konfai 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of konfai might be problematic. Click here for more details.
- konfai/__init__.py +16 -0
- konfai/data/HDF5.py +326 -0
- konfai/data/__init__.py +0 -0
- konfai/data/augmentation.py +597 -0
- konfai/data/dataset.py +470 -0
- konfai/data/transform.py +536 -0
- konfai/evaluator.py +146 -0
- konfai/main.py +43 -0
- konfai/metric/__init__.py +0 -0
- konfai/metric/measure.py +488 -0
- konfai/metric/schedulers.py +49 -0
- konfai/models/classification/convNeXt.py +175 -0
- konfai/models/classification/resnet.py +116 -0
- konfai/models/generation/cStyleGan.py +137 -0
- konfai/models/generation/ddpm.py +218 -0
- konfai/models/generation/diffusionGan.py +557 -0
- konfai/models/generation/gan.py +134 -0
- konfai/models/generation/vae.py +72 -0
- konfai/models/registration/registration.py +136 -0
- konfai/models/representation/representation.py +57 -0
- konfai/models/segmentation/NestedUNet.py +53 -0
- konfai/models/segmentation/UNet.py +58 -0
- konfai/network/__init__.py +0 -0
- konfai/network/blocks.py +348 -0
- konfai/network/network.py +950 -0
- konfai/predictor.py +366 -0
- konfai/trainer.py +330 -0
- konfai/utils/ITK.py +269 -0
- konfai/utils/Registration.py +199 -0
- konfai/utils/__init__.py +0 -0
- konfai/utils/config.py +218 -0
- konfai/utils/dataset.py +764 -0
- konfai/utils/utils.py +493 -0
- konfai-1.0.0.dist-info/METADATA +68 -0
- konfai-1.0.0.dist-info/RECORD +39 -0
- konfai-1.0.0.dist-info/WHEEL +5 -0
- konfai-1.0.0.dist-info/entry_points.txt +3 -0
- konfai-1.0.0.dist-info/licenses/LICENSE +201 -0
- konfai-1.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,557 @@
|
|
|
1
|
+
from functools import partial
|
|
2
|
+
from typing import Union
|
|
3
|
+
import torch
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from KonfAI.konfai.network import network, blocks
|
|
7
|
+
from KonfAI.konfai.utils.config import config
|
|
8
|
+
from KonfAI.konfai.data.HDF5 import ModelPatch, Attribute
|
|
9
|
+
from KonfAI.konfai.data import augmentation
|
|
10
|
+
from KonfAI.konfai.models.segmentation import UNet, NestedUNet
|
|
11
|
+
from KonfAI.konfai.models.generation.ddpm import DDPM
|
|
12
|
+
|
|
13
|
+
class Discriminator(network.Network):
|
|
14
|
+
|
|
15
|
+
class DiscriminatorNLayers(network.ModuleArgsDict):
|
|
16
|
+
|
|
17
|
+
def __init__(self, channels: list[int], strides: list[int], dim: int) -> None:
|
|
18
|
+
super().__init__()
|
|
19
|
+
blockConfig = partial(blocks.BlockConfig, kernel_size=4, padding=1, bias=False, activation=partial(torch.nn.LeakyReLU, negative_slope = 0.2, inplace=True), normMode=blocks.NormMode.SYNCBATCH)
|
|
20
|
+
for i, (in_channels, out_channels, stride) in enumerate(zip(channels, channels[1:], strides)):
|
|
21
|
+
self.add_module("Layer_{}".format(i), blocks.ConvBlock(in_channels, out_channels, [blockConfig(stride=stride)], dim))
|
|
22
|
+
|
|
23
|
+
class DiscriminatorHead(network.ModuleArgsDict):
|
|
24
|
+
|
|
25
|
+
def __init__(self, channels: int, dim: int) -> None:
|
|
26
|
+
super().__init__()
|
|
27
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels=channels, out_channels=1, kernel_size=4, stride=1, padding=1))
|
|
28
|
+
#self.add_module("AdaptiveAvgPool", blocks.getTorchModule("AdaptiveAvgPool", dim)(tuple([1]*dim)))
|
|
29
|
+
#self.add_module("Flatten", torch.nn.Flatten(1))
|
|
30
|
+
|
|
31
|
+
class DiscriminatorBlock(network.ModuleArgsDict):
|
|
32
|
+
|
|
33
|
+
def __init__(self, channels: list[int] = [1, 16, 32, 64, 64],
|
|
34
|
+
strides: list[int] = [2,2,2,1],
|
|
35
|
+
dim : int = 3) -> None:
|
|
36
|
+
super().__init__()
|
|
37
|
+
self.add_module("Layers", Discriminator.DiscriminatorNLayers(channels, strides, dim))
|
|
38
|
+
self.add_module("Head", Discriminator.DiscriminatorHead(channels[-1], dim))
|
|
39
|
+
|
|
40
|
+
@config("Discriminator")
|
|
41
|
+
def __init__(self,
|
|
42
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
43
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
44
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
45
|
+
channels: list[int] = [1, 16, 32, 64, 64],
|
|
46
|
+
strides: list[int] = [2,2,2,1],
|
|
47
|
+
