kiln-ai 0.8.0__py3-none-any.whl → 0.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

Files changed (57) hide show
  1. kiln_ai/adapters/__init__.py +7 -7
  2. kiln_ai/adapters/adapter_registry.py +77 -5
  3. kiln_ai/adapters/data_gen/data_gen_task.py +3 -3
  4. kiln_ai/adapters/data_gen/test_data_gen_task.py +23 -3
  5. kiln_ai/adapters/fine_tune/base_finetune.py +5 -1
  6. kiln_ai/adapters/fine_tune/dataset_formatter.py +310 -65
  7. kiln_ai/adapters/fine_tune/fireworks_finetune.py +47 -32
  8. kiln_ai/adapters/fine_tune/openai_finetune.py +12 -11
  9. kiln_ai/adapters/fine_tune/test_base_finetune.py +19 -0
  10. kiln_ai/adapters/fine_tune/test_dataset_formatter.py +469 -129
  11. kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +113 -21
  12. kiln_ai/adapters/fine_tune/test_openai_finetune.py +125 -14
  13. kiln_ai/adapters/ml_model_list.py +323 -94
  14. kiln_ai/adapters/model_adapters/__init__.py +18 -0
  15. kiln_ai/adapters/{base_adapter.py → model_adapters/base_adapter.py} +81 -37
  16. kiln_ai/adapters/{langchain_adapters.py → model_adapters/langchain_adapters.py} +130 -84
  17. kiln_ai/adapters/model_adapters/openai_compatible_config.py +11 -0
  18. kiln_ai/adapters/model_adapters/openai_model_adapter.py +246 -0
  19. kiln_ai/adapters/model_adapters/test_base_adapter.py +190 -0
  20. kiln_ai/adapters/{test_langchain_adapter.py → model_adapters/test_langchain_adapter.py} +103 -88
  21. kiln_ai/adapters/model_adapters/test_openai_model_adapter.py +225 -0
  22. kiln_ai/adapters/{test_saving_adapter_results.py → model_adapters/test_saving_adapter_results.py} +43 -15
  23. kiln_ai/adapters/{test_structured_output.py → model_adapters/test_structured_output.py} +93 -20
  24. kiln_ai/adapters/parsers/__init__.py +10 -0
  25. kiln_ai/adapters/parsers/base_parser.py +12 -0
  26. kiln_ai/adapters/parsers/json_parser.py +37 -0
  27. kiln_ai/adapters/parsers/parser_registry.py +19 -0
  28. kiln_ai/adapters/parsers/r1_parser.py +69 -0
  29. kiln_ai/adapters/parsers/test_json_parser.py +81 -0
  30. kiln_ai/adapters/parsers/test_parser_registry.py +32 -0
  31. kiln_ai/adapters/parsers/test_r1_parser.py +144 -0
  32. kiln_ai/adapters/prompt_builders.py +126 -20
  33. kiln_ai/adapters/provider_tools.py +91 -36
  34. kiln_ai/adapters/repair/repair_task.py +17 -6
  35. kiln_ai/adapters/repair/test_repair_task.py +4 -4
  36. kiln_ai/adapters/run_output.py +8 -0
  37. kiln_ai/adapters/test_adapter_registry.py +177 -0
  38. kiln_ai/adapters/test_generate_docs.py +69 -0
  39. kiln_ai/adapters/test_prompt_adaptors.py +8 -4
  40. kiln_ai/adapters/test_prompt_builders.py +190 -29
  41. kiln_ai/adapters/test_provider_tools.py +268 -46
  42. kiln_ai/datamodel/__init__.py +199 -12
  43. kiln_ai/datamodel/basemodel.py +31 -11
  44. kiln_ai/datamodel/json_schema.py +8 -3
  45. kiln_ai/datamodel/model_cache.py +8 -3
  46. kiln_ai/datamodel/test_basemodel.py +81 -2
  47. kiln_ai/datamodel/test_dataset_split.py +100 -3
  48. kiln_ai/datamodel/test_example_models.py +25 -4
  49. kiln_ai/datamodel/test_model_cache.py +24 -0
  50. kiln_ai/datamodel/test_model_perf.py +125 -0
  51. kiln_ai/datamodel/test_models.py +129 -0
  52. kiln_ai/utils/exhaustive_error.py +6 -0
  53. {kiln_ai-0.8.0.dist-info → kiln_ai-0.11.1.dist-info}/METADATA +9 -7
  54. kiln_ai-0.11.1.dist-info/RECORD +76 -0
  55. kiln_ai-0.8.0.dist-info/RECORD +0 -58
  56. {kiln_ai-0.8.0.dist-info → kiln_ai-0.11.1.dist-info}/WHEEL +0 -0
  57. {kiln_ai-0.8.0.dist-info → kiln_ai-0.11.1.dist-info}/licenses/LICENSE.txt +0 -0
@@ -3,31 +3,31 @@
3
3
 
