kolzchut-ragbot 1.4.1__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kolzchut_ragbot/Document.py +101 -101
- kolzchut_ragbot/IntegrateService.py +4 -4
- kolzchut_ragbot/__init__.py +0 -2
- kolzchut_ragbot/config.py +5 -5
- kolzchut_ragbot/engine.py +254 -246
- kolzchut_ragbot/llm_client.py +11 -11
- kolzchut_ragbot/model.py +182 -179
- kolzchut_ragbot-1.5.0.dist-info/METADATA +76 -0
- kolzchut_ragbot-1.5.0.dist-info/RECORD +11 -0
- {kolzchut_ragbot-1.4.1.dist-info → kolzchut_ragbot-1.5.0.dist-info}/WHEEL +1 -1
- kolzchut_ragbot-1.4.1.dist-info/METADATA +0 -67
- kolzchut_ragbot-1.4.1.dist-info/RECORD +0 -11
- {kolzchut_ragbot-1.4.1.dist-info → kolzchut_ragbot-1.5.0.dist-info}/top_level.txt +0 -0
kolzchut_ragbot/model.py
CHANGED
|
@@ -1,179 +1,182 @@
|
|
|
1
|
-
import datetime
|
|
2
|
-
import logging
|
|
3
|
-
import os
|
|
4
|
-
from .Document import factory as definitions_factory
|
|
5
|
-
|
|
6
|
-
definitions_singleton = definitions_factory()
|
|
7
|
-
EMBEDDING_INDEX = os.getenv("ES_EMBEDDING_INDEX", "embeddings")
|
|
8
|
-
semantic_models = definitions_singleton.models.keys()
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def index_from_page_id(page_id: int):
|
|
12
|
-
"""
|
|
13
|
-
Generates an index name based on the page ID.
|
|
14
|
-
|
|
15
|
-
Args:
|
|
16
|
-
page_id (int): The ID of the page.
|
|
17
|
-
|
|
18
|
-
Returns:
|
|
19
|
-
str: The generated index name.
|
|
20
|
-
"""
|
|
21
|
-
index_postfix = round(page_id / 1000)
|
|
22
|
-
return EMBEDDING_INDEX + "_" + str(index_postfix)
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
**
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
"""
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
index
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
}
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
1
|
+
import datetime
|
|
2
|
+
import logging
|
|
3
|
+
import os
|
|
4
|
+
from .Document import factory as definitions_factory
|
|
5
|
+
|
|
6
|
+
definitions_singleton = definitions_factory()
|
|
7
|
+
EMBEDDING_INDEX = os.getenv("ES_EMBEDDING_INDEX", "embeddings")
|
|
8
|
+
semantic_models = definitions_singleton.models.keys()
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def index_from_page_id(page_id: int):
|
|
12
|
+
"""
|
|
13
|
+
Generates an index name based on the page ID.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
page_id (int): The ID of the page.
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
str: The generated index name.
|
|
20
|
+
"""
|
|
21
|
+
index_postfix = round(page_id / 1000)
|
|
22
|
+
return EMBEDDING_INDEX + "_" + str(index_postfix)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def create_mapping():
|
|
26
|
+
"""
|
|
27
|
+
Creates a mapping for the model in Elasticsearch.
|
|
28
|
+
"""
|
|
29
|
+
vector_fields = {f'{semantic_model}_{name}_vectors': {"type": "dense_vector", "dims": 1024}
|
|
30
|
+
for name, semantic_model in definitions_singleton.models.items()}
|
|
31
|
+
|
|
32
|
+
data_fields = {}
|
|
33
|
+
for field in definitions_singleton.saved_fields.keys():
|
|
34
|
+
field_type = definitions_singleton.saved_fields[field]
|
|
35
|
+
field_mapping = {"type": field_type}
|
|
36
|
+
if field_type == "date":
|
|
37
|
+
field_mapping["format"] = "yyyyMMddHHmmss"
|
|
38
|
+
data_fields[f"{field}"] = field_mapping
|
|
39
|
+
|
|
40
|
+
mappings = {
|
|
41
|
+
"properties": {
|
|
42
|
+
"last_update": {
|
|
43
|
+
"type": "date",
|
|
44
|
+
},
|
|
45
|
+
**vector_fields,
|
|
46
|
+
**data_fields,
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
return mappings
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class Model:
|
|
53
|
+
"""
|
|
54
|
+
Represents the model for creating, updating, and searching documents in Elasticsearch.