nb_batch_per_step: int = 1,
|
|
48
|
+
dim : int = 3) -> None:
|
|
49
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, nb_batch_per_step=nb_batch_per_step, dim=dim, init_type="kaiming")
|
|
50
|
+
self.add_module("DiscriminatorModel", Discriminator.DiscriminatorBlock(channels, strides, dim))
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
class Discriminator_ADA(network.Network):
|
|
54
|
+
|
|
55
|
+
class DDPM_TE(torch.nn.Module):
|
|
56
|
+
|
|
57
|
+
def __init__(self, in_channels: int, out_channels: int) -> None:
|
|
58
|
+
super().__init__()
|
|
59
|
+
self.linear_0 = torch.nn.Linear(in_channels, out_channels)
|
|
60
|
+
self.siLU = torch.nn.SiLU()
|
|
61
|
+
self.linear_1 = torch.nn.Linear(out_channels, out_channels)
|
|
62
|
+
|
|
63
|
+
def forward(self, input: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
|
64
|
+
return input + self.linear_1(self.siLU(self.linear_0(t))).reshape(input.shape[0], -1, *[1 for _ in range(len(input.shape)-2)])
|
|
65
|
+
|
|
66
|
+
class DiscriminatorNLayers(network.ModuleArgsDict):
|
|
67
|
+
|
|
68
|
+
def __init__(self, channels: list[int], strides: list[int], time_embedding_dim: int, dim: int) -> None:
|
|
69
|
+
super().__init__()
|
|
70
|
+
blockConfig = partial(blocks.BlockConfig, kernel_size=4, padding=1, bias=False, activation=partial(torch.nn.LeakyReLU, negative_slope = 0.2, inplace=True), normMode=blocks.NormMode.SYNCBATCH)
|
|
71
|
+
for i, (in_channels, out_channels, stride) in enumerate(zip(channels, channels[1:], strides)):
|
|
72
|
+
self.add_module("Te_{}".format(i), Discriminator_ADA.DDPM_TE(time_embedding_dim, in_channels), in_branch=[0, 1])
|
|
73
|
+
self.add_module("Layer_{}".format(i), blocks.ConvBlock(in_channels, out_channels, [blockConfig(stride=stride)], dim))
|
|
74
|
+
|
|
75
|
+
class DiscriminatorHead(network.ModuleArgsDict):
|
|
76
|
+
|
|
77
|
+
def __init__(self, channels: int, dim: int) -> None:
|
|
78
|
+
super().__init__()
|
|
79
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels=channels, out_channels=1, kernel_size=4, stride=1, padding=1))
|
|
80
|
+
#self.add_module("AdaptiveAvgPool", blocks.getTorchModule("AdaptiveAvgPool", dim)(tuple([1]*dim)))
|
|
81
|
+
#self.add_module("Flatten", torch.nn.Flatten(1))
|
|
82
|
+
|
|
83
|
+
class UpdateP(torch.nn.Module):
|
|
84
|
+
|
|
85
|
+
def __init__(self):
|
|
86
|
+
super().__init__()
|
|
87
|
+
self._it = 0
|
|
88
|
+
self.n = 4
|
|
89
|
+
self.ada_target = 0.25
|
|
90
|
+
self.ada_interval = 0.001
|
|
91
|
+
self.ada_kimg = 500
|
|
92
|
+
|
|
93
|
+
self.measure = None
|
|
94
|
+
self.names = None
|
|
95
|
+
self.p = 0
|
|
96
|
+
|
|
97
|
+
def setMeasure(self, measure: network.Measure, names: list[str]):
|
|
98
|
+
self.measure = measure
|
|
99
|
+
self.names = names
|
|
100
|
+
|
|
101
|
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
102
|
+
if self.measure is not None and self._it % self.n == 0:
|
|
103
|
+
value = sum([v for k, v in self.measure.getLastValues(self.n).items() if k in self.names])
|
|
104
|
+
adjust = np.sign(self.ada_target-value) * (self.ada_interval)
|
|
105
|
+
self.p += adjust
|
|
106
|
+
self.p = np.clip(self.p, 0, 1)
|
|
107
|
+
self._it += 1
|
|
108
|
+
return torch.tensor(self.p).to(input.device)
|
|
109
|
+
|
|
110
|
+
class DiscriminatorAugmentation(torch.nn.Module):
|
|
111
|
+
|
|
112
|
+
def __init__(self, dim: int):
|
|
113
|
+
super().__init__()
|
|
114
|
+
|
|
115
|
+
self.dataAugmentations : dict[augmentation.DataAugmentation, float] = {}
|
|
116
|
+
pixel_blitting = {
|
|
117
|
+
augmentation.Flip([1/3]*3 if dim == 3 else [1/2]*2) : 0,
|
|
118
|
+
augmentation.Rotate(a_min=0, a_max=360, is_quarter = True): 0,
|
|
119
|
+
augmentation.Translate([(-0.5, 0.5)]* (3 if dim == 3 else 2), is_int=True) : 0
|
|
120
|
+
}
|
|
121
|
+
|
|
122
|
+
self.dataAugmentations.update(pixel_blitting)
|
|
123
|
+
geometric = {
|
|
124
|
+
augmentation.Scale([0.2]) : 0,
|
|
125
|
+
augmentation.Rotate(a_min=0, a_max=360): 0,
|
|
126
|
+
augmentation.Scale([0.2]*3 if dim == 3 else [0.2]*2) : 0,
|
|
127
|
+
augmentation.Rotate(a_min=0, a_max=360): 0,
|
|
128
|
+
augmentation.Translate([(-0.5, 0.5)]* (3 if dim == 3 else 2)) : 0,
|
|
129