4
4
  Adapters are used to connect Kiln to external systems, or to add new functionality to Kiln.
5
5
 
6
- BaseAdapter is extensible, and used for adding adapters that provide AI functionality. There's currently a LangChain adapter which provides a bridge to LangChain.
6
+ Model adapters are used to call AI models, like Ollama, OpenAI, etc.
7
7
 
8
8
  The ml_model_list submodule contains a list of models that can be used for machine learning tasks. More can easily be added, but we keep a list here of models that are known to work well with Kiln's structured data and tool calling systems.
9
9
 
10
10
  The prompt_builders submodule contains classes that build prompts for use with the AI agents.
11
11
 
12
12
  The repair submodule contains an adapter for the repair task.
13
+
14
+ The parser submodule contains parsers for the output of the AI models.
13
15
  """
14
16
 
15
17
  from . import (
16
- base_adapter,
17
18
  data_gen,
18
19
  fine_tune,
19
- langchain_adapters,
20
20
  ml_model_list,
21
+ model_adapters,
21
22
  prompt_builders,
22
23
  repair,
23
24
  )
24
25
 
25
26
  __all__ = [
26
- "base_adapter",
27
- "langchain_adapters",
27
+ "model_adapters",
28
+ "data_gen",
29
+ "fine_tune",
28
30
  "ml_model_list",
29
31
  "prompt_builders",
30
32
  "repair",
31
- "data_gen",
32
- "fine_tune",
33
33
  ]
@@ -1,17 +1,89 @@
1
+ from os import getenv
2
+
1
3
  from kiln_ai import datamodel
2
- from kiln_ai.adapters.base_adapter import BaseAdapter
3
- from kiln_ai.adapters.langchain_adapters import LangchainAdapter
4
+ from kiln_ai.adapters.ml_model_list import ModelProviderName
5
+ from kiln_ai.adapters.model_adapters.base_adapter import BaseAdapter
6
+ from kiln_ai.adapters.model_adapters.langchain_adapters import LangchainAdapter
7
+ from kiln_ai.adapters.model_adapters.openai_model_adapter import (
8
+ OpenAICompatibleAdapter,
9
+ OpenAICompatibleConfig,
10
+ )
4
11
  from kiln_ai.adapters.prompt_builders import BasePromptBuilder
12
+ from kiln_ai.adapters.provider_tools import core_provider, openai_compatible_config
13
+ from kiln_ai.utils.config import Config
14
+ from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
5
15
 
6
16
 
7
17
  def adapter_for_task(
8
18
  kiln_task: datamodel.Task,
9
- model_name: str | None = None,
10
- provider: str | None = None,
19
+ model_name: str,
20
+ provider: ModelProviderName,
11
21
  prompt_builder: BasePromptBuilder | None = None,
12
22
  tags: list[str] | None = None,
13
23
  ) -> BaseAdapter:
14
- # We use langchain for everything right now, but can add any others here
24
+ # Get the provider to run. For things like the fine-tune provider, we want to run the underlying provider
25
+ core_provider_name = core_provider(model_name, provider)
26
+
27
+ match core_provider_name:
28
+ case ModelProviderName.openrouter:
29
+ return OpenAICompatibleAdapter(
30
+ kiln_task=kiln_task,
31
+ config=OpenAICompatibleConfig(
32
+ base_url=getenv("OPENROUTER_BASE_URL")
33
+ or "https://openrouter.ai/api/v1",
34
+ api_key=Config.shared().open_router_api_key,
35
+ model_name=model_name,
36
+ provider_name=provider,
37
+ openrouter_style_reasoning=True,
38
+ default_headers={
39
+ "HTTP-Referer": "https://getkiln.ai/openrouter",
40
+ "X-Title": "KilnAI",
41
+ },
42
+ ),
43
+ prompt_builder=prompt_builder,
44
+ tags=tags,
45
+ )
46
+ case ModelProviderName.openai:
47
+ return OpenAICompatibleAdapter(
48
+ kiln_task=kiln_task,
49
+ config=OpenAICompatibleConfig(
50
+ api_key=Config.shared().open_ai_api_key,
51
+ model_name=model_name,
52
+ provider_name=provider,
53
+ ),
54
+ prompt_builder=prompt_builder,
55
+ tags=tags,
56
+ )
57
+ case ModelProviderName.openai_compatible:
58
+ config = openai_compatible_config(model_name)
59
+ return OpenAICompatibleAdapter(
60
+ kiln_task=kiln_task,
61
+ config=config,
62
+ prompt_builder=prompt_builder,
63
+ tags=tags,
64
+ )
65
+ # Use LangchainAdapter for the rest
66
+ case ModelProviderName.groq:
67
+ pass
68
+ case ModelProviderName.amazon_bedrock:
69
+ pass
70
+ case ModelProviderName.ollama:
71
+ pass
72
+ case ModelProviderName.fireworks_ai:
73
+ pass
74
+ # These are virtual providers that should have mapped to an actual provider in core_provider
75
+ case ModelProviderName.kiln_fine_tune:
76
+ raise ValueError(
77
+ "Fine tune is not a supported core provider. It should map to an actual provider."
78
+ )
79
+ case ModelProviderName.kiln_custom_registry:
80
+ raise ValueError(
81
+ "Custom openai compatible provider is not a supported core provider. It should map to an actual provider."
82
+ )
83
+ case _:
84
+ raise_exhaustive_enum_error(core_provider_name)
85
+
86
+ # We use langchain for all others right now, but moving off it as we touch anything.
15
87
  return LangchainAdapter(
16
88
  kiln_task,
17
89
  model_name=model_name,
@@ -55,7 +55,7 @@ class DataGenCategoriesTaskInput(BaseModel):
55
55
  num_subtopics=num_subtopics,
56
56
  human_guidance=human_guidance,
57
57
  existing_topics=existing_topics,
58
- system_prompt=prompt_builder.build_prompt(),
58
+ system_prompt=prompt_builder.build_prompt(include_json_instructions=False),
59
59
  )
60
60
 
