konfai 1.0.3__py3-none-any.whl → 1.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of konfai might be problematic. Click here for more details.
- konfai/data/augmentation.py +1 -1
- konfai/data/transform.py +1 -1
- konfai/evaluator.py +2 -2
- konfai/metric/measure.py +1 -1
- konfai/network/network.py +1 -1
- konfai/predictor.py +1 -1
- konfai/utils/dataset.py +1 -2
- konfai/utils/utils.py +1 -1
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/METADATA +1 -1
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/RECORD +14 -14
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/WHEEL +0 -0
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/entry_points.txt +0 -0
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/licenses/LICENSE +0 -0
- {konfai-1.0.3.dist-info → konfai-1.0.5.dist-info}/top_level.txt +0 -0
konfai/data/augmentation.py
CHANGED
|
@@ -58,7 +58,7 @@ class DataAugmentationsList():
|
|
|
58
58
|
|
|
59
59
|
def load(self, key: str):
|
|
60
60
|
for augmentation, prob in self.dataAugmentationsLoader.items():
|
|
61
|
-
module, name = _getModule(augmentation, "augmentation")
|
|
61
|
+
module, name = _getModule(augmentation, "data.augmentation")
|
|
62
62
|
dataAugmentation: DataAugmentation = getattr(importlib.import_module(module), name)(config = None, DL_args="{}.Dataset.augmentations.{}.dataAugmentations".format(DEEP_LEARNING_API_ROOT(), key))
|
|
63
63
|
dataAugmentation.load(prob.prob)
|
|
64
64
|
self.dataAugmentations.append(dataAugmentation)
|
konfai/data/transform.py
CHANGED
|
@@ -36,7 +36,7 @@ class TransformLoader:
|
|
|
36
36
|
pass
|
|
37
37
|
|
|
38
38
|
def getTransform(self, classpath : str, DL_args : str) -> Transform:
|
|
39
|
-
module, name = _getModule(classpath, "transform")
|
|
39
|
+
module, name = _getModule(classpath, "data.transform")
|
|
40
40
|
return config("{}.{}".format(DL_args, classpath))(getattr(importlib.import_module(module), name))(config = None)
|
|
41
41
|
|
|
42
42
|
class Clip(Transform):
|
konfai/evaluator.py
CHANGED
|
@@ -27,7 +27,7 @@ class CriterionsLoader():
|
|
|
27
27
|
def getCriterions(self, output_group : str, target_group : str) -> dict[torch.nn.Module, CriterionsAttr]:
|
|
28
28
|
criterions = {}
|
|
29
29
|
for module_classpath, criterionsAttr in self.criterionsLoader.items():
|
|
30
|
-
module, name = _getModule(module_classpath, "measure")
|
|
30
|
+
module, name = _getModule(module_classpath, "metric.measure")
|
|
31
31
|
criterions[config("{}.metrics.{}.targetsCriterions.{}.criterionsLoader.{}".format(DEEP_LEARNING_API_ROOT(), output_group, target_group, module_classpath))(getattr(importlib.import_module(module), name))(config = None)] = criterionsAttr
|
|
32
32
|
return criterions
|
|
33
33
|
|
|
@@ -90,7 +90,7 @@ class Evaluator(DistributedObject):
|
|
|
90
90
|
if os.environ["DEEP_LEANING_API_CONFIG_MODE"] != "Done":
|
|
91
91
|
exit(0)
|
|
92
92
|
super().__init__(train_name)
|
|
93
|
-
self.metric_path =
|
|
93
|
+
self.metric_path = EVALUATIONS_DIRECTORY()+self.name+"/"
|
|
94
94
|
self.predict_path = PREDICTIONS_DIRECTORY()+self.name+"/"
|
|
95
95
|
self.metricsLoader = metrics
|
|
96
96
