konfai 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of konfai might be problematic. Click here for more details.

konfai/data/HDF5.py CHANGED
@@ -9,11 +9,11 @@ from typing import Union
9
9
  import itertools
10
10
  import copy
11
11
  from functools import partial
12
- from KonfAI.konfai.utils.config import config
13
- from KonfAI.konfai.utils.utils import get_patch_slices_from_shape
14
- from KonfAI.konfai.utils.dataset import Dataset, Attribute
15
- from KonfAI.konfai.data.transform import Transform, Save
16
- from KonfAI.konfai.data.augmentation import DataAugmentationsList
12
+ from konfai.utils.config import config
13
+ from konfai.utils.utils import get_patch_slices_from_shape
14
+ from konfai.utils.dataset import Dataset, Attribute
15
+ from konfai.data.transform import Transform, Save
16
+ from konfai.data.augmentation import DataAugmentationsList
17
17
 
18
18
 
19
19
  class PathCombine(ABC):
@@ -6,10 +6,10 @@ import SimpleITK as sitk
6
6
  import torch.nn.functional as F
7
7
  from typing import Union
8
8
  import os
9
- from KonfAI.konfai import DEEP_LEARNING_API_ROOT
10
- from KonfAI.konfai.utils.config import config
11
- from KonfAI.konfai.utils.utils import _getModule
12
- from KonfAI.konfai.utils.dataset import Attribute, data_to_image
9
+ from konfai import DEEP_LEARNING_API_ROOT
10
+ from konfai.utils.config import config
11
+ from konfai.utils.utils import _getModule
12
+ from konfai.utils.dataset import Attribute, data_to_image
13
13
 
14
14
 
15
15
  def _translate2DMatrix(t: torch.Tensor) -> torch.Tensor:
konfai/data/dataset.py CHANGED
@@ -12,13 +12,13 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
12
12
  import threading
13
13
  from torch.cuda import device_count
14
14
 
15
- from KonfAI.konfai import DL_API_STATE, DEEP_LEARNING_API_ROOT
16
- from KonfAI.konfai.data.HDF5 import DatasetPatch, DatasetManager
17
- from KonfAI.konfai.utils.config import config
18
- from KonfAI.konfai.utils.utils import memoryInfo, cpuInfo, memoryForecast, getMemory, State
19
- from KonfAI.konfai.utils.dataset import Dataset, Attribute
20
- from KonfAI.konfai.data.transform import TransformLoader, Transform
21
- from KonfAI.konfai.data.augmentation import DataAugmentationsList
15
+ from konfai import DL_API_STATE, DEEP_LEARNING_API_ROOT
16
+ from konfai.data.HDF5 import DatasetPatch, DatasetManager
17
+ from konfai.utils.config import config
18
+ from konfai.utils.utils import memoryInfo, cpuInfo, memoryForecast, getMemory, State
19
+ from konfai.utils.dataset import Dataset, Attribute
20
+ from konfai.data.transform import TransformLoader, Transform
21
+ from konfai.data.augmentation import DataAugmentationsList
22
22
 
23
23
  class GroupTransform:
24
24
 
konfai/data/transform.py CHANGED
@@ -6,9 +6,9 @@ from abc import ABC, abstractmethod
6
6
  import torch.nn.functional as F
7
7
  from typing import Any, Union
8
8
 
9
- from KonfAI.konfai.utils.utils import _getModule, NeedDevice, _resample_affine, _affine_matrix
10
- from KonfAI.konfai.utils.dataset import Dataset, Attribute, data_to_image, image_to_data
11
- from KonfAI.konfai.utils.config import config
9
+ from konfai.utils.utils import _getModule, NeedDevice, _resample_affine, _affine_matrix
10
+ from konfai.utils.dataset import Dataset, Attribute, data_to_image, image_to_data
11
+ from konfai.utils.config import config
12
12
 
13
13
  class Transform(NeedDevice, ABC):
14
14
 
konfai/evaluator.py CHANGED
@@ -7,10 +7,10 @@ import json
7
7
  import shutil
8
8
  import builtins
9
9
  import importlib
10
- from KonfAI.konfai import EVALUATIONS_DIRECTORY, PREDICTIONS_DIRECTORY, DEEP_LEARNING_API_ROOT, CONFIG_FILE
11
- from KonfAI.konfai.utils.config import config
12
- from KonfAI.konfai.utils.utils import _getModule, DistributedObject, synchronize_data
13
- from KonfAI.konfai.data.dataset import DataMetric
10
+ from konfai import EVALUATIONS_DIRECTORY, PREDICTIONS_DIRECTORY, DEEP_LEARNING_API_ROOT, CONFIG_FILE
11
+ from konfai.utils.config import config
12
+ from konfai.utils.utils import _getModule, DistributedObject, synchronize_data
13
+ from konfai.data.dataset import DataMetric
14
14
 
