kiln-ai 0.7.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

@@ -1,21 +1,34 @@
1
- from unittest.mock import AsyncMock, patch
1
+ from unittest.mock import AsyncMock, Mock, patch
2
2
 
3
3
  import pytest
4
4
 
5
5
  from kiln_ai.adapters.ml_model_list import (
6
+ KilnModel,
6
7
  ModelName,
7
8
  ModelProviderName,
8
9
  )
9
10
  from kiln_ai.adapters.ollama_tools import OllamaConnection
10
11
  from kiln_ai.adapters.provider_tools import (
12
+ builtin_model_from,
11
13
  check_provider_warnings,
14
+ finetune_cache,
15
+ finetune_provider_model,
12
16
  get_model_and_provider,
13
17
  kiln_model_provider_from,
18
+ openai_compatible_provider_model,
14
19
  provider_enabled,
15
20
  provider_name_from_id,
16
21
  provider_options_for_custom_model,
17
22
  provider_warnings,
18
23
  )
24
+ from kiln_ai.datamodel import Finetune, Task
25
+
26
+
27
+ @pytest.fixture(autouse=True)
28
+ def clear_finetune_cache():
29
+ """Clear the finetune provider model cache before each test"""
30
+ finetune_cache.clear()
31
+ yield
19
32
 
20
33
 
21
34
  @pytest.fixture
@@ -24,6 +37,53 @@ def mock_config():
24
37
  yield mock
25
38
 
26
39
 
40
+ @pytest.fixture
41
+ def mock_project():
42
+ with patch("kiln_ai.adapters.provider_tools.project_from_id") as mock:
43
+ project = Mock()
44
+ project.path = "/fake/path"
45
+ mock.return_value = project
46
+ yield mock
47
+
48
+
49
+ @pytest.fixture
50
+ def mock_task():
51
+ with patch("kiln_ai.datamodel.Task.from_id_and_parent_path") as mock:
52
+ task = Mock(spec=Task)
53
+ task.path = "/fake/path/task"
54
+ mock.return_value = task
55
+ yield mock
56
+
57
+
58
+ @pytest.fixture
59
+ def mock_finetune():
60
+ with patch("kiln_ai.datamodel.Finetune.from_id_and_parent_path") as mock:
61
+ finetune = Mock(spec=Finetune)
62
+ finetune.provider = ModelProviderName.openai
63
+ finetune.fine_tune_model_id = "ft:gpt-3.5-turbo:custom:model-123"
64
+ mock.return_value = finetune
65
+ yield mock
66
+
67
+
68
+ @pytest.fixture
69
+ def mock_shared_config():
70
+ with patch("kiln_ai.adapters.provider_tools.Config.shared") as mock:
71
+ config = Mock()
72
+ config.openai_compatible_providers = [
73
+ {
74
+ "name": "test_provider",
75
+ "base_url": "https://api.test.com",
76
+ "api_key": "test-key",
77
+ },
78
+ {
79
+ "name": "no_key_provider",
80
+ "base_url": "https://api.nokey.com",
81
+ },
82
+ ]
83
+ mock.return_value = config
84
+ yield mock
85
+
86
+
27
87
  def test_check_provider_warnings_no_warning(mock_config):
28
88
  mock_config.return_value = "some_value"
29
89
 