|
+
augmentation.Elastix(16, 16) : 0.5
|
|
130
|
+
}
|
|
131
|
+
self.dataAugmentations.update(geometric)
|
|
132
|
+
color = {
|
|
133
|
+
augmentation.Brightness(0.2) : 0,
|
|
134
|
+
augmentation.Contrast(0.5) : 0,
|
|
135
|
+
augmentation.Saturation(1): 0,
|
|
136
|
+
augmentation.HUE(1) : 0,
|
|
137
|
+
augmentation.LumaFlip(): 0
|
|
138
|
+
}
|
|
139
|
+
self.dataAugmentations.update(color)
|
|
140
|
+
|
|
141
|
+
corruptions = {
|
|
142
|
+
augmentation.Noise(1) : 1,
|
|
143
|
+
augmentation.CutOUT(0.5, 0.5, -1) : 0.3
|
|
144
|
+
}
|
|
145
|
+
self.dataAugmentations.update(corruptions)
|
|
146
|
+
|
|
147
|
+
def _setP(self, prob: float):
|
|
148
|
+
for augmentation, p in self.dataAugmentations.items():
|
|
149
|
+
augmentation.load(prob*p)
|
|
150
|
+
|
|
151
|
+
def forward(self, input: torch.Tensor, prob: torch.Tensor) -> torch.Tensor:
|
|
152
|
+
self._setP(prob.item())
|
|
153
|
+
out = input
|
|
154
|
+
for augmentation in self.dataAugmentations.keys():
|
|
155
|
+
augmentation.state_init(None, [input.shape[2:]]*input.shape[0], [Attribute()]*input.shape[0])
|
|
156
|
+
out = augmentation(0, [data for data in out], None)
|
|
157
|
+
return torch.cat([data.unsqueeze(0) for data in out], 0)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class DiscriminatorBlock(network.ModuleArgsDict):
|
|
161
|
+
|
|
162
|
+
def __init__(self, channels: list[int] = [1, 16, 32, 64, 64],
|
|
163
|
+
strides: list[int] = [2,2,2,1],
|
|
164
|
+
dim : int = 3) -> None:
|
|
165
|
+
super().__init__()
|
|
166
|
+
self.add_module("Prob", Discriminator_ADA.UpdateP(), out_branch=["p"])
|
|
167
|
+
self.add_module("Sample", Discriminator_ADA.DiscriminatorAugmentation(dim), in_branch=[0, "p"])
|
|
168
|
+
self.add_module("t", DDPM.DDPM_TimeEmbedding(1000, 100), in_branch=[0, "p"], out_branch=["te"])
|
|
169
|
+
self.add_module("Layers", Discriminator_ADA.DiscriminatorNLayers(channels, strides, 100, dim), in_branch=[0, "te"])
|
|
170
|
+
self.add_module("Head", Discriminator_ADA.DiscriminatorHead(channels[-1], dim))
|
|
171
|
+
|
|
172
|
+
@config("Discriminator_ADA")
|
|
173
|
+
def __init__(self,
|
|
174
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
175
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
176
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
177
|
+
channels: list[int] = [1, 16, 32, 64, 64],
|
|
178
|
+
strides: list[int] = [2,2,2,1],
|
|
179
|
+
nb_batch_per_step: int = 1,
|
|
180
|
+
dim : int = 3) -> None:
|
|
181
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, nb_batch_per_step=nb_batch_per_step, dim=dim, init_type="kaiming")
|
|
182
|
+
self.add_module("DiscriminatorModel", Discriminator_ADA.DiscriminatorBlock(channels, strides, dim))
|
|
183
|
+
|
|
184
|
+
def initialized(self):
|
|
185
|
+
self["DiscriminatorModel"]["Prob"].setMeasure(self.measure, ["Discriminator_B.DiscriminatorModel.Head.Conv:None:PatchGanLoss"])
|
|
186
|
+
|
|
187
|
+
"""class GeneratorV1(network.Network):
|
|
188
|
+
|
|
189
|
+
class GeneratorStem(network.ModuleArgsDict):
|
|
190
|
+
|
|
191
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
192
|
+
super().__init__()
|
|
193
|
+
self.add_module("ReflectionPad2d", torch.nn.ReflectionPad2d(3))
|
|
194
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(kernel_size=7, padding=0, bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
195
|
+
|
|
196
|
+
class GeneratorHead(network.ModuleArgsDict):
|
|
197
|
+
|
|
198
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
199
|
+
super().__init__()
|
|
200
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, in_channels, blockConfigs=[blocks.BlockConfig(bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
201
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels, out_channels, kernel_size=1, bias=False))
|
|
202
|
+
self.add_module("Tanh", torch.nn.Tanh())
|
|
203
|
+
|
|
204
|
+
class GeneratorDownSample(network.ModuleArgsDict):
|
|
205
|
+
|
|
206
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
207
|
+
super().__init__()
|
|
208
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(stride=2, bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
209
|
+
|
|
210
|
+
