kolzchut-ragbot 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,67 @@
1
+ Metadata-Version: 2.2
2
+ Name: kolzchut-ragbot
3
+ Version: 1.0.1
4
+ Summary: A search engine using machine learning models and Elasticsearch for advanced document retrieval.
5
+ Home-page: https://github.com/shmuelrob/ragbot
6
+ Author: Shmuel Robinov
7
+ Author-email: shmuel_robinov@webiks.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.10
12
+ Description-Content-Type: text/markdown
13
+ Requires-Dist: elasticsearch==8.14.0
14
+ Requires-Dist: sentence-transformers==3.0.1
15
+ Requires-Dist: torch==2.3.1
16
+ Requires-Dist: transformers==4.42.3
17
+ Dynamic: author
18
+ Dynamic: author-email
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: home-page
23
+ Dynamic: requires-dist
24
+ Dynamic: requires-python
25
+ Dynamic: summary
26
+
27
+ # **Webiks-Hebrew-RAGbot**
28
+
29
+ ## **Overview**
30
+
31
+ This project is a search engine that uses machine learning models and Elasticsearch to provide advanced document retrieval.
32
+ You can use [Webiks-Hebrew-RAGbot-Demo](https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot-Demo) to demonstrate the engine's document retrieval abilities
33
+
34
+ ## **Features**
35
+
36
+ Document representation and validation
37
+ Document embedding and indexing in Elasticsearch
38
+ Advanced search using machine learning model
39
+ Integration with LLM (Large Language Model) client for query answering
40
+
41
+ ## **Installation**
42
+
43
+ 1. Clone the repository:
44
+
45
+ `git clone https://github.com/NNLP-IL/Webiks-Hebrew-RAGbot.git`
46
+
47
+ `cd Webiks-Hebrew-RAGbot`
48
+
49
+ 2. Create a virtual environment and activate it:  
50
+
51
+ `python -m venv venv`
52
+
53
+ `source venv/bin/activate`
54
+
55
+ On Windows use `\venv\\Scripts\\activate\`
56
+
57
+ 3. Install the required dependencies:  
58
+
59
+ `pip install -r requirements.txt`
60
+
61
+ ## **Configuration**
62
+
63
+ Set the following environment variables:  
64
+
65
+ ES\_EMBEDDING\_INDEX: The name of the Elasticsearch index for embeddings.
66
+
67
+ TOKENIZER\_LOCATION: The location of the tokenizer model.
@@ -0,0 +1,4 @@
1
+ kolzchut_ragbot-1.0.1.dist-info/METADATA,sha256=lK0_qxmI59eK1MEWijrftHfhtg5SklEHTuhT59H2E8Q,2023
2
+ kolzchut_ragbot-1.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
3
+ kolzchut_ragbot-1.0.1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
4
+ kolzchut_ragbot-1.0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+