@@ -103,6 +163,8 @@ def test_provider_name_from_id_case_sensitivity():
103
163
  (ModelProviderName.ollama, "Ollama"),
104
164
  (ModelProviderName.openai, "OpenAI"),
105
165
  (ModelProviderName.fireworks_ai, "Fireworks AI"),
166
+ (ModelProviderName.kiln_fine_tune, "Fine Tuned Models"),
167
+ (ModelProviderName.kiln_custom_registry, "Custom Models"),
106
168
  ],
107
169
  )
108
170
  def test_provider_name_from_id_parametrized(provider_id, expected_name):
@@ -310,3 +372,255 @@ def test_provider_options_for_custom_model_invalid_enum():
310
372
  """Test handling of invalid enum value"""
311
373
  with pytest.raises(ValueError):
312
374
  provider_options_for_custom_model("model_name", "invalid_enum_value")
375
+
376
+
377
+ @pytest.mark.asyncio
378
+ async def test_kiln_model_provider_from_custom_registry(mock_config):
379
+ # Mock config to pass provider warnings check
380
+ mock_config.return_value = "fake-api-key"
381
+
382
+ # Test with a custom registry model ID in format "provider::model_name"
383
+ provider = await kiln_model_provider_from(
384
+ "openai::gpt-4-turbo", ModelProviderName.kiln_custom_registry
385
+ )
386
+
387
+ assert provider.name == ModelProviderName.openai
388
+ assert provider.supports_structured_output is False
389
+ assert provider.supports_data_gen is False
390
+ assert provider.untested_model is True
391
+ assert provider.provider_options == {"model": "gpt-4-turbo"}
392
+
393
+
394
+ @pytest.mark.asyncio
395
+ async def test_builtin_model_from_invalid_model():
396
+ """Test that an invalid model name returns None"""
397
+ result = await builtin_model_from("non_existent_model")
398
+ assert result is None
399
+
400
+
401
+ @pytest.mark.asyncio
402
+ async def test_builtin_model_from_valid_model_default_provider(mock_config):
403
+ """Test getting a valid model with default provider"""
404
+ mock_config.return_value = "fake-api-key"
405
+
406
+ provider = await builtin_model_from(ModelName.phi_3_5)
407
+
408
+ assert provider is not None
409
+ assert provider.name == ModelProviderName.ollama
410
+ assert provider.provider_options["model"] == "phi3.5"
411
+
412
+
413
+ @pytest.mark.asyncio
414
+ async def test_builtin_model_from_valid_model_specific_provider(mock_config):
415
+ """Test getting a valid model with specific provider"""
416
+ mock_config.return_value = "fake-api-key"
417
+
418
+ provider = await builtin_model_from(
419
+ ModelName.llama_3_1_70b, provider_name=ModelProviderName.groq
420
+ )
421
+
422
+ assert provider is not None
423
+ assert provider.name == ModelProviderName.groq
424
+ assert provider.provider_options["model"] == "llama-3.1-70b-versatile"
425
+
426
+
427
+ @pytest.mark.asyncio
428
+ async def test_builtin_model_from_invalid_provider(mock_config):
429
+ """Test that requesting an invalid provider returns None"""
430
+ mock_config.return_value = "fake-api-key"
431
+
432
+ provider = await builtin_model_from(
433
+ ModelName.phi_3_5, provider_name="invalid_provider"
434
+ )
435
+
436
+ assert provider is None
437
+
438
+
439
+ @pytest.mark.asyncio
440
+ async def test_builtin_model_from_model_no_providers():
441
+ """Test handling of a model with no providers"""
442
+ with patch("kiln_ai.adapters.provider_tools.built_in_models") as mock_models:
443
+ # Create a mock model with no providers
444
+ mock_model = KilnModel(
445
+ name=ModelName.phi_3_5,
446
+ friendly_name="Test Model",
447
+ providers=[],
448
+ family="test_family",
449
+ )
450
+ mock_models.__iter__.return_value = [mock_model]
451
+
452
+ with pytest.raises(ValueError) as exc_info:
453
+ await builtin_model_from(ModelName.phi_3_5)
454
+
455
+ assert str(exc_info.value) == f"Model {ModelName.phi_3_5} has no providers"
456
+
457
+
458
+ @pytest.mark.asyncio
459
+ async def test_builtin_model_from_provider_warning_check(mock_config):
460
+ """Test that provider warnings are checked"""
461
+ # Make the config check fail
462
+ mock_config.return_value = None
463
+
464
+ with pytest.raises(ValueError) as exc_info:
465
+ await builtin_model_from(ModelName.llama_3_1_70b, ModelProviderName.groq)
466
+
467
+ assert provider_warnings[ModelProviderName.groq].message in str(exc_info.value)
468
+
469
+
470
+ def test_finetune_provider_model_success(mock_project, mock_task, mock_finetune):
471
+ """Test successful creation of a fine-tuned model provider"""
472
+ model_id = "project-123::task-456::finetune-789"
473
+
474
+ provider = finetune_provider_model(model_id)
475
+
476
+ assert provider.name == ModelProviderName.openai
477
+ assert provider.provider_options == {"model": "ft:gpt-3.5-turbo:custom:model-123"}
478
+
479
+ # Test cache
480
+ cached_provider = finetune_provider_model(model_id)
481
+ assert cached_provider is provider
482
+
483
+
484
+ def test_finetune_provider_model_invalid_id():
485
+ """Test handling of invalid model ID format"""
486
+ with pytest.raises(ValueError) as exc_info:
487
+ finetune_provider_model("invalid-id-format")
488
+ assert str(exc_info.value) == "Invalid fine tune ID: invalid-id-format"
489
+
490
+
491
+ def test_finetune_provider_model_project_not_found(mock_project):
492
+ """Test handling of non-existent project"""
493
+ mock_project.return_value = None
494
+
495
+ with pytest.raises(ValueError) as exc_info:
496