class GeneratorUpSample(network.ModuleArgsDict):
|
|
211
|
+
|
|
212
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
213
|
+
super().__init__()
|
|
214
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
215
|
+
self.add_module("Upsample", torch.nn.Upsample(scale_factor=2, mode="bilinear" if dim < 3 else "trilinear"))
|
|
216
|
+
|
|
217
|
+
class GeneratorEncoder(network.ModuleArgsDict):
|
|
218
|
+
def __init__(self, channels: list[int], dim: int) -> None:
|
|
219
|
+
super().__init__()
|
|
220
|
+
for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:])):
|
|
221
|
+
self.add_module("DownSample_{}".format(i), GeneratorV1.GeneratorDownSample(in_channels=in_channels, out_channels=out_channels, dim=dim))
|
|
222
|
+
|
|
223
|
+
class GeneratorResnetBlock(network.ModuleArgsDict):
|
|
224
|
+
|
|
225
|
+
def __init__(self, channels : int, dim : int):
|
|
226
|
+
super().__init__()
|
|
227
|
+
self.add_module("Conv_0", blocks.getTorchModule("Conv", dim)(channels, channels, kernel_size=3, padding=1, bias=False))
|
|
228
|
+
self.add_module("Norm_0", torch.nn.SyncBatchNorm(channels))
|
|
229
|
+
self.add_module("Activation_0", torch.nn.LeakyReLU(0.2, inplace=True))
|
|
230
|
+
self.add_module("Conv_1", blocks.getTorchModule("Conv", dim)(channels, channels, kernel_size=3, padding=1, bias=False))
|
|
231
|
+
self.add_module("Norm_1", torch.nn.SyncBatchNorm(channels))
|
|
232
|
+
self.add_module("Residual", blocks.Add(), in_branch=[0,1])
|
|
233
|
+
|
|
234
|
+
class GeneratorNResnetBlock(network.ModuleArgsDict):
|
|
235
|
+
|
|
236
|
+
def __init__(self, channels: int, nb_conv: int, dim: int) -> None:
|
|
237
|
+
super().__init__()
|
|
238
|
+
for i in range(nb_conv):
|
|
239
|
+
self.add_module("ResnetBlock_{}".format(i), GeneratorV1.GeneratorResnetBlock(channels=channels, dim=dim))
|
|
240
|
+
|
|
241
|
+
class GeneratorDecoder(network.ModuleArgsDict):
|
|
242
|
+
def __init__(self, channels: list[int], dim: int) -> None:
|
|
243
|
+
super().__init__()
|
|
244
|
+
for i, (in_channels, out_channels) in enumerate(zip(reversed(channels), reversed(channels[:-1]))):
|
|
245
|
+
self.add_module("UpSample_{}".format(i), GeneratorV1.GeneratorUpSample(in_channels=in_channels, out_channels=out_channels, dim=dim))
|
|
246
|
+
|
|
247
|
+
class GeneratorAutoEncoder(network.ModuleArgsDict):
|
|
248
|
+
|
|
249
|
+
def __init__(self, ngf: int, dim: int) -> None:
|
|
250
|
+
super().__init__()
|
|
251
|
+
channels = [ngf, ngf*2]
|
|
252
|
+
self.add_module("Encoder", GeneratorV1.GeneratorEncoder(channels, dim))
|
|
253
|
+
self.add_module("NResBlock", GeneratorV1.GeneratorNResnetBlock(channels=channels[-1], nb_conv=6, dim=dim))
|
|
254
|
+
self.add_module("Decoder", GeneratorV1.GeneratorDecoder(channels, dim))
|
|
255
|
+
|
|
256
|
+
class GeneratorBlock(network.ModuleArgsDict):
|
|
257
|
+
|
|
258
|
+
def __init__(self, ngf: int, dim: int) -> None:
|
|
259
|
+
super().__init__()
|
|
260
|
+
self.add_module("Stem", GeneratorV1.GeneratorStem(3, ngf, dim))
|
|
261
|
+
self.add_module("AutoEncoder", GeneratorV1.GeneratorAutoEncoder(ngf, dim))
|
|
262
|
+
self.add_module("Head", GeneratorV1.GeneratorHead(in_channels=ngf, out_channels=1, dim=dim))
|
|
263
|
+
|
|
264
|
+
@config("GeneratorV1")
|
|
265
|
+
def __init__(self,
|
|
266
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
267
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
268
|
+
patch : ModelPatch = ModelPatch(),
|
|
269
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
270
|
+
dim : int = 3) -> None:
|
|
271
|
+
super().__init__(optimizer=optimizer, in_channels=3, schedulers=schedulers, patch=patch, outputsCriterions=outputsCriterions, dim=dim)
|
|
272
|
+
self.add_module("GeneratorModel", GeneratorV1.GeneratorBlock(32, dim))"""
|
|
273
|
+
|
|
274
|
+
class GeneratorV1(network.Network):
|
|
275
|
+
|
|
276
|
+
class GeneratorStem(network.ModuleArgsDict):
|
|
277
|
+
|
|
278
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
279
|
+
super().__init__()
|
|
280
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
281
|
+
|
|
282
|
+
class GeneratorHead(network.ModuleArgsDict):
|
|
283
|
+
|
|
284
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
