kolzchut-ragbot 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
|
+
Name: kolzchut-ragbot
|
|
3
|
+
Version: 1.0.1
|
|
4
|
+
Summary: A search engine using machine learning models and Elasticsearch for advanced document retrieval.
|
|
5
|
+
Home-page: https://github.com/shmuelrob/ragbot
|
|
6
|
+
Author: Shmuel Robinov
|
|
7
|
+
Author-email: shmuel_robinov@webiks.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.10
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
Requires-Dist: elasticsearch==8.14.0
|
|
14
|
+
Requires-Dist: sentence-transformers==3.0.1
|
|
15
|
+
Requires-Dist: torch==2.3.1
|
|
16
|
+
Requires-Dist: transformers==4.42.3
|
|
17
|
+
Dynamic: author
|
|
18
|
+
Dynamic: author-email
|
|
19
|
+
Dynamic: classifier
|
|
20
|
+
Dynamic: description
|
|
21
|
+
Dynamic: description-content-type
|
|
22
|
+
Dynamic: home-page
|
|
23
|
+
Dynamic: requires-dist
|
|
24
|
+
Dynamic: requires-python
|
|
25
|
+
Dynamic: summary
|
|
26
|
+
|
|
27
|
+
# **Webiks-Hebrew-RAGbot**
|
|
28
|
+
|
|
29
|
+
## **Overview**
|
|
30
|
+
|
|
31
|
+
This project is a search engine that uses machine learning models and Elasticsearch to provide advanced document retrieval.
|
|
32
|
+
You can use [Webiks-Hebrew-RAGbot-Demo](https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot-Demo) to demonstrate the engine's document retrieval abilities
|
|
33
|
+
|
|
34
|
+
## **Features**
|
|
35
|
+
|
|
36
|
+
Document representation and validation
|
|
37
|
+
Document embedding and indexing in Elasticsearch
|
|
38
|
+
Advanced search using machine learning model
|
|
39
|
+
Integration with LLM (Large Language Model) client for query answering
|
|
40
|
+
|
|
41
|
+
## **Installation**
|
|
42
|
+
|
|
43
|
+
1. Clone the repository:
|
|
44
|
+
|
|
45
|
+
`git clone https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot.git`
|
|
46
|
+
|
|
47
|
+
`cd Webiks-Hebrew-RAGbot`
|
|
48
|
+
|
|
49
|
+
2. Create a virtual environment and activate it:Â Â
|
|
50
|
+
|
|
51
|
+
`python -m venv venv`
|
|
52
|
+
|
|
53
|
+
`source venv/bin/activate`
|
|
54
|
+
|
|
55
|
+
On Windows use `\venv\\Scripts\\activate\`
|
|
56
|
+
|
|
57
|
+
3. Install the required dependencies:Â Â
|
|
58
|
+
|
|
59
|
+
`pip install -r requirements.txt`
|
|
60
|
+
|
|
61
|
+
## **Configuration**
|
|
62
|
+
|
|
63
|
+
Set the following environment variables:Â Â
|
|
64
|
+
|
|
65
|
+
ES\_EMBEDDING\_INDEX: The name of the Elasticsearch index for embeddings.
|
|
66
|
+
|
|
67
|
+
TOKENIZER\_LOCATION: The location of the tokenizer model.
|
|
@@ -0,0 +1,4 @@
|
|
|
1
|
+
kolzchut_ragbot-1.0.1.dist-info/METADATA,sha256=lK0_qxmI59eK1MEWijrftHfhtg5SklEHTuhT59H2E8Q,2023
|
|
2
|
+
kolzchut_ragbot-1.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
3
|
+
kolzchut_ragbot-1.0.1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
4
|
+
kolzchut_ragbot-1.0.1.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|