61
61
 
@@ -132,7 +132,7 @@ class DataGenSampleTaskInput(BaseModel):
132
132
  topic=topic,
133
133
  num_samples=num_samples,
134
134
  human_guidance=human_guidance,
135
- system_prompt=prompt_builder.build_prompt(),
135
+ system_prompt=prompt_builder.build_prompt(include_json_instructions=False),
136
136
  )
137
137
 
138
138
 
@@ -163,7 +163,7 @@ def list_json_schema_for_task(task: Task) -> str:
163
163
  "required": ["generated_samples"],
164
164
  }
165
165
 
166
- return json.dumps(top_level_schema)
166
+ return json.dumps(top_level_schema, ensure_ascii=False)
167
167
 
168
168
 
169
169
  class DataGenSampleTask(Task, parent_of={}):
@@ -180,7 +180,7 @@ def test_data_gen_sample_task_initialization(base_task):
180
180
  }
181
181
 
182
182
 
183
- def test_list_json_schema_for_task_with_output_schema(base_task):
183
+ def test_list_json_schema_for_task_with_input_schema(base_task):
184
184
  # Arrange
185
185
  base_task.input_json_schema = json.dumps(
186
186
  {
@@ -202,9 +202,29 @@ def test_list_json_schema_for_task_with_output_schema(base_task):
202
202
  assert generated_samples_schema["items"]["properties"]["age"]["type"] == "integer"
203
203
 
204
204
 
205
- def test_list_json_schema_for_task_without_output_schema(base_task):
205
+ def test_list_json_schema_for_task_with_input_schema_non_ascii(base_task):
206
206
  # Arrange
207
- base_task.output_json_schema = None
207
+ base_task.input_json_schema = json.dumps(
208
+ {
209
+ "type": "object",
210
+ "properties": {
211
+ "名字": {"type": "string"},
212
+ "年齢": {"type": "integer"},
213
+ },
214
+ }
215
+ )
216
+
217
+ # Act
218
+ schema = list_json_schema_for_task(base_task)
219
+
220
+ # Assert
221
+ assert "名字" in schema
222
+ assert "年齢" in schema
223
+
224
+
225
+ def test_list_json_schema_for_task_without_input_schema(base_task):
226
+ # Arrange
227
+ base_task.input_json_schema = None
208
228
 
209
229
  # Act
210
230
  schema = list_json_schema_for_task(base_task)
@@ -4,7 +4,7 @@ from typing import Literal
4
4
  from pydantic import BaseModel
5
5
 
6
6
  from kiln_ai.adapters.ml_model_list import built_in_models
7
- from kiln_ai.datamodel import DatasetSplit, FineTuneStatusType
7
+ from kiln_ai.datamodel import DatasetSplit, FinetuneDataStrategy, FineTuneStatusType
8
8
  from kiln_ai.datamodel import Finetune as FinetuneModel
9
9
  from kiln_ai.utils.name_generator import generate_memorable_name
10
10
 
@@ -56,6 +56,8 @@ class BaseFinetuneAdapter(ABC):
56
56
  provider_base_model_id: str,
57
57
  train_split_name: str,
58
58
  system_message: str,
59
+ thinking_instructions: str | None,
60
+ data_strategy: FinetuneDataStrategy,
59
61
  parameters: dict[str, str | int | float | bool] = {},
60
62
  name: str | None = None,
61
63
  description: str | None = None,
@@ -100,7 +102,9 @@ class BaseFinetuneAdapter(ABC):
100
102
  validation_split_name=validation_split_name,
101
103
  parameters=parameters,
102
104
  system_message=system_message,
105
+ thinking_instructions=thinking_instructions,
103
106
  parent=parent_task,
107
+ data_strategy=data_strategy,
104
108
  )
105
109
 
106
110
  adapter = cls(datamodel)