|
self.dataset = dataset
|
konfai/metric/measure.py
CHANGED
|
@@ -244,7 +244,7 @@ class PerceptualLoss(Criterion):
|
|
|
244
244
|
def getLoss(self) -> dict[torch.nn.Module, float]:
|
|
245
245
|
result: dict[torch.nn.Module, float] = {}
|
|
246
246
|
for loss, l in self.losses.items():
|
|
247
|
-
module, name = _getModule(loss, "measure")
|
|
247
|
+
module, name = _getModule(loss, "metric.measure")
|
|
248
248
|
result[config(self.DL_args)(getattr(importlib.import_module(module), name))(config=None)] = l
|
|
249
249
|
return result
|
|
250
250
|
|
konfai/network/network.py
CHANGED
|
@@ -96,7 +96,7 @@ class CriterionsLoader():
|
|
|
96
96
|
def getCriterions(self, model_classname : str, output_group : str, target_group : str) -> dict[torch.nn.Module, CriterionsAttr]:
|
|
97
97
|
criterions = {}
|
|
98
98
|
for module_classpath, criterionsAttr in self.criterionsLoader.items():
|
|
99
|
-
module, name = _getModule(module_classpath, "measure")
|
|
99
|
+
module, name = _getModule(module_classpath, "metric.measure")
|
|
100
100
|
criterionsAttr.isTorchCriterion = module.startswith("torch")
|
|
101
101
|
criterionsAttr.sheduler = criterionsAttr.l.getShedulers("{}.Model.{}.outputsCriterions.{}.targetsCriterions.{}.criterionsLoader.{}".format(DEEP_LEARNING_API_ROOT(), model_classname, output_group, target_group, module_classpath))
|
|
102
102
|
criterions[config("{}.Model.{}.outputsCriterions.{}.targetsCriterions.{}.criterionsLoader.{}".format(DEEP_LEARNING_API_ROOT(), model_classname, output_group, target_group, module_classpath))(getattr(importlib.import_module(module), name))(config = None)] = criterionsAttr
|
konfai/predictor.py
CHANGED
|
@@ -55,7 +55,7 @@ class OutDataset(Dataset, NeedDevice, ABC):
|
|
|
55
55
|
transform_type.append(transform)
|
|
56
56
|
|
|
57
57
|
if self._patchCombine is not None:
|
|
58
|
-
module, name = _getModule(self._patchCombine, "HDF5")
|
|
58
|
+
module, name = _getModule(self._patchCombine, "data.HDF5")
|
|
59
59
|
self.patchCombine = getattr(importlib.import_module(module), name)(config = None, DL_args = "{}.outsDataset.{}.OutDataset".format(DEEP_LEARNING_API_ROOT(), name_layer))
|
|
60
60
|
|
|
61
61
|
def setPatchConfig(self, patchSize: Union[list[int], None], overlap: Union[int, None], nb_data_augmentation: int) -> None:
|
konfai/utils/dataset.py
CHANGED
|
@@ -9,7 +9,6 @@ import os
|
|
|
9
9
|
|
|
10
10
|
from lxml import etree
|
|
11
11
|
import csv
|
|
12
|
-
import pandas as pd
|
|
13
12
|
from konfai import DATE
|
|
14
13
|
|
|
15
14
|
class Plot():
|
|
@@ -205,7 +204,7 @@ class Plot():
|
|
|
205
204
|
|
|
206
205
|
for label in labels:
|
|
207
206
|
series = series+[label]*max
|
|
208
|
-
|
|
207
|
+
import pandas as pd
|
|
209
208
|
df = pd.DataFrame(dict([(k,pd.Series(v)) for k, v in norms.items()]))
|
|
210
209
|
df['Categories'] = pd.Series(series)
|
|
211
210
|
|
konfai/utils/utils.py
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
konfai/__init__.py,sha256=jXMTNml38eX6FSq9d3C_gJVgRLTKHPBUXqOLC7Pqkuo,828
|
|
2
|
-
konfai/evaluator.py,sha256=
|
|
2
|
+
konfai/evaluator.py,sha256=kETecCD80sdnLxNN2I5D9D67KZgZ03XBOnFD0BGiFik,7451