15
15
  class CriterionsAttr():
16
16
 
konfai/metric/measure.py CHANGED
@@ -15,11 +15,11 @@ from skimage.metrics import structural_similarity
15
15
  import copy
16
16
  from abc import abstractmethod
17
17
 
18
- from KonfAI.konfai.utils.config import config
19
- from KonfAI.konfai.utils.utils import _getModule
20
- from KonfAI.konfai.data.HDF5 import ModelPatch
21
- from KonfAI.konfai.network.blocks import LatentDistribution
22
- from KonfAI.konfai.network.network import ModelLoader, Network
18
+ from konfai.utils.config import config
19
+ from konfai.utils.utils import _getModule
20
+ from konfai.data.HDF5 import ModelPatch
21
+ from konfai.network.blocks import LatentDistribution
22
+ from konfai.network.network import ModelLoader, Network
23
23
 
24
24
  modelsRegister = {}
25
25
 
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import numpy as np
3
3
  from abc import abstractmethod
4
- from KonfAI.konfai.utils.config import config
4
+ from konfai.utils.config import config
5
5
 
6
6
  class Scheduler():
7
7
 
@@ -1,8 +1,8 @@
1
1
  import torch
2
2
  import torch.nn.functional as F
3
- from KonfAI.konfai.network import network, blocks
4
- from KonfAI.konfai.utils.config import config
5
- from KonfAI.konfai.data.HDF5 import ModelPatch
3
+ from konfai.network import network, blocks
4
+ from konfai.utils.config import config
5
+ from konfai.data.HDF5 import ModelPatch
6
6
 
7
7
  """
8
8
  "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", depths=[3, 3, 9, 3], dims=[96, 192, 384, 768]
@@ -1,9 +1,9 @@
1
1
  from abc import ABC
2
2
  from typing import Type
3
3
  import torch
4
- from KonfAI.konfai.network import network, blocks
5
- from KonfAI.konfai.utils.config import config
6
- from KonfAI.konfai.data.HDF5 import ModelPatch
4
+ from konfai.network import network, blocks
5
+ from konfai.utils.config import config
6
+ from konfai.data.HDF5 import ModelPatch
7
7
 
8
8
  """
9
9
  'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', dim = 2, in_channels = 3, depths=[2, 2, 2, 2], widths = [64, 64, 128, 256, 512], num_classes=1000, useBottleneck=False
@@ -1,8 +1,10 @@
1
1
  import importlib
2
2
  import torch
3
- from KonfAI.konfai.network import network, blocks
4
- from KonfAI.konfai.utils.config import config
5
- from KonfAI.konfai.data.HDF5 import ModelPatch
3
+
4
+ from konfai.network import network, blocks
5
+ from konfai.utils.config import config
6
+ from konfai.data.HDF5 import ModelPatch
7
+
6
8
  class MappingNetwork(network.ModuleArgsDict):
7
9
  def __init__(self, z_dim: int, c_dim: int, w_dim: int, num_layers: int, embed_features: int, layer_features: int):
8
10
  super().__init__()
@@ -6,11 +6,11 @@ import torch
6
6
  import tqdm
7
7
  import numpy as np
8
8
 
9
- from KonfAI.konfai.network import network, blocks
10
- from KonfAI.konfai.utils.config import config
11
- from KonfAI.konfai.data.HDF5 import ModelPatch
12
- from KonfAI.konfai.utils.utils import gpuInfo
13
- from KonfAI.konfai.metric.measure import Criterion
9
+ from konfai.network import network, blocks
10
+ from konfai.utils.config import config
11
+ from konfai.data.HDF5 import ModelPatch
12
+ from konfai.utils.utils import gpuInfo
13
+ from konfai.metric.measure import Criterion
14
14
 
15
15
  def cosine_beta_schedule(timesteps, s=0.008):
16
16
  steps = timesteps + 1
@@ -3,12 +3,12 @@ from typing import Union
3
3
  import torch
4
4
  import numpy as np
5
5
 