285
|
+
super().__init__()
|
|
286
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, in_channels, blockConfigs=[blocks.BlockConfig(bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
287
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels, out_channels, kernel_size=1, bias=False))
|
|
288
|
+
self.add_module("Tanh", torch.nn.Tanh())
|
|
289
|
+
|
|
290
|
+
class GeneratorDownSample(network.ModuleArgsDict):
|
|
291
|
+
|
|
292
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
293
|
+
super().__init__()
|
|
294
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(stride=2, bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
295
|
+
|
|
296
|
+
class GeneratorUpSample(network.ModuleArgsDict):
|
|
297
|
+
|
|
298
|
+
def __init__(self, in_channels: int, out_channels: int, dim: int) -> None:
|
|
299
|
+
super().__init__()
|
|
300
|
+
self.add_module("ConvBlock", blocks.ConvBlock(in_channels, out_channels, blockConfigs=[blocks.BlockConfig(bias=False, activation="ReLU", normMode="SYNCBATCH")], dim=dim))
|
|
301
|
+
self.add_module("Upsample", torch.nn.Upsample(scale_factor=2, mode="bilinear" if dim < 3 else "trilinear"))
|
|
302
|
+
|
|
303
|
+
class GeneratorEncoder(network.ModuleArgsDict):
|
|
304
|
+
def __init__(self, channels: list[int], dim: int) -> None:
|
|
305
|
+
super().__init__()
|
|
306
|
+
for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:])):
|
|
307
|
+
self.add_module("DownSample_{}".format(i), GeneratorV1.GeneratorDownSample(in_channels=in_channels, out_channels=out_channels, dim=dim))
|
|
308
|
+
|
|
309
|
+
class GeneratorResnetBlock(network.ModuleArgsDict):
|
|
310
|
+
|
|
311
|
+
def __init__(self, channels : int, dim : int):
|
|
312
|
+
super().__init__()
|
|
313
|
+
self.add_module("Conv_0", blocks.getTorchModule("Conv", dim)(channels, channels, kernel_size=3, padding=1, bias=False))
|
|
314
|
+
self.add_module("Norm_0", torch.nn.SyncBatchNorm(channels))
|
|
315
|
+
self.add_module("Activation_0", torch.nn.LeakyReLU(0.2, inplace=True))
|
|
316
|
+
#self.add_module("Norm", torch.nn.LeakyReLU(0.2, inplace=True))
|
|
317
|
+
|
|
318
|
+
self.add_module("Conv_1", blocks.getTorchModule("Conv", dim)(channels, channels, kernel_size=3, padding=1, bias=False))
|
|
319
|
+
self.add_module("Norm_1", torch.nn.SyncBatchNorm(channels))
|
|
320
|
+
self.add_module("Residual", blocks.Add(), in_branch=[0,1])
|
|
321
|
+
|
|
322
|
+
class GeneratorNResnetBlock(network.ModuleArgsDict):
|
|
323
|
+
|
|
324
|
+
def __init__(self, channels: int, nb_conv: int, dim: int) -> None:
|
|
325
|
+
super().__init__()
|
|
326
|
+
for i in range(nb_conv):
|
|
327
|
+
self.add_module("ResnetBlock_{}".format(i), GeneratorV1.GeneratorResnetBlock(channels=channels, dim=dim))
|
|
328
|
+
|
|
329
|
+
class GeneratorDecoder(network.ModuleArgsDict):
|
|
330
|
+
def __init__(self, channels: list[int], dim: int) -> None:
|
|
331
|
+
super().__init__()
|
|
332
|
+
for i, (in_channels, out_channels) in enumerate(zip(reversed(channels), reversed(channels[:-1]))):
|
|
333
|
+
self.add_module("UpSample_{}".format(i), GeneratorV1.GeneratorUpSample(in_channels=in_channels, out_channels=out_channels, dim=dim))
|
|
334
|
+
|
|
335
|
+
class GeneratorAutoEncoder(network.ModuleArgsDict):
|
|
336
|
+
|
|
337
|
+
def __init__(self, ngf: int, dim: int) -> None:
|
|
338
|
+
super().__init__()
|
|
339
|
+
channels = [ngf, ngf*2]
|
|
340
|
+
self.add_module("Encoder", GeneratorV1.GeneratorEncoder(channels, dim))
|
|
341
|
+
self.add_module("NResBlock", GeneratorV1.GeneratorNResnetBlock(channels=channels[-1], nb_conv=6, dim=dim))
|
|
342
|
+
self.add_module("Decoder", GeneratorV1.GeneratorDecoder(channels, dim))
|
|
343
|
+
|
|
344
|
+
class GeneratorBlock(network.ModuleArgsDict):
|
|
345
|
+
|
|
346
|
+
def __init__(self, ngf: int, dim: int) -> None:
|
|
347
|
+
super().__init__()
|
|
348
|
+
self.add_module("Stem", GeneratorV1.GeneratorStem(3, ngf, dim))
|
|
349
|
+
self.add_module("AutoEncoder", GeneratorV1.GeneratorAutoEncoder(ngf, dim))
|
|
350
|
+
self.add_module("Head", GeneratorV1.GeneratorHead(in_channels=ngf, out_channels=1, dim=dim))
|
|
351
|
+
|
|
352
|
+
@config("GeneratorV1")