+ finetune_provider_model("project-123::task-456::finetune-789")
497
+ assert str(exc_info.value) == "Project project-123 not found"
498
+
499
+
500
+ def test_finetune_provider_model_task_not_found(mock_project, mock_task):
501
+ """Test handling of non-existent task"""
502
+ mock_task.return_value = None
503
+
504
+ with pytest.raises(ValueError) as exc_info:
505
+ finetune_provider_model("project-123::task-456::finetune-789")
506
+ assert str(exc_info.value) == "Task task-456 not found"
507
+
508
+
509
+ def test_finetune_provider_model_finetune_not_found(
510
+ mock_project, mock_task, mock_finetune
511
+ ):
512
+ """Test handling of non-existent fine-tune"""
513
+ mock_finetune.return_value = None
514
+
515
+ with pytest.raises(ValueError) as exc_info:
516
+ finetune_provider_model("project-123::task-456::finetune-789")
517
+ assert str(exc_info.value) == "Fine tune finetune-789 not found"
518
+
519
+
520
+ def test_finetune_provider_model_incomplete_finetune(
521
+ mock_project, mock_task, mock_finetune
522
+ ):
523
+ """Test handling of incomplete fine-tune"""
524
+ finetune = Mock(spec=Finetune)
525
+ finetune.fine_tune_model_id = None
526
+ mock_finetune.return_value = finetune
527
+
528
+ with pytest.raises(ValueError) as exc_info:
529
+ finetune_provider_model("project-123::task-456::finetune-789")
530
+ assert (
531
+ str(exc_info.value)
532
+ == "Fine tune finetune-789 not completed. Refresh it's status in the fine-tune tab."
533
+ )
534
+
535
+
536
+ def test_finetune_provider_model_fireworks_provider(
537
+ mock_project, mock_task, mock_finetune
538
+ ):
539
+ """Test creation of Fireworks AI provider with specific adapter options"""
540
+ finetune = Mock(spec=Finetune)
541
+ finetune.provider = ModelProviderName.fireworks_ai
542
+ finetune.fine_tune_model_id = "fireworks-model-123"
543
+ mock_finetune.return_value = finetune
544
+
545
+ provider = finetune_provider_model("project-123::task-456::finetune-789")
546
+
547
+ assert provider.name == ModelProviderName.fireworks_ai
548
+ assert provider.provider_options == {"model": "fireworks-model-123"}
549
+ assert provider.adapter_options == {
550
+ "langchain": {"with_structured_output_options": {"method": "json_mode"}}
551
+ }
552
+
553
+
554
+ def test_openai_compatible_provider_model_success(mock_shared_config):
555
+ """Test successful creation of an OpenAI compatible provider"""
556
+ model_id = "test_provider::gpt-4"
557
+
558
+ provider = openai_compatible_provider_model(model_id)
559
+
560
+ assert provider.name == ModelProviderName.openai_compatible
561
+ assert provider.provider_options == {
562
+ "model": "gpt-4",
563
+ "api_key": "test-key",
564
+ "openai_api_base": "https://api.test.com",
565
+ }
566
+ assert provider.supports_structured_output is False
567
+ assert provider.supports_data_gen is False
568
+ assert provider.untested_model is True
569
+
570
+
571
+ def test_openai_compatible_provider_model_no_api_key(mock_shared_config):
572
+ """Test provider creation without API key (should work as some providers don't require it)"""
573
+ model_id = "no_key_provider::gpt-4"
574
+
575
+ provider = openai_compatible_provider_model(model_id)
576
+
577
+ assert provider.name == ModelProviderName.openai_compatible
578
+ assert provider.provider_options == {
579
+ "model": "gpt-4",
580
+ "api_key": None,
581
+ "openai_api_base": "https://api.nokey.com",
582
+ }
583
+
584
+
585
+ def test_openai_compatible_provider_model_invalid_id():
586
+ """Test handling of invalid model ID format"""
587
+ with pytest.raises(ValueError) as exc_info:
588
+ openai_compatible_provider_model("invalid-id-format")
589
+ assert (
590
+ str(exc_info.value) == "Invalid openai compatible model ID: invalid-id-format"
591
+ )
592
+
593
+
594
+ def test_openai_compatible_provider_model_no_providers(mock_shared_config):
595
+ """Test handling when no providers are configured"""
596
+ mock_shared_config.return_value.openai_compatible_providers = None
597
+
598
+ with pytest.raises(ValueError) as exc_info:
599
+ openai_compatible_provider_model("test_provider::gpt-4")
600
+ assert str(exc_info.value) == "OpenAI compatible provider test_provider not found"
601
+
602
+
603
+ def test_openai_compatible_provider_model_provider_not_found(mock_shared_config):
604
+ """Test handling of non-existent provider"""
605
+ with pytest.raises(ValueError) as exc_info:
606
+ openai_compatible_provider_model("unknown_provider::gpt-4")
607
+ assert (
608
+ str(exc_info.value) == "OpenAI compatible provider unknown_provider not found"
609
+ )
610
+
611
+
612
+ def test_openai_compatible_provider_model_no_base_url(mock_shared_config):
613
+ """Test handling of provider without base URL"""
614
+ mock_shared_config.return_value.openai_compatible_providers = [
615
+ {
616
+ "name": "test_provider",
617
+ "api_key": "test-key",
618
+ }
619
+ ]
620
+
621
+ with pytest.raises(ValueError) as exc_info:
622
+ openai_compatible_provider_model("test_provider::gpt-4")
623
+ assert (
624
+ str(exc_info.value)
625
+ == "OpenAI compatible provider test_provider has no base URL"
626
+ )
@@ -1,3 +1,7 @@
1
+ """
2
+ See our docs for details about our datamodel: https://kiln-ai.github.io/Kiln/kiln_core_docs/kiln_ai.html
3
+ """
4
+
1
5
  from __future__ import annotations
2
6
 