6
- from KonfAI.konfai.network import network, blocks
7
- from KonfAI.konfai.utils.config import config
8
- from KonfAI.konfai.data.HDF5 import ModelPatch, Attribute
9
- from KonfAI.konfai.data import augmentation
10
- from KonfAI.konfai.models.segmentation import UNet, NestedUNet
11
- from KonfAI.konfai.models.generation.ddpm import DDPM
6
+ from konfai.network import network, blocks
7
+ from konfai.utils.config import config
8
+ from konfai.data.HDF5 import ModelPatch, Attribute
9
+ from konfai.data import augmentation
10
+ from konfai.models.segmentation import UNet, NestedUNet
11
+ from konfai.models.generation.ddpm import DDPM
12
12
 
13
13
  class Discriminator(network.Network):
14
14
 
@@ -1,9 +1,9 @@
1
1
  from functools import partial
2
2
  import torch
3
3
 
4
- from KonfAI.konfai.network import network, blocks
5
- from KonfAI.konfai.utils.config import config
6
- from KonfAI.konfai.data.HDF5 import ModelPatch
4
+ from konfai.network import network, blocks
5
+ from konfai.utils.config import config
6
+ from konfai.data.HDF5 import ModelPatch
7
7
 
8
8
  class Discriminator(network.Network):
9
9
 
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
 
3
- from KonfAI.konfai.network import network, blocks
4
- from KonfAI.konfai.utils.config import config
3
+ from konfai.network import network, blocks
4
+ from konfai.utils.config import config
5
5
 
6
6
  class VAE(network.Network):
7
7
 
@@ -2,9 +2,9 @@ import torch
2
2
  from torch.nn.parameter import Parameter
3
3
  import torch.nn.functional as F
4
4
 
5
- from KonfAI.konfai.network import network, blocks
6
- from KonfAI.konfai.utils.config import config
7
- from KonfAI.konfai.models.segmentation import UNet
5
+ from konfai.network import network, blocks
6
+ from konfai.utils.config import config
7
+ from konfai.models.segmentation import UNet
8
8
 
9
9
  class VoxelMorph(network.Network):
10
10
 
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
 
3
- from KonfAI.konfai.network import network, blocks
4
- from KonfAI.konfai.utils.config import config
3
+ from konfai.network import network, blocks
4
+ from konfai.utils.config import config
5
5
 
6
6
  class ConvBlock(torch.nn.Module):
7
7
 
@@ -1,9 +1,9 @@
1
1
  from typing import Union
2
2
  import torch
3
3
 
4
- from KonfAI.konfai.network import network, blocks
5
- from KonfAI.konfai.utils.config import config
6
- from KonfAI.konfai.data.HDF5 import ModelPatch
4
+ from konfai.network import network, blocks
5
+ from konfai.utils.config import config
6
+ from konfai.data.HDF5 import ModelPatch
7
7
 
8
8
 
9
9
  class NestedUNetBlock(network.ModuleArgsDict):
@@ -1,9 +1,9 @@
1
1
  import torch
2
2
  from typing import Union
3
3
 
4
- from KonfAI.konfai.network import network, blocks
5
- from KonfAI.konfai.utils.config import config
6
- from KonfAI.konfai.data.HDF5 import ModelPatch
4
+ from konfai.network import network, blocks
5
+ from konfai.utils.config import config
6
+ from konfai.data.HDF5 import ModelPatch
7
7
 
8
8
  class UNetHead(network.ModuleArgsDict):
9
9
 
konfai/network/blocks.py CHANGED
@@ -6,8 +6,9 @@ from scipy.interpolate import interp1d
6
6
  import numpy as np
7
7
  import ast
8
8
  from typing import Union
9
- from KonfAI.konfai.utils.config import config
10
- from KonfAI.konfai.network import network
9
+
10
+ from konfai.utils.config import config
11
+ from konfai.network import network
11
12
 
12
13
  class NormMode(Enum):
13
14
  NONE = 0,
konfai/network/network.py CHANGED
@@ -13,11 +13,11 @@ from torch.utils.checkpoint import checkpoint
13
13
  from typing import Union
14
14
  from enum import Enum
15
15
 