|
|
353
|
+
def __init__(self,
|
|
354
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
355
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
356
|
+
patch : ModelPatch = ModelPatch(),
|
|
357
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
358
|
+
dim : int = 3) -> None:
|
|
359
|
+
super().__init__(optimizer=optimizer, in_channels=3, schedulers=schedulers, patch=patch, outputsCriterions=outputsCriterions, dim=dim)
|
|
360
|
+
self.add_module("GeneratorModel", GeneratorV1.GeneratorBlock(32, dim))
|
|
361
|
+
|
|
362
|
+
class GeneratorV2(network.Network):
|
|
363
|
+
|
|
364
|
+
class NestedUNetHead(network.ModuleArgsDict):
|
|
365
|
+
|
|
366
|
+
def __init__(self, in_channels: list[int], dim: int) -> None:
|
|
367
|
+
super().__init__()
|
|
368
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels = in_channels[1], out_channels = 1, kernel_size = 1, stride = 1, padding = 0))
|
|
369
|
+
self.add_module("Tanh", torch.nn.Tanh())
|
|
370
|
+
|
|
371
|
+
class GeneratorBlock(network.ModuleArgsDict):
|
|
372
|
+
|
|
373
|
+
def __init__(self,
|
|
374
|
+
channels: list[int],
|
|
375
|
+
blockConfig: blocks.BlockConfig,
|
|
376
|
+
nb_conv_per_stage: int,
|
|
377
|
+
downSampleMode: str,
|
|
378
|
+
upSampleMode: str,
|
|
379
|
+
attention : bool,
|
|
380
|
+
blockType: str,
|
|
381
|
+
dim : int,) -> None:
|
|
382
|
+
super().__init__()
|
|
383
|
+
self.add_module("UNetBlock_0", NestedUNet.NestedUNetBlock(channels, nb_conv_per_stage, blockConfig, downSampleMode=blocks.DownSampleMode._member_map_[downSampleMode], upSampleMode=blocks.UpSampleMode._member_map_[upSampleMode], attention=attention, block = blocks.ConvBlock if blockType == "Conv" else blocks.ResBlock, dim=dim), out_branch=["X_0_{}".format(j+1) for j in range(len(channels)-2)])
|
|
384
|
+
self.add_module("Head", GeneratorV2.NestedUNetHead(channels[:2], dim=dim), in_branch=["X_0_{}".format(len(channels)-2)])
|
|
385
|
+
|
|
386
|
+
@config("GeneratorV2")
|
|
387
|
+
def __init__( self,
|
|
388
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
389
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
390
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
391
|
+
patch : Union[ModelPatch, None] = None,
|
|
392
|
+
channels: list[int]=[1, 64, 128, 256, 512, 1024],
|
|
393
|
+
blockConfig: blocks.BlockConfig = blocks.BlockConfig(),
|
|
394
|
+
nb_conv_per_stage: int = 2,
|
|
395
|
+
downSampleMode: str = "MAXPOOL",
|
|
396
|
+
upSampleMode: str = "CONV_TRANSPOSE",
|
|
397
|
+
attention : bool = False,
|
|
398
|
+
blockType: str = "Conv",
|
|
399
|
+
dim : int = 3) -> None:
|
|
400
|
+
super().__init__(in_channels = channels[0], optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim = dim)
|
|
401
|
+
self.add_module("GeneratorModel", GeneratorV2.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim))
|
|
402
|
+
|
|
403
|
+
class GeneratorV3(network.Network):
|
|
404
|
+
|
|
405
|
+
class NestedUNetHead(network.ModuleArgsDict):
|
|
406
|
+
|
|
407
|
+
def __init__(self, in_channels: list[int], dim: int) -> None:
|
|
408
|
+
super().__init__()
|
|
409
|
+
self.add_module("Conv", blocks.getTorchModule("Conv", dim)(in_channels = in_channels[1], out_channels = 1, kernel_size = 1, stride = 1, padding = 0))
|
|
410
|
+
self.add_module("Tanh", torch.nn.Tanh())
|
|
411
|
+
|
|
412
|
+
class GeneratorBlock(network.ModuleArgsDict):
|
|
413
|
+
|
|
414
|
+
def __init__(self,
|
|
415
|
+
channels: list[int],
|
|
416
|
+
blockConfig: blocks.BlockConfig,
|
|
417
|
+
nb_conv_per_stage: int,
|
|
418
|
+
downSampleMode: str,
|
|
419
|
+
upSampleMode: str,
|
|
420
|
+
attention : bool,
|
|
421
|
+
blockType: str,
|
|
422
|
+
dim : int,) -> None:
|
|
423
|
+
super().__init__()
|
|
424
|
+
self.add_module("UNetBlock_0", UNet.UNetBlock(channels, nb_conv_per_stage, blockConfig, downSampleMode=blocks.DownSampleMode._member_map_[downSampleMode], upSampleMode=blocks.UpSampleMode._member_map_[upSampleMode], attention=attention, block = blocks.ConvBlock if blockType == "Conv" else blocks.ResBlock, nb_class=1, dim=dim), out_branch=["X_0_{}".format(j+1) for j in range(len(channels)-2)])
|
|
425
|
+
