kostyl-toolkit 0.1.26__py3-none-any.whl → 0.1.27__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -23,7 +23,7 @@ class Lr(BaseModel):
23
23
  default=None, gt=0, lt=1, validate_default=False
24
24
  )
25
25
  warmup_value: float | None = Field(default=None, gt=0, validate_default=False)
26
- start_value: float
26
+ base_value: float
27
27
  final_value: float | None = Field(default=None, gt=0, validate_default=False)
28
28
 
29
29
  @model_validator(mode="after")
@@ -56,7 +56,7 @@ class WeightDecay(BaseModel):
56
56
  """Weight decay hyperparameters configuration."""
57
57
 
58
58
  use_scheduler: bool = False
59
- start_value: float
59
+ base_value: float
60
60
  final_value: float | None = None
61
61
 
62
62
  @model_validator(mode="after")
@@ -13,7 +13,7 @@ class _CosineSchedulerCore(BaseScheduler):
13
13
  self,
14
14
  param_name: str,
15
15
  num_iters: int,
16
- start_value: float,
16
+ base_value: float,
17
17
  final_value: float,
18
18
  warmup_ratio: float | None = None,
19
19
  warmup_value: float | None = None,
@@ -32,7 +32,7 @@ class _CosineSchedulerCore(BaseScheduler):
32
32
 
33
33
  self.param_name = param_name
34
34
  self.num_iters = num_iters
35
- self.start_value = start_value
35
+ self.base_value = base_value
36
36
  self.final_value = final_value
37
37
 
38
38
  self.warmup_ratio = warmup_ratio
@@ -41,7 +41,7 @@ class _CosineSchedulerCore(BaseScheduler):
41
41
  self.freeze_ratio = freeze_ratio
42
42
 
43
43
  self.scheduler_values: npt.NDArray[np.float64] = np.array([], dtype=np.float64)
44
- self.current_value_ = self.start_value
44
+ self.current_value_ = self.base_value
45
45
  return
46
46
 
47
47
  def _create_scheduler(self) -> None:
@@ -57,7 +57,7 @@ class _CosineSchedulerCore(BaseScheduler):
57
57
  if self.warmup_ratio is not None and self.warmup_value is not None:
58
58
  warmup_iters = int(self.num_iters * self.warmup_ratio)
59
59
  warmup_schedule = np.linspace(
60
- self.warmup_value, self.start_value, warmup_iters, dtype=np.float64
60
+ self.warmup_value, self.base_value, warmup_iters, dtype=np.float64
61
61
  )
62
62
  else:
63
63
  warmup_iters = 0
@@ -69,7 +69,7 @@ class _CosineSchedulerCore(BaseScheduler):
69
69
 
70
70
  # Create cosine schedule
71
71
  iters = np.arange(cosine_annealing_iters)
72
- schedule = self.final_value + 0.5 * (self.start_value - self.final_value) * (
72
+ schedule = self.final_value + 0.5 * (self.base_value - self.final_value) * (
73
73
  1 + np.cos(np.pi * iters / len(iters))
74
74
  )
75
75
 