16
- from KonfAI.konfai import DEEP_LEARNING_API_ROOT
17
- from KonfAI.konfai.metric.schedulers import Scheduler
18
- from KonfAI.konfai.utils.config import config
19
- from KonfAI.konfai.utils.utils import State, _getModule, getDevice, getGPUMemory
20
- from KonfAI.konfai.data.HDF5 import Accumulator, ModelPatch
16
+ from konfai import DEEP_LEARNING_API_ROOT
17
+ from konfai.metric.schedulers import Scheduler
18
+ from konfai.utils.config import config
19
+ from konfai.utils.utils import State, _getModule, getDevice, getGPUMemory
20
+ from konfai.data.HDF5 import Accumulator, ModelPatch
21
21
 
22
22
  class NetState(Enum):
23
23
  TRAIN = 0,
@@ -71,7 +71,7 @@ class SchedulersLoader():
71
71
  shedulers : dict[Scheduler, int] = {}
72
72
  for name, step in self.params.items():
73
73
  if name:
74
- shedulers[getattr(importlib.import_module("KonfAI.konfai.metric.schedulers"), name)(config = None, DL_args = key)] = step.nb_step
74
+ shedulers[getattr(importlib.import_module("konfai.metric.schedulers"), name)(config = None, DL_args = key)] = step.nb_step
75
75
  return shedulers
76
76
 
77
77
  class CriterionsAttr():
konfai/predictor.py CHANGED
@@ -6,14 +6,14 @@ import torch
6
6
  import tqdm
7
7
  import os
8
8
 
9
- from KonfAI.konfai import MODELS_DIRECTORY, PREDICTIONS_DIRECTORY, CONFIG_FILE, MODEL, DEEP_LEARNING_API_ROOT
10
- from KonfAI.konfai.utils.config import config
11
- from KonfAI.konfai.utils.utils import State, get_patch_slices_from_nb_patch_per_dim, NeedDevice, _getModule, DistributedObject, DataLog, description
12
- from KonfAI.konfai.utils.dataset import Dataset, Attribute
13
- from KonfAI.konfai.data.dataset import DataPrediction, DatasetIter
14
- from KonfAI.konfai.data.HDF5 import Accumulator, PathCombine
15
- from KonfAI.konfai.network.network import ModelLoader, Network, NetState, CPU_Model
16
- from KonfAI.konfai.data.transform import Transform, TransformLoader
9
+ from konfai import MODELS_DIRECTORY, PREDICTIONS_DIRECTORY, CONFIG_FILE, MODEL, DEEP_LEARNING_API_ROOT
10
+ from konfai.utils.config import config
11
+ from konfai.utils.utils import State, get_patch_slices_from_nb_patch_per_dim, NeedDevice, _getModule, DistributedObject, DataLog, description
12
+ from konfai.utils.dataset import Dataset, Attribute
13
+ from konfai.data.dataset import DataPrediction, DatasetIter
14
+ from konfai.data.HDF5 import Accumulator, PathCombine
15
+ from konfai.network.network import ModelLoader, Network, NetState, CPU_Model
16
+ from konfai.data.transform import Transform, TransformLoader
17
17
 
18
18
  from torch.utils.tensorboard.writer import SummaryWriter
19
19
  from typing import Union
@@ -195,7 +195,7 @@ class OutDatasetLoader():
195
195
  self.name_class = name_class
196
196
 
197
197
  def getOutDataset(self, layer_name: str) -> OutDataset:
198
- return getattr(importlib.import_module("KonfAI.konfai.predictor"), self.name_class)(config = None, DL_args = "Predictor.outsDataset.{}".format(layer_name))
198
+ return getattr(importlib.import_module("konfai.predictor"), self.name_class)(config = None, DL_args = "Predictor.outsDataset.{}".format(layer_name))
199
199
 
200
200
  class _Predictor():
201
201
 
konfai/trainer.py CHANGED
@@ -12,11 +12,11 @@ from torch.utils.tensorboard.writer import SummaryWriter
12
12
  from torch.optim.swa_utils import AveragedModel
13
13
  import torch.distributed as dist
14
14
 