self.add_module("Head", GeneratorV3.NestedUNetHead(channels[:2], dim=dim), in_branch=["X_0_{}".format(len(channels)-2)])
|
|
426
|
+
|
|
427
|
+
@config("GeneratorV3")
|
|
428
|
+
def __init__( self,
|
|
429
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
430
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
431
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
432
|
+
patch : Union[ModelPatch, None] = None,
|
|
433
|
+
channels: list[int]=[1, 64, 128, 256, 512, 1024],
|
|
434
|
+
blockConfig: blocks.BlockConfig = blocks.BlockConfig(),
|
|
435
|
+
nb_conv_per_stage: int = 2,
|
|
436
|
+
downSampleMode: str = "MAXPOOL",
|
|
437
|
+
upSampleMode: str = "CONV_TRANSPOSE",
|
|
438
|
+
attention : bool = False,
|
|
439
|
+
blockType: str = "Conv",
|
|
440
|
+
dim : int = 3) -> None:
|
|
441
|
+
super().__init__(in_channels = channels[0], optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim = dim)
|
|
442
|
+
self.add_module("GeneratorModel", GeneratorV3.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim), out_branch=["pB"])
|
|
443
|
+
|
|
444
|
+
class DiffusionGan(network.Network):
|
|
445
|
+
|
|
446
|
+
@config("DiffusionGan")
|
|
447
|
+
def __init__(self, generator : GeneratorV1 = GeneratorV1(), discriminator : Discriminator_ADA = Discriminator_ADA()) -> None:
|
|
448
|
+
super().__init__()
|
|
449
|
+
self.add_module("Generator_A_to_B", generator, in_branch=[0], out_branch=["pB"])
|
|
450
|
+
self.add_module("Discriminator_B", discriminator, in_branch=[1], out_branch=[-1], requires_grad=True)
|
|
451
|
+
self.add_module("detach", blocks.Detach(), in_branch=["pB"], out_branch=["pB_detach"])
|
|
452
|
+
self.add_module("Discriminator_pB_detach", discriminator, in_branch=["pB_detach"], out_branch=[-1])
|
|
453
|
+
self.add_module("Discriminator_pB", discriminator, in_branch=["pB"], out_branch=[-1], requires_grad=False)
|
|
454
|
+
|
|
455
|
+
class DiffusionGanV2(network.Network):
|
|
456
|
+
|
|
457
|
+
@config("DiffusionGan")
|
|
458
|
+
def __init__(self, generator : GeneratorV2 = GeneratorV2(), discriminator : Discriminator = Discriminator()) -> None:
|
|
459
|
+
super().__init__()
|
|
460
|
+
self.add_module("Generator_A_to_B", generator, in_branch=[0], out_branch=["pB"])
|
|
461
|
+
self.add_module("Discriminator_B", discriminator, in_branch=[1], out_branch=[-1], requires_grad=True)
|
|
462
|
+
self.add_module("detach", blocks.Detach(), in_branch=["pB"], out_branch=["pB_detach"])
|
|
463
|
+
self.add_module("Discriminator_pB_detach", discriminator, in_branch=["pB_detach"], out_branch=[-1])
|
|
464
|
+
self.add_module("Discriminator_pB", discriminator, in_branch=["pB"], out_branch=[-1], requires_grad=False)
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
class CycleGanDiscriminator(network.Network):
|
|
468
|
+
|
|
469
|
+
@config("CycleGanDiscriminator")
|
|
470
|
+
def __init__(self,
|
|
471
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
472
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
473
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
474
|
+
patch : Union[ModelPatch, None] = None,
|
|
475
|
+
channels: list[int] = [1, 16, 32, 64, 64],
|
|
476
|
+
strides: list[int] = [2,2,2,1],
|
|
477
|
+
dim : int = 3) -> None:
|
|
478
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim=dim)
|
|
479
|
+
self.add_module("Discriminator_A", Discriminator.DiscriminatorBlock(channels, strides, dim), in_branch=[0], out_branch=[0])
|
|
480
|
+
self.add_module("Discriminator_B", Discriminator.DiscriminatorBlock(channels, strides, dim), in_branch=[1], out_branch=[1])
|
|
481
|
+
|
|
482
|
+
def initialized(self):
|
|
483
|
+
self["Discriminator_A"]["Sample"].setMeasure(self.measure, ["Discriminator.Discriminator_A.Head.Flatten:None:PatchGanLoss"])
|
|
484
|
+
self["Discriminator_B"]["Sample"].setMeasure(self.measure, ["Discriminator.Discriminator_B.Head.Flatten:None:PatchGanLoss"])
|
|
485
|
+
|
|
486
|
+
class CycleGanGeneratorV1(network.Network):
|
|
487
|
+
|
|
488
|
+
@config("CycleGanGeneratorV1")
|
|
489
|
+
def __init__(self,
|
|
490
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
491
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
492
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