|
|
55
|
+
|
|
56
|
+
Attributes:
|
|
57
|
+
custom_result_selection_function (callable): A custom function for selecting search results.
|
|
58
|
+
es_client: The Elasticsearch client instance.
|
|
59
|
+
|
|
60
|
+
Methods:
|
|
61
|
+
create_index():
|
|
62
|
+
Creates an index for the model in Elasticsearch.
|
|
63
|
+
|
|
64
|
+
create_or_update_documents(paragraphs_dicts: list[dict], update=False):
|
|
65
|
+
Creates or updates documents in the Elasticsearch index.
|
|
66
|
+
|
|
67
|
+
search(embedded_search: dict[str, list[float]], size=50) -> dict[str, list[dict]]:
|
|
68
|
+
Searches for similar documents using cosine similarity.
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
custom_result_selection_function = None
|
|
72
|
+
|
|
73
|
+
def __init__(self, es_client, custom_result_selection_function=None):
|
|
74
|
+
"""
|
|
75
|
+
Initializes the Model instance.
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
es_client: The Elasticsearch client instance.
|
|
79
|
+
custom_result_selection_function (callable, optional): A custom function for selecting search results.
|
|
80
|
+
"""
|
|
81
|
+
self.es_client = es_client
|
|
82
|
+
if custom_result_selection_function is not None:
|
|
83
|
+
self.custom_result_selection_function = custom_result_selection_function
|
|
84
|
+
|
|
85
|
+
def create_index(self, index_name):
|
|
86
|
+
"""
|
|
87
|
+
Creates an index for the model in Elasticsearch.
|
|
88
|
+
"""
|
|
89
|
+
mapping = create_mapping()
|
|
90
|
+
if not self.es_client.indices.exists(index=index_name):
|
|
91
|
+
self.es_client.indices.create(
|
|
92
|
+
index=index_name,
|
|
93
|
+
mappings=mapping
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
def create_or_update_documents(self, paragraphs_dicts: list[dict], update=False):
|
|
97
|
+
"""
|
|
98
|
+
Creates or updates documents in the Elasticsearch index.
|
|
99
|
+
|
|
100
|
+
Args:
|
|
101
|
+
paragraphs_dicts (list[dict]): A list of dictionaries representing the paragraphs to be indexed.
|
|
102
|
+
update (bool, optional): Whether to update existing documents. Default is False.
|
|
103
|
+
"""
|
|
104
|
+
|
|
105
|
+
identifier = definitions_singleton.identifier
|
|
106
|
+
print(f"Creating or updating documents in the index, {len(paragraphs_dicts)} paragraphs\n")
|
|
107
|
+
# Identify the doc from the first paragraph - all paragraphs should have the same doc_id
|
|
108
|
+
doc_id = paragraphs_dicts[0][identifier]
|
|
109
|
+
index = index_from_page_id(int(doc_id))
|
|
110
|
+
|
|
111
|
+
if update:
|
|
112
|
+
try:
|
|
113
|
+
query = {
|
|
114
|
+
"query": {
|
|
115
|
+
"match": {
|
|
116
|
+
f"{identifier}": doc_id
|
|
117
|
+
}
|
|
118
|
+
}
|
|
119
|
+
}
|
|
120
|
+
self.es_client.delete_by_query(index=f"{EMBEDDING_INDEX}*", body=query)
|
|
121
|
+
|
|
122
|
+
except Exception as e:
|
|
123
|
+
logging.error(f"Error while searching for existing document: {e}")
|
|
124
|
+
self.create_index(index)
|
|
125
|
+
for i, doc_dict in enumerate(paragraphs_dicts):
|
|
126
|
+
print(f"saving paragraph {i + 1} / {len(paragraphs_dicts)}")
|
|
127
|
+
doc = {
|
|
128
|
+
"last_update": datetime.datetime.now(),
|
|
129
|
+
**doc_dict
|
|
130
|
+
}
|
|
131
|
+
|
|
132
|
+
self.es_client.index(index=index, body=doc)
|
|
133
|
+
|
|
134
|
+
def search(self, embedded_search: dict[str, list[float]], size=50) -> dict[str, list[dict]]:
|
|
135
|
+
"""
|
|
136
|
+
Searches for similar documents using cosine similarity.