15
- from KonfAI.konfai import MODELS_DIRECTORY, CHECKPOINTS_DIRECTORY, STATISTICS_DIRECTORY, SETUPS_DIRECTORY, CONFIG_FILE, MODEL, DATE, DL_API_STATE
16
- from KonfAI.konfai.data.dataset import DataTrain
17
- from KonfAI.konfai.utils.config import config
18
- from KonfAI.konfai.utils.utils import State, DataLog, DistributedObject, description
19
- from KonfAI.konfai.network.network import Network, ModelLoader, NetState, CPU_Model
15
+ from konfai import MODELS_DIRECTORY, CHECKPOINTS_DIRECTORY, STATISTICS_DIRECTORY, SETUPS_DIRECTORY, CONFIG_FILE, MODEL, DATE, DL_API_STATE
16
+ from konfai.data.dataset import DataTrain
17
+ from konfai.utils.config import config
18
+ from konfai.utils.utils import State, DataLog, DistributedObject, description
19
+ from konfai.network.network import Network, ModelLoader, NetState, CPU_Model
20
20
 
21
21
 
22
22
  class _Trainer():
konfai/utils/ITK.py CHANGED
@@ -4,7 +4,7 @@ import numpy as np
4
4
  import torch
5
5
  import scipy
6
6
  import torch.nn.functional as F
7
- from KonfAI.konfai.utils.utils import _resample
7
+ from konfai.utils.utils import _resample
8
8
 
9
9
  def _openTransform(transform_files: dict[Union[str, sitk.Transform], bool], image: sitk.Image= None) -> list[sitk.Transform]:
10
10
  transforms: list[sitk.Transform] = []
konfai/utils/config.py CHANGED
@@ -6,7 +6,7 @@ from copy import deepcopy
6
6
  from typing import Union
7
7
  import torch
8
8
 
9
- from KonfAI.konfai import CONFIG_FILE
9
+ from konfai import CONFIG_FILE
10
10
 
11
11
  yaml = ruamel.yaml.YAML()
12
12
 
konfai/utils/dataset.py CHANGED
@@ -9,9 +9,8 @@ import os
9
9
 
10
10
  from lxml import etree
11
11
  import csv
12
- import matplotlib.pyplot as pyplot
13
12
  import pandas as pd
14
- from KonfAI.konfai import DATE
13
+ from konfai import DATE
15
14
 
16
15
  class Plot():
17
16
 
@@ -175,6 +174,8 @@ class Plot():
175
174
  return results
176
175
 
177
176
  def plot(self, ids = [], patients = [], labels = [], colors = None):
177
+
178
+ import matplotlib.pyplot as pyplot
178
179
  results = self._extract(ids=ids, patients=patients)
179
180
 
180
181
  attrs = {k: v for k, v in results.items() if k.startswith("attrib:")}
@@ -234,6 +235,7 @@ class Plot():
234
235
  return self
235
236
 
236
237
  def show(self):
238
+ import matplotlib.pyplot as pyplot
237
239
  pyplot.show()
238
240
 
239
241
  class Attribute(dict[str, Any]):
konfai/utils/utils.py CHANGED
@@ -10,7 +10,7 @@ from abc import ABC, abstractmethod
10
10
  from enum import Enum
11
11
  from typing import Any, Union
12
12
 
13
- from KonfAI.konfai import CONFIG_FILE, STATISTICS_DIRECTORY, PREDICTIONS_DIRECTORY, DL_API_STATE, CUDA_VISIBLE_DEVICES
13
+ from konfai import CONFIG_FILE, STATISTICS_DIRECTORY, PREDICTIONS_DIRECTORY, DL_API_STATE, CUDA_VISIBLE_DEVICES
14
14
  import torch.distributed as dist
15
15
  import argparse
16
16
  import subprocess
@@ -35,7 +35,7 @@ def _getModule(classpath : str, type : str) -> tuple[str, str]:
35
35
  module = ".".join(classpath.split("_")[:-1])
36
36
  name = classpath.split("_")[-1]
37
37
  else:
38
- module = "KonfAI."+type
38
+ module = ""+type
39
39
  name = classpath
40
40
  return module, name
41
41
 
@@ -388,7 +388,7 @@ def setupAPI(parser: argparse.ArgumentParser) -> DistributedObject:
388
388
  os.environ["DL_API_MODELS_DIRECTORY"] = config["MODELS_DIRECTORY"]
389
389
  os.environ["DL_API_CHECKPOINTS_DIRECTORY"] = config["CHECKPOINTS_DIRECTORY"]
390
390
  os.environ["DL_API_PREDICTIONS_DIRECTORY"] = config["PREDICTIONS_DIRECTORY"]
391
- os.environ["DL_API_EVALUATIONS_DIRECTORY"] = config["EVALUATIONs_DIRECTORY"]
391
+ os.environ["DL_API_EVALUATIONS_DIRECTORY"] = config["EVALUATIONS_DIRECTORY"]
392
392
  os.environ["DL_API_STATISTICS_DIRECTORY"] = config["STATISTICS_DIRECTORY"]
393
393
 