@@ -118,7 +118,7 @@ class CosineScheduler(_CosineSchedulerCore):
118
118
  optimizer: torch.optim.Optimizer,
119
119
  param_group_field: str,
120
120
  num_iters: int,
121
- start_value: float,
121
+ base_value: float,
122
122
  final_value: float,
123
123
  warmup_ratio: float | None = None,
124
124
  warmup_value: float | None = None,
@@ -135,9 +135,9 @@ class CosineScheduler(_CosineSchedulerCore):
135
135
  optimizer: Optimizer whose param groups are updated in-place.
136
136
  param_group_field: Name of the field that receives the scheduled value.
137
137
  num_iters: Number of scheduler iterations before clamping at ``final_value``.
138
- start_value: Value used on the first cosine step (after warmup/freeze).
138
+ base_value: Value used on the first cosine step (after warmup/freeze).
139
139
  final_value: Value approached as iterations progress.
140
- warmup_ratio: Optional fraction of iterations to linearly ramp from ``warmup_value`` to ``start_value``.
140
+ warmup_ratio: Optional fraction of iterations to linearly ramp from ``warmup_value`` to ``base_value``.
141
141
  warmup_value: Starting value for the warmup ramp.
142
142
  freeze_ratio: Optional fraction of iterations to keep the value frozen at zero at the beginning.
143
143
  multiplier_field: Optional per-group multiplier applied to the scheduled value.
@@ -154,7 +154,7 @@ class CosineScheduler(_CosineSchedulerCore):
154
154
  super().__init__(
155
155
  param_name=param_group_field,
156
156
  num_iters=num_iters,
157
- start_value=start_value,
157
+ base_value=base_value,
158
158
  final_value=final_value,
159
159
  warmup_ratio=warmup_ratio,
160
160
  warmup_value=warmup_value,
@@ -13,21 +13,21 @@ class _LinearScheduleBase(BaseScheduler):
13
13
  self,
14
14
  param_name: str,
15
15
  num_iters: int,
16
- start_value: float,
16
+ base_value: float,
17
17
  final_value: float,
18
18
  ) -> None:
19
19
  self.param_name = param_name
20
20
  self.num_iters = num_iters
21
- self.start_value = start_value
21
+ self.base_value = base_value
22
22
  self.final_value = final_value
23
23
 
24
24
  self.scheduler_values: npt.NDArray[np.float64] = np.array([], dtype=np.float64)
25
- self.current_value_ = self.start_value
25
+ self.current_value_ = self.base_value
26
26
  return
27
27
 