|
|
137
|
+
|
|
138
|
+
Args:
|
|
139
|
+
embedded_search (dict[str, list[float]]): A dictionary containing the embedded search vectors.
|
|
140
|
+
size (int, optional): The number of search results to return. Default is 50.
|
|
141
|
+
|
|
142
|
+
Returns:
|
|
143
|
+
dict[str, list[dict]]: A dictionary containing the search results.
|
|
144
|
+
"""
|
|
145
|
+
results = {}
|
|
146
|
+
for semantic_model, field in definitions_singleton.models.items():
|
|
147
|
+
results[field] = [] if field not in results.keys() else results[field]
|
|
148
|
+
body = {
|
|
149
|
+
"script_score": {
|
|
150
|
+
"query": {
|
|
151
|
+
"exists": {
|
|
152
|
+
"field": f'{field}_{semantic_model}_vectors'
|
|
153
|
+
}
|
|
154
|
+
},
|
|
155
|
+
"script": {
|
|
156
|
+
"source": f"cosineSimilarity(params.query_vector, '{field}_{semantic_model}_vectors') + 1.0",
|
|
157
|
+
"params": {
|
|
158
|
+
"query_vector": embedded_search[semantic_model]
|
|
159
|
+
}
|
|
160
|
+
}
|
|
161
|
+
}
|
|
162
|
+
}
|
|
163
|
+
print(f"Searching for {field} using {semantic_model} on index {EMBEDDING_INDEX}\n")
|
|
164
|
+
field_results = self.es_client.search(
|
|
165
|
+
index=EMBEDDING_INDEX + "*",
|
|
166
|
+
body={
|
|
167
|
+
"size": size,
|
|
168
|
+
"query": body
|
|
169
|
+
})
|
|
170
|
+
results[field] = results[field] + field_results["hits"]["hits"]
|
|
171
|
+
|
|
172
|
+
return results
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
model = None
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def es_client_factory(es_client) -> Model:
|
|
179
|
+
global model
|
|
180
|
+
if model is None:
|
|
181
|
+
model = Model(es_client)
|
|
182
|
+
return model
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: kolzchut-ragbot
|
|
3
|
+
Version: 1.5.0
|
|
4
|
+
Summary: A search engine using machine learning models and Elasticsearch for advanced document retrieval.
|
|
5
|
+
Home-page: https://github.com/shmuelrob/rag-bot
|
|
6
|
+
Author: Shmuel Robinov
|
|
7
|
+
Author-email: shmuel_robinov@webiks.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.10
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
Requires-Dist: elasticsearch==8.17.1
|
|
14
|
+
Requires-Dist: sentence-transformers==3.4.1
|
|
15
|
+
Requires-Dist: torch==2.6.0
|
|
16
|
+
Requires-Dist: transformers==4.48.3
|
|
17
|
+
Dynamic: author
|
|
18
|
+
Dynamic: author-email
|
|
19
|
+
Dynamic: classifier
|
|
20
|
+
Dynamic: description
|
|
21
|
+
Dynamic: description-content-type
|
|
22
|
+
Dynamic: home-page
|
|
23
|
+
Dynamic: requires-dist
|
|
24
|
+
Dynamic: requires-python
|
|
25
|
+
Dynamic: summary
|
|
26
|
+
|
|
27
|
+
# kolzchut-ragbot
|
|
28
|
+
|
|
29
|
+
## Overview
|
|
30
|
+
|
|
31
|
+
This project is a search engine that uses machine learning models and Elasticsearch to provide advanced document retrieval.
|
|
32
|
+
You can use [kolzchut-ragbot](https://github.com/shmuelrob/rag-bot) to demonstrate the engine's document retrieval abilities.