394
394
  os.environ["DL_API_STATE"] = str(config["type"])
@@ -417,15 +417,15 @@ def setupAPI(parser: argparse.ArgumentParser) -> DistributedObject:
417
417
  os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
418
418
 
419
419
  if config["type"] is State.PREDICTION:
420
- from KonfAI.konfai.predictor import Predictor
420
+ from konfai.predictor import Predictor
421
421
  os.environ["DEEP_LEARNING_API_ROOT"] = "Predictor"
422
422
  return Predictor(config=CONFIG_FILE())
423
423
  elif config["type"] is State.EVALUATION:
424
- from KonfAI.konfai.evaluator import Evaluator
424
+ from konfai.evaluator import Evaluator
425
425
  os.environ["DEEP_LEARNING_API_ROOT"] = "Evaluator"
426
426
  return Evaluator(config=CONFIG_FILE())
427
427
  else:
428
- from KonfAI.konfai.trainer import Trainer
428
+ from konfai.trainer import Trainer
429
429
  os.environ["DEEP_LEARNING_API_ROOT"] = "Trainer"
430
430
  return Trainer(config=CONFIG_FILE())
431
431
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: konfai
3
- Version: 1.0.1
3
+ Version: 1.0.3
4
4
  Summary: Modular and configurable Deep Learning framework with YAML and PyTorch
5
5
  Author-email: Valentin Boussot <boussot.v@gmail.com>
6
6
  License-Expression: Apache-2.0
@@ -27,6 +27,8 @@ Provides-Extra: lpips
27
27
  Requires-Dist: lpips; extra == "lpips"
28
28
  Provides-Extra: cluster
29
29
  Requires-Dist: submitit; extra == "cluster"
30
+ Provides-Extra: plot
31
+ Requires-Dist: matplotlib; extra == "plot"
30
32
  Dynamic: license-file
31
33
 