493
|
+
patch : Union[ModelPatch, None] = None,
|
|
494
|
+
dim : int = 3) -> None:
|
|
495
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim=dim)
|
|
496
|
+
self.add_module("Generator_A_to_B", GeneratorV1.GeneratorBlock(32, dim), in_branch=[0], out_branch=["pB"])
|
|
497
|
+
self.add_module("Generator_B_to_A", GeneratorV1.GeneratorBlock(32, dim), in_branch=[1], out_branch=["pA"])
|
|
498
|
+
|
|
499
|
+
class CycleGanGeneratorV2(network.Network):
|
|
500
|
+
|
|
501
|
+
@config("CycleGanGeneratorV2")
|
|
502
|
+
def __init__(self,
|
|
503
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
504
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
505
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
506
|
+
patch : Union[ModelPatch, None] = None,
|
|
507
|
+
channels: list[int]=[1, 64, 128, 256, 512, 1024],
|
|
508
|
+
blockConfig: blocks.BlockConfig = blocks.BlockConfig(),
|
|
509
|
+
nb_conv_per_stage: int = 2,
|
|
510
|
+
downSampleMode: str = "MAXPOOL",
|
|
511
|
+
upSampleMode: str = "CONV_TRANSPOSE",
|
|
512
|
+
attention : bool = False,
|
|
513
|
+
blockType: str = "Conv",
|
|
514
|
+
dim : int = 3) -> None:
|
|
515
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim=dim)
|
|
516
|
+
self.add_module("Generator_A_to_B", GeneratorV2.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim), in_branch=[0], out_branch=["pB"])
|
|
517
|
+
self.add_module("Generator_B_to_A", GeneratorV2.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim), in_branch=[1], out_branch=["pA"])
|
|
518
|
+
|
|
519
|
+
class CycleGanGeneratorV3(network.Network):
|
|
520
|
+
|
|
521
|
+
@config("CycleGanGeneratorV3")
|
|
522
|
+
def __init__(self,
|
|
523
|
+
optimizer : network.OptimizerLoader = network.OptimizerLoader(),
|
|
524
|
+
schedulers : network.LRSchedulersLoader = network.LRSchedulersLoader(),
|
|
525
|
+
outputsCriterions: dict[str, network.TargetCriterionsLoader] = {"default" : network.TargetCriterionsLoader()},
|
|
526
|
+
patch : Union[ModelPatch, None] = None,
|
|
527
|
+
channels: list[int]=[1, 64, 128, 256, 512, 1024],
|
|
528
|
+
blockConfig: blocks.BlockConfig = blocks.BlockConfig(),
|
|
529
|
+
nb_conv_per_stage: int = 2,
|
|
530
|
+
downSampleMode: str = "MAXPOOL",
|
|
531
|
+
upSampleMode: str = "CONV_TRANSPOSE",
|
|
532
|
+
attention : bool = False,
|
|
533
|
+
blockType: str = "Conv",
|
|
534
|
+
dim : int = 3) -> None:
|
|
535
|
+
super().__init__(in_channels = 1, optimizer = optimizer, schedulers = schedulers, outputsCriterions = outputsCriterions, patch=patch, dim=dim)
|
|
536
|
+
self.add_module("Generator_A_to_B", GeneratorV3.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim), in_branch=[0], out_branch=["pB"])
|
|
537
|
+
self.add_module("Generator_B_to_A", GeneratorV3.GeneratorBlock(channels, blockConfig, nb_conv_per_stage, downSampleMode, upSampleMode, attention, blockType, dim), in_branch=[1], out_branch=["pA"])
|
|
538
|
+
|
|
539
|
+
class DiffusionCycleGan(network.Network):
|
|
540
|
+
|
|
541
|
+
@config("DiffusionCycleGan")
|
|
542
|
+
def __init__(self, generators : CycleGanGeneratorV3 = CycleGanGeneratorV3(), discriminators : CycleGanDiscriminator = CycleGanDiscriminator()) -> None:
|
|
543
|
+
super().__init__()
|
|
544
|
+
self.add_module("Generator", generators, in_branch=[0, 1], out_branch=["pB", "pA"])
|
|
545
|
+
self.add_module("Discriminator", discriminators, in_branch=[0, 1], out_branch=[-1], requires_grad=True)
|
|
546
|
+
|
|
547
|
+
self.add_module("Generator_identity", generators, in_branch=[1, 0], out_branch=[-1])
|
|
548
|
+
|
|
549
|
+
self.add_module("Generator_p", generators, in_branch=["pA", "pB"], out_branch=[-1])
|
|
550
|
+
|
|
551
|
+
self.add_module("detach_pA", blocks.Detach(), in_branch=["pA"], out_branch=["pA_detach"])
|
|
552
|
+
self.add_module("detach_pB", blocks.Detach(), in_branch=["pB"], out_branch=["pB_detach"])
|
|
553
|
+
|
|
554
|
+
self.add_module("Discriminator_p_detach", discriminators, in_branch=["pA_detach", "pB_detach"], out_branch=[-1])
|
|
555
|
+
self.add_module("Discriminator_p", discriminators, in_branch=["pA", "pB"], out_branch=[-1], requires_grad=False)
|
|
556
|
+
|
|
557
|
+
|