28
28
  def _create_scheduler(self) -> None:
29
29
  self.scheduler_values = np.linspace(
30
- self.start_value, self.final_value, num=self.num_iters, dtype=np.float64
30
+ self.base_value, self.final_value, num=self.num_iters, dtype=np.float64
31
31
  )
32
32
  if len(self.scheduler_values) != self.num_iters:
33
33
  raise ValueError(
@@ -69,7 +69,7 @@ class LinearScheduler(_LinearScheduleBase):
69
69
  optimizer: torch.optim.Optimizer,
70
70
  param_group_field: str,
71
71
  num_iters: int,
72
- start_value: float,
72
+ base_value: float,
73
73
  final_value: float,
74
74
  multiplier_field: str | None = None,
75
75
  skip_if_zero: bool = False,
@@ -83,7 +83,7 @@ class LinearScheduler(_LinearScheduleBase):
83
83
  optimizer: Optimizer whose param groups are updated in-place.
84
84
  param_group_field: Name of the field that receives the scheduled value.
85
85
  num_iters: Number of scheduler iterations before clamping at ``final_value``.
86
- start_value: Value used on the first iteration.
86
+ base_value: Value used on the first iteration.
87
87
  final_value: Value used once ``num_iters`` iterations are consumed.
88
88
  multiplier_field: Optional per-group multiplier applied to the scheduled value.
89
89
  skip_if_zero: Leave groups untouched when their target field equals zero.
@@ -99,7 +99,7 @@ class LinearScheduler(_LinearScheduleBase):
99
99
  super().__init__(
100
100
  param_name=param_group_field,
101
101
  num_iters=num_iters,
102
- start_value=start_value,
102
+ base_value=base_value,
103
103
  final_value=final_value,
104
104
  )
105
105
  self.param_group_field = param_group_field
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: kostyl-toolkit
3
- Version: 0.1.26
3
+ Version: 0.1.27
4
4
  Summary: Kickass Orchestration System for Training, Yielding & Logging
5
5
  Requires-Dist: case-converter>=1.2.0
6
6
  Requires-Dist: loguru>=0.7.3
@@ -6,7 +6,7 @@ kostyl/ml/clearml/logging_utils.py,sha256=GBjIIZbH_itd5sj7XpvxjkyZwxxGOpEcQ3BiWa
6
6
  kostyl/ml/clearml/pulling_utils.py,sha256=cNa_-_5LHjNVYi9btXBrfl5sPvI6BAAlIFidtpKu310,4078
7
7
  kostyl/ml/configs/__init__.py,sha256=IetcivbqYGutowLqxdKp7QR4tkXKBr4m8t4Zkk9jHZU,911
8
8
  kostyl/ml/configs/base_model.py,sha256=Eofn14J9RsjpVx_J4rp6C19pDDCANU4hr3JtX-d0FpQ,4820
9
- kostyl/ml/configs/hyperparams.py,sha256=PXhgkQ9UJhnfeLFnwPweSYRqjdIuAVenG4lm0IU_TzI,2881
9
+ kostyl/ml/configs/hyperparams.py,sha256=2S_VEZ07RWquNFSWjHBb3OUpBlTznbUpFSchzMpSBOc,2879
10
10
  kostyl/ml/configs/training_settings.py,sha256=Sq2tiRuwkbmi9zKDG2JghZLXo5DDt_eQqN_KYJSdcTY,2509
11
11
  kostyl/ml/dist_utils.py,sha256=Onf0KHVLA8oeUgZTcTdmR9qiM22f2uYLoNwgLbMGJWk,3495
12
12
  kostyl/ml/lightning/__init__.py,sha256=-F3JAyq8KU1d-nACWryGu8d1CbvWbQ1rXFdeRwfE2X8,175
@@ -25,12 +25,12 @@ kostyl/ml/params_groups.py,sha256=nUyw5d06Pvy9QPiYtZzLYR87xwXqJLxbHthgQH8oSCM,35
25
25
  kostyl/ml/schedulers/__init__.py,sha256=bxXbsU_WYnVbhvNNnuI7cOAh2Axz7D25TaleBTZhYfc,197
26
26
  kostyl/ml/schedulers/base.py,sha256=9M2iOoOVSRojR_liPX1qo3Nn4iMXSM5ZJuAFWZTulUk,1327
27
27
  kostyl/ml/schedulers/composite.py,sha256=ee4xlMDMMtjKPkbTF2ue9GTr9DuGCGjZWf11mHbi6aE,2387
28
- kostyl/ml/schedulers/cosine.py,sha256=I5soKFLVrppphapQgKKm5HM5KgyKiD40O_Q5UaJ_LtM,7638
29
- kostyl/ml/schedulers/linear.py,sha256=7HPkVWcPa0lbaZywutXSDdVLLSihAyWk5XIE2Dzj_5Q,5168
28
+ kostyl/ml/schedulers/cosine.py,sha256=t74_ByT22L5NQKpnBVU9UGzBVx1ZM2GTylb9ct3_PVg,7627
29
+ kostyl/ml/schedulers/linear.py,sha256=62mYEfd_2cQjOWrd0Vl5_sFeEokBKYmx496szhY04aU,5159
30
30
  kostyl/utils/__init__.py,sha256=hkpmB6c5pr4Ti5BshOROebb7cvjDZfNCw83qZ_FFKMM,240
31
31
  kostyl/utils/dict_manipulations.py,sha256=e3vBicID74nYP8lHkVTQc4-IQwoJimrbFELy5uSF6Gk,1073
32
32
  kostyl/utils/fs.py,sha256=gAQNIU4R_2DhwjgzOS8BOMe0gZymtY1eZwmdgOdDgqo,510
33
33
  kostyl/utils/logging.py,sha256=Vye0u4-yeOSUc-f03gpQbxSktTbFiilTWLEVr00ZHvc,5796
34
- kostyl_toolkit-0.1.26.dist-info/WHEEL,sha256=ZyFSCYkV2BrxH6-HRVRg3R9Fo7MALzer9KiPYqNxSbo,79
35
- kostyl_toolkit-0.1.26.dist-info/METADATA,sha256=IV3roJpKgWYAhOjrFpmn3BvZLzB5wFYy-fVmB6f81Ls,4269
36
- kostyl_toolkit-0.1.26.dist-info/RECORD,,
34
+ kostyl_toolkit-0.1.27.dist-info/WHEEL,sha256=ZyFSCYkV2BrxH6-HRVRg3R9Fo7MALzer9KiPYqNxSbo,79
35
+ kostyl_toolkit-0.1.27.dist-info/METADATA,sha256=kg7Y2CJqhAI-3--rIKsPlarm1Ukk6jQLJpW2ZBvysI8,4269
36
+ kostyl_toolkit-0.1.27.dist-info/RECORD,,