32
34
 
@@ -0,0 +1,39 @@
1
+ konfai/__init__.py,sha256=jXMTNml38eX6FSq9d3C_gJVgRLTKHPBUXqOLC7Pqkuo,828
2
+ konfai/evaluator.py,sha256=emXNtEdKNf_YoJ-mkvdAuIwiwL6n5OvkWKAJmV6oMGc,7440
3
+ konfai/main.py,sha256=voh5P5UUY0vjBOsd79O23cVK2LR8WH4c_8ep-kI967E,2149
4
+ konfai/predictor.py,sha256=Xmx8TSrYGPYkUjo82n-_7g5oznVzOv26tuytpeyYdtI,20173
5
+ konfai/trainer.py,sha256=x4Sni2JBOPgcSnpRwHHIQFB7cc0-cZ4L8X9pwZQt0qs,16866
6
+ konfai/data/HDF5.py,sha256=Amexa4zMfsamo0odxHgKBwWlR7WquhGnAmFFVETcpQw,14355
7
+ konfai/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ konfai/data/augmentation.py,sha256=UA-Kpg9luU2CJPTW2Cjqry_AYpMxAdeXKgPIX8a1oSI,31729
9
+ konfai/data/dataset.py,sha256=azYz6yiwMHNaXlmXRY05PBHHcmrYjnpbXo0jcyachRk,23914
10
+ konfai/data/transform.py,sha256=aiNMd_nGGwQreH6A7h1OcVJGlGHSkKb8Y0I0YoQVSuY,25150
11
+ konfai/metric/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ konfai/metric/measure.py,sha256=68tuBL6XteJTuQ4KgBBg3mTbNFdK9gfYHCyyqYfYW1c,21805
13
+ konfai/metric/schedulers.py,sha256=UoSr1TW_hrus3DhvOEbDefxCSUGz7lJS_8vbz0GEye8,1370
14
+ konfai/models/classification/convNeXt.py,sha256=TucP-EsQ4wlUX2MvbGYwOwUySJlo9Ljg65n3n-yivS0,9239
15
+ konfai/models/classification/resnet.py,sha256=4EtjXBYLOjE89ywjoPkSR1MflpeMTG2dth1jvw6-lAw,7954
16
+ konfai/models/generation/cStyleGan.py,sha256=0uSyi1KHm48xSw29ED_az7P2VyiDeKqdPJszKM7JAH0,8038
17
+ konfai/models/generation/ddpm.py,sha256=vhHuXQg0jUWKljuOjd5tNettKHAYJiE5706Huf4tKb8,13149
18
+ konfai/models/generation/diffusionGan.py,sha256=uQvMx-WA-NWVIoa1CjAZv3IpBh2rOvPo1L3bdlchEok,33195
19
+ konfai/models/generation/gan.py,sha256=R1K-LGX2R1iys7uN9qWCTlDkd0sbVpYDLqILy88zVKg,7850
20
+ konfai/models/generation/vae.py,sha256=_3JYVT2ojZ0P98tYcD2ny7a-gWVUmnByLDhY7i-n_4g,4719
21
+ konfai/models/registration/registration.py,sha256=CymMfHlkE2pYa5Kfv5lNtp_lAK9OHq6GXA-tR-eHBM8,6341
22
+ konfai/models/representation/representation.py,sha256=RwQYoxtdph440-t_ZLelykl0hkUAD1zdspQaLkgxb-0,2677
23
+ konfai/models/segmentation/NestedUNet.py,sha256=GnAwQYHzivHN1qouifJyneh9nOFHSloGWLY7Kc8ikI8,4297
24
+ konfai/models/segmentation/UNet.py,sha256=Icd_YddkHpExRxyvhoBTsd4McVkaBOF4Y3L_NrNA6Gs,4214
25
+ konfai/network/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ konfai/network/blocks.py,sha256=EN1JN929zzV0FfecgFnVvv8u-WwENFRxloOpfCBkqeU,13529
27
+ konfai/network/network.py,sha256=VIFgZPsUUzpY07uuni84LQ-fGfODc06TsdaWVTpmxGo,45768
28
+ konfai/utils/ITK.py,sha256=OxTieDNNYHGkn7zxJsAG-6ecRG1VYMvn1dlBbBe1DOs,13955
29
+ konfai/utils/Registration.py,sha256=v1srEBOcgDnHrx0YtsK6bcj0yCMH7wNeaQ3wC7gEvOw,8898
30
+ konfai/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ konfai/utils/config.py,sha256=tzIkNUA88EXGpkH-GUFA-BehxC47wAuDbu0M0kWfUIY,9887
32
+ konfai/utils/dataset.py,sha256=Cs736wdSg7nox_zoIoqusbomphPNo97guox81BiG8tc,35510
33
+ konfai/utils/utils.py,sha256=i7bfAMuIjaafy8wMFFgZQWHPJDkpXN61f_mNd4F29Kw,20179
34
+ konfai-1.0.3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
35
+ konfai-1.0.3.dist-info/METADATA,sha256=0SbiKtK-ESelcVmfcENCLk5quKjbD5JiplUYEdF8p40,2035
36
+ konfai-1.0.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
37
+ konfai-1.0.3.dist-info/entry_points.txt,sha256=fG82HRN5-g39ACSOCtij_I3N6EHxfYnMR0D7TI_8pW8,81
38
+ konfai-1.0.3.dist-info/top_level.txt,sha256=xF470dkIlFoFqTZEOlRehKJr4WU_8OKGXrJqYm9vWKs,7
39
+ konfai-1.0.3.dist-info/RECORD,,