|
|
33
|
+
|
|
34
|
+
## Features
|
|
35
|
+
|
|
36
|
+
- Document representation and validation
|
|
37
|
+
- Document embedding and indexing in Elasticsearch
|
|
38
|
+
- Advanced search using machine learning model
|
|
39
|
+
- Integration with LLM (Large Language Model) client for query answering
|
|
40
|
+
|
|
41
|
+
## Installation
|
|
42
|
+
|
|
43
|
+
### From PyPI
|
|
44
|
+
|
|
45
|
+
```bash
|
|
46
|
+
pip install kolzchut-ragbot
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
### From Source
|
|
50
|
+
|
|
51
|
+
1. Clone the repository:
|
|
52
|
+
|
|
53
|
+
```bash
|
|
54
|
+
git clone https://github.com/shmuelrob/rag-bot.git
|
|
55
|
+
cd rag-bot
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
2. Create a virtual environment and activate it:
|
|
59
|
+
|
|
60
|
+
```bash
|
|
61
|
+
python -m venv venv
|
|
62
|
+
source venv/bin/activate # On Windows use: venv\Scripts\activate
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
3. Install the required dependencies:
|
|
66
|
+
|
|
67
|
+
```bash
|
|
68
|
+
pip install -r requirements.txt
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
## Configuration
|
|
72
|
+
|
|
73
|
+
Set the following environment variables:
|
|
74
|
+
|
|
75
|
+
- `ES_EMBEDDING_INDEX`: The name of the Elasticsearch index for embeddings.
|
|
76
|
+
- `TOKENIZER_LOCATION`: The location of the tokenizer model.
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
kolzchut_ragbot/Document.py,sha256=5OyBBTZyAJFM_1Pjs3SUC-_s5zEJ5U6wjhw12_FFkdE,3621
|
|
2
|
+
kolzchut_ragbot/IntegrateService.py,sha256=rcwUY2RkclCY3l8BGAmNbstdxhxwhLO9oA8BofqLyts,96
|
|
3
|
+
kolzchut_ragbot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
+
kolzchut_ragbot/config.py,sha256=uILFvgn9W92-NRaKXYtaoQXpn3KOWKK8SZYRsIAa5Yw,133
|
|
5
|
+
kolzchut_ragbot/engine.py,sha256=tULiiCdqLoXydxx7VrZKChDgbe4ygSoEft-k76j3_t0,10158
|
|
6
|
+
kolzchut_ragbot/llm_client.py,sha256=Frp7CL0OIlQA6ltohrGWedI6uD6MpGg6TbpZTBE0qIo,341
|
|
7
|
+
kolzchut_ragbot/model.py,sha256=HCi3r4YztPknnbgTOA7I-GVaqxn8CzrTeLFkEg-7fg0,6320
|
|
8
|
+
kolzchut_ragbot-1.5.0.dist-info/METADATA,sha256=nzWcZsfn23nVWANcWMGoQvQXJ-idymUKg0ZheMbWp1c,1999
|
|
9
|
+
kolzchut_ragbot-1.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
10
|
+
kolzchut_ragbot-1.5.0.dist-info/top_level.txt,sha256=NTZoY4GGw3v_7jm0MgcdHw8simoZ78PsR7Meqmkgd_Q,16
|
|
11
|
+
kolzchut_ragbot-1.5.0.dist-info/RECORD,,
|
|
@@ -1,67 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: kolzchut-ragbot
|
|
3
|
-
Version: 1.4.1
|
|
4
|
-
Summary: A search engine using machine learning models and Elasticsearch for advanced document retrieval.
|
|
5
|
-
Home-page: https://github.com/shmuelrob/rag-bot
|
|
6
|
-
Author: Shmuel Robinov
|
|
7
|
-
Author-email: shmuel_robinov@webiks.com
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
-
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: >=3.10
|
|
12
|
-
Description-Content-Type: text/markdown
|
|
13
|
-
Requires-Dist: elasticsearch==8.17.1
|
|
14
|
-
Requires-Dist: sentence-transformers==3.4.1
|
|
15
|
-
Requires-Dist: torch==2.6.0
|
|
16
|
-
Requires-Dist: transformers==4.48.3
|
|
17
|
-
Dynamic: author
|
|
18
|
-
Dynamic: author-email
|
|
19
|
-
Dynamic: classifier
|
|
20
|
-
Dynamic: description
|
|
21
|
-
Dynamic: description-content-type
|
|
22
|
-
Dynamic: home-page
|
|
23
|
-
Dynamic: requires-dist
|
|
24
|
-
Dynamic: requires-python
|
|
25
|
-
Dynamic: summary
|
|
26
|
-
|
|
27
|
-
# **Webiks-Hebrew-RAGbot**
|
|
28
|
-
|
|
29
|
-
## **Overview**
|
|
30
|
-
|
|
31
|
-
This project is a search engine that uses machine learning models and Elasticsearch to provide advanced document retrieval.