|
|
3
3
|
konfai/main.py,sha256=voh5P5UUY0vjBOsd79O23cVK2LR8WH4c_8ep-kI967E,2149
|
|
4
|
-
konfai/predictor.py,sha256
|
|
4
|
+
konfai/predictor.py,sha256=-CtMHDaZgnCSz-eKC3MG5_y7CWQI89afWpr7i897RVI,20178
|
|
5
5
|
konfai/trainer.py,sha256=x4Sni2JBOPgcSnpRwHHIQFB7cc0-cZ4L8X9pwZQt0qs,16866
|
|
6
6
|
konfai/data/HDF5.py,sha256=Amexa4zMfsamo0odxHgKBwWlR7WquhGnAmFFVETcpQw,14355
|
|
7
7
|
konfai/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
|
-
konfai/data/augmentation.py,sha256
|
|
8
|
+
konfai/data/augmentation.py,sha256=-1KYIVE_CuFwGg-AA5M9g5rDpkhwUWczfZA8JVhxNM4,31734
|
|
9
9
|
konfai/data/dataset.py,sha256=azYz6yiwMHNaXlmXRY05PBHHcmrYjnpbXo0jcyachRk,23914
|
|
10
|
-
konfai/data/transform.py,sha256=
|
|
10
|
+
konfai/data/transform.py,sha256=AI2k0e_ocphxccOyaHUhKtA9-E5B5SwZ0Du-C1mfG84,25155
|
|
11
11
|
konfai/metric/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
-
konfai/metric/measure.py,sha256=
|
|
12
|
+
konfai/metric/measure.py,sha256=VN4SF1b8WHWckAsoObWKMfTOnOGf9Zm3DKyrK-bkNwg,21812
|
|
13
13
|
konfai/metric/schedulers.py,sha256=UoSr1TW_hrus3DhvOEbDefxCSUGz7lJS_8vbz0GEye8,1370
|
|
14
14
|
konfai/models/classification/convNeXt.py,sha256=TucP-EsQ4wlUX2MvbGYwOwUySJlo9Ljg65n3n-yivS0,9239
|
|
15
15
|
konfai/models/classification/resnet.py,sha256=4EtjXBYLOjE89ywjoPkSR1MflpeMTG2dth1jvw6-lAw,7954
|
|
@@ -24,16 +24,16 @@ konfai/models/segmentation/NestedUNet.py,sha256=GnAwQYHzivHN1qouifJyneh9nOFHSloG
|
|
|
24
24
|
konfai/models/segmentation/UNet.py,sha256=Icd_YddkHpExRxyvhoBTsd4McVkaBOF4Y3L_NrNA6Gs,4214
|
|
25
25
|
konfai/network/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
26
26
|
konfai/network/blocks.py,sha256=EN1JN929zzV0FfecgFnVvv8u-WwENFRxloOpfCBkqeU,13529
|
|
27
|
-
konfai/network/network.py,sha256=
|
|
27
|
+
konfai/network/network.py,sha256=7JL7gtWB8vk8wHaQsritaVGDN_fjrmDNkHfIkqJtLSE,45775
|
|
28
28
|
konfai/utils/ITK.py,sha256=OxTieDNNYHGkn7zxJsAG-6ecRG1VYMvn1dlBbBe1DOs,13955
|
|
29
29
|
konfai/utils/Registration.py,sha256=v1srEBOcgDnHrx0YtsK6bcj0yCMH7wNeaQ3wC7gEvOw,8898
|
|
30
30
|
konfai/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
31
31
|
konfai/utils/config.py,sha256=tzIkNUA88EXGpkH-GUFA-BehxC47wAuDbu0M0kWfUIY,9887
|
|
32
|
-
konfai/utils/dataset.py,sha256=
|
|
33
|
-
konfai/utils/utils.py,sha256=
|
|
34
|
-
konfai-1.0.
|
|
35
|
-
konfai-1.0.
|
|
36
|
-
konfai-1.0.
|
|
37
|
-
konfai-1.0.
|
|
38
|
-
konfai-1.0.
|
|
39
|
-
konfai-1.0.
|
|
32
|
+
konfai/utils/dataset.py,sha256=DTAt8AEsAkDWM8ZtiXPUQfS5DQBqdYmXuw2sjOTIYV4,35517
|
|
33
|
+
konfai/utils/utils.py,sha256=hRxqq1cOXewFG417kYQZUGzKqaCK14GNQqjFdRBIVGs,20186
|
|
34
|
+
konfai-1.0.5.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
35
|
+
konfai-1.0.5.dist-info/METADATA,sha256=qwoW75e1vTp0wIcgKbZk-m9xr9bacJBlENYqwfVRDSU,2035
|
|
36
|
+
konfai-1.0.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
37
|
+
konfai-1.0.5.dist-info/entry_points.txt,sha256=fG82HRN5-g39ACSOCtij_I3N6EHxfYnMR0D7TI_8pW8,81
|
|
38
|
+
konfai-1.0.5.dist-info/top_level.txt,sha256=xF470dkIlFoFqTZEOlRehKJr4WU_8OKGXrJqYm9vWKs,7
|
|
39
|
+
konfai-1.0.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|