@@ -1,39 +0,0 @@
1
- konfai/__init__.py,sha256=jXMTNml38eX6FSq9d3C_gJVgRLTKHPBUXqOLC7Pqkuo,828
2
- konfai/evaluator.py,sha256=6YU3bXBy1YcS2kl0YwebkgwXYeO_VoBN59-MLMqj-ds,7468
3
- konfai/main.py,sha256=voh5P5UUY0vjBOsd79O23cVK2LR8WH4c_8ep-kI967E,2149
4
- konfai/predictor.py,sha256=IOh70fCVm8q-sgZyACNperTO-Vel8QKvYp-FoBY39ao,20236
5
- konfai/trainer.py,sha256=zGvXd2skcqWgRN9GLx93xYB4Bv-46C0oo7J9My4Levk,16901
6
- konfai/data/HDF5.py,sha256=QfU8VnyslkQhT_k2AJNFMNkJK7lm75ozxT4WELZt8wk,14390
7
- konfai/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- konfai/data/augmentation.py,sha256=F4hAuw5j-8zpmAzSAIn4VDhZG1-CCDCZQD_aoAYO-LA,31757
9
- konfai/data/dataset.py,sha256=JnouutlJGlgIe7XnAijFe4FUatTZyWDLzWSLE3OxjZM,23963
10
- konfai/data/transform.py,sha256=AxGqtEHC6XIk4AT-Clbq7w1sWUBrONLMsDHGiC0wIhI,25171
11
- konfai/metric/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- konfai/metric/measure.py,sha256=fYkLgtttoGiQWU9a67Kk8eEOP1K_4yCwk87IA3x84Uc,21840
13
- konfai/metric/schedulers.py,sha256=zQORXilMGPGBHq7Rg3l9JmbdoEebnTiB6yPHxuyEl7c,1377
14
- konfai/models/classification/convNeXt.py,sha256=JbEPl7PHLY-FkSsjqDJtLlixH5JBIv_TDf0rMZeEe8s,9260
15
- konfai/models/classification/resnet.py,sha256=i7SWA00yQdSEpLwYnn0_Cf32e4uAAzN-67mbcuC0wzw,7975
16
- konfai/models/generation/cStyleGan.py,sha256=0b3lUH3PYJEBDSN6J0wanA-R2bWyj-gMmaDvSMiHw3A,8057
17
- konfai/models/generation/ddpm.py,sha256=X4hMnrkIfiqdyL_XY8YE6hKeLUPqV15EkrsWxQ3DXEY,13184
18
- konfai/models/generation/diffusionGan.py,sha256=x0sksJe2CI_Oqj-skuXfFChlWhBw4s0HoYk2ICE0fDM,33237
19
- konfai/models/generation/gan.py,sha256=fN6CIDi23_XcsXdre8fJL_xRXhtLVSnLzoVcvF3bmLk,7871
20
- konfai/models/generation/vae.py,sha256=Qq1nKnAGyv7VsgH5nZatMPjjrlIpXZ3bWifvu8W8W7Y,4733
21
- konfai/models/registration/registration.py,sha256=vpzFl-ozga1TDLadyGE6w0xosDblC6PBABmcS-4E31w,6362
22
- konfai/models/representation/representation.py,sha256=t9gX49KhyK7PvO2CduK_RmUrNY0m8pyr5nXwrOZ8szo,2691
23
- konfai/models/segmentation/NestedUNet.py,sha256=hgbawKp27elTgkK5APjEa1nUEt2oJi9x1nsJLE22p7g,4318
24
- konfai/models/segmentation/UNet.py,sha256=X-ddiQBJboq3ZHDfj8CvoZiNc9RT-eXKlBXriaL_mFY,4235
25
- konfai/network/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- konfai/network/blocks.py,sha256=U5P4EAHShvQh6s5VWkhn5_VIGj8gHpUvd7WyVWG3MiI,13542
27
- konfai/network/network.py,sha256=qfqnPFQHOVu_fmZXOrFKXj3-Ej0HzcfJpkhW6FEbgD4,45810
28
- konfai/utils/ITK.py,sha256=tErt6ymFesZWg4Mw6ZYc8kOC9zpUSjBRQMm1PUnvgF8,13962
29
- konfai/utils/Registration.py,sha256=v1srEBOcgDnHrx0YtsK6bcj0yCMH7wNeaQ3wC7gEvOw,8898
30
- konfai/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- konfai/utils/config.py,sha256=4NkR1BWXxwtsf95G_xH9_t-pe2unmbRvxzyKCIuS6eE,9894
32
- konfai/utils/dataset.py,sha256=PNmzxaeFGMBh-pAaR92tDresDjF0QXSli2eGNJyzSVQ,35465
33
- konfai/utils/utils.py,sha256=hI30DzbpLRRXHyVMW4Kk_2kQo5e-DJ417evGUsCWjXA,20214
34
- konfai-1.0.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
35
- konfai-1.0.1.dist-info/METADATA,sha256=h1YcCYJ30Bd5oq2LV_78Yz6aJjPKdqd3GDUGyKxGW2M,1971
36
- konfai-1.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
37
- konfai-1.0.1.dist-info/entry_points.txt,sha256=fG82HRN5-g39ACSOCtij_I3N6EHxfYnMR0D7TI_8pW8,81
38
- konfai-1.0.1.dist-info/top_level.txt,sha256=xF470dkIlFoFqTZEOlRehKJr4WU_8OKGXrJqYm9vWKs,7
39
- konfai-1.0.1.dist-info/RECORD,,
File without changes