|
|
32
|
-
You can use [Webiks-Hebrew-RAGbot-Demo](https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot-Demo) to demonstrate the engine's document retrieval abilities
|
|
33
|
-
|
|
34
|
-
## **Features**
|
|
35
|
-
|
|
36
|
-
Document representation and validation
|
|
37
|
-
Document embedding and indexing in Elasticsearch
|
|
38
|
-
Advanced search using machine learning model
|
|
39
|
-
Integration with LLM (Large Language Model) client for query answering
|
|
40
|
-
|
|
41
|
-
## **Installation**
|
|
42
|
-
|
|
43
|
-
1. Clone the repository:
|
|
44
|
-
|
|
45
|
-
`git clone https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot.git`
|
|
46
|
-
|
|
47
|
-
`cd Webiks-Hebrew-RAGbot`
|
|
48
|
-
|
|
49
|
-
2. Create a virtual environment and activate it:Â Â
|
|
50
|
-
|
|
51
|
-
`python -m venv venv`
|
|
52
|
-
|
|
53
|
-
`source venv/bin/activate`
|
|
54
|
-
|
|
55
|
-
On Windows use `\venv\\Scripts\\activate\`
|
|
56
|
-
|
|
57
|
-
3. Install the required dependencies:Â Â
|
|
58
|
-
|
|
59
|
-
`pip install -r requirements.txt`
|
|
60
|
-
|
|
61
|
-
## **Configuration**
|
|
62
|
-
|
|
63
|
-
Set the following environment variables:Â Â
|
|
64
|
-
|
|
65
|
-
ES\_EMBEDDING\_INDEX: The name of the Elasticsearch index for embeddings.
|
|
66
|
-
|
|
67
|
-
TOKENIZER\_LOCATION: The location of the tokenizer model.
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
kolzchut_ragbot/Document.py,sha256=ySawnD06HA0zHjHp4Y_CPjMMZqLp8onaEgd1dGP5sbs,3722
|
|
2
|
-
kolzchut_ragbot/IntegrateService.py,sha256=CqB9vW6W5oj6Ig3crEa6hXqwro21z97UaG9ngxFTzYs,100
|
|
3
|
-
kolzchut_ragbot/__init__.py,sha256=KKAc2xjCl5Aui2Cj0FWyvJ51nmnFv7MspLMqOYb-QHA,26
|
|
4
|
-
kolzchut_ragbot/config.py,sha256=pcKVJVJ8P2YximjTrmVlrocHXSmzmNu_DFzNoPLa22E,138
|
|
5
|
-
kolzchut_ragbot/engine.py,sha256=V8WUWyqvBWbGt-rRRf8G6BEyD-4GjsmtJrxBb6aPon8,10154
|
|
6
|
-
kolzchut_ragbot/llm_client.py,sha256=q_cUZq645P7i1PliYzpJRTWlsoSECVIhE-y9wU5eRtQ,352
|
|
7
|
-
kolzchut_ragbot/model.py,sha256=Nd3_0KXMfyajQTyreKpkb2hsqpkA6_P994laoRKF2iU,6452
|
|
8
|
-
kolzchut_ragbot-1.4.1.dist-info/METADATA,sha256=oI7PoQRz2ddDIRUtVmVAa0FF8YSlAjQFPzLhC0lq81A,2024
|
|
9
|
-
kolzchut_ragbot-1.4.1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
10
|
-
kolzchut_ragbot-1.4.1.dist-info/top_level.txt,sha256=NTZoY4GGw3v_7jm0MgcdHw8simoZ78PsR7Meqmkgd_Q,16
|
|
11
|
-
kolzchut_ragbot-1.4.1.dist-info/RECORD,,
|
|
File without changes
|