleOCRConfig]) -> None:
|
417
|
+
"""Synchronously initialize PaddleOCR with the provided configuration.
|
418
|
+
|
419
|
+
Args:
|
420
|
+
**kwargs: Configuration parameters for PaddleOCR including language, detection thresholds, etc.
|
421
|
+
|
422
|
+
Raises:
|
423
|
+
MissingDependencyError: If PaddleOCR is not installed.
|
424
|
+
OCRError: If initialization fails.
|
425
|
+
"""
|
426
|
+
if cls._paddle_ocr is not None:
|
427
|
+
return
|
428
|
+
|
429
|
+
try:
|
430
|
+
from paddleocr import PaddleOCR
|
431
|
+
except ImportError as e:
|
432
|
+
raise MissingDependencyError.create_for_package(
|
433
|
+
dependency_group="paddleocr", functionality="PaddleOCR as an OCR backend", package_name="paddleocr"
|
434
|
+
) from e
|
435
|
+
|
436
|
+
language = cls._validate_language_code(kwargs.pop("language", "en"))
|
437
|
+
|
438
|
+
device_info = cls._resolve_device_config(**kwargs)
|
439
|
+
use_gpu = device_info.device_type == "cuda"
|
440
|
+
|
441
|
+
has_gpu_package = bool(find_spec("paddlepaddle_gpu"))
|
442
|
+
kwargs.setdefault("use_angle_cls", True)
|
443
|
+
kwargs["use_gpu"] = use_gpu and has_gpu_package
|
444
|
+
kwargs.setdefault("enable_mkldnn", cls._is_mkldnn_supported() and not (use_gpu and has_gpu_package))
|
445
|
+
kwargs.setdefault("det_db_thresh", 0.3)
|
446
|
+
kwargs.setdefault("det_db_box_thresh", 0.5)
|
447
|
+
kwargs.setdefault("det_db_unclip_ratio", 1.6)
|
448
|
+
|
449
|
+
if device_info.device_type == "cuda" and kwargs.get("gpu_memory_limit"):
|
450
|
+
kwargs["gpu_mem"] = int(kwargs["gpu_memory_limit"] * 1024)
|
451
|
+
|
452
|
+
try:
|
453
|
+
cls._paddle_ocr = PaddleOCR(lang=language, show_log=False, **kwargs)
|
454
|
+
except Exception as e:
|
455
|
+
raise OCRError(f"Failed to initialize PaddleOCR: {e}") from e
|