3
7
  import json
@@ -8,7 +12,12 @@ from typing import TYPE_CHECKING, Callable, Dict, List, Type, Union
8
12
 
9
13
  import jsonschema
10
14
  import jsonschema.exceptions
11
- from pydantic import BaseModel, Field, model_validator
15
+ from pydantic import (
16
+ BaseModel,
17
+ Field,
18
+ ValidationInfo,
19
+ model_validator,
20
+ )
12
21
  from typing_extensions import Self
13
22
 
14
23
  from kiln_ai.datamodel.json_schema import JsonObjectSchema, schema_from_json_str
@@ -43,9 +52,25 @@ __all__ = [
43
52
  "TaskOutputRatingType",
44
53
  "TaskRequirement",
45
54
  "TaskDeterminism",
55
+ "strict_mode",
56
+ "set_strict_mode",
46
57
  ]
47
58
 
48
59
 
60
+ # We want to be hard on ourselves for data completeness generated by the Kiln App, but don't want to make it hard for users to use the datamodel/library.
61
+ # Strict mode enables extra validations that we want to enforce in Kiln App (and any other client that wants best practices), but not in the library (unless they opt in)
62
+ _strict_mode: bool = False
63
+
64
+
65
+ def strict_mode() -> bool:
66
+ return _strict_mode
67
+
68
+
69
+ def set_strict_mode(value: bool) -> None:
70
+ global _strict_mode
71
+ _strict_mode = value
72
+
73
+
49
74
  class Priority(IntEnum):
50
75
  """Defines priority levels for tasks and requirements, where P0 is highest priority."""
51
76
 
@@ -60,30 +85,71 @@ class TaskOutputRatingType(str, Enum):
60
85
  """Defines the types of rating systems available for task outputs."""
61
86
 
62
87
  five_star = "five_star"
88
+ pass_fail = "pass_fail"
89
+ pass_fail_critical = "pass_fail_critical"
63
90
  custom = "custom"
64
91
 
65
92
 
93
+ class RequirementRating(BaseModel):
94
+ """Rating for a specific requirement within a task output."""
95
+
96
+ value: float = Field(
97
+ description="The rating value. Interpretation depends on rating type"
98
+ )
99
+ type: TaskOutputRatingType = Field(description="The type of rating")
100
+
101
+
66
102
  class TaskOutputRating(KilnBaseModel):
67
103
  """
68
104
  A rating for a task output, including an overall rating and ratings for each requirement.
69
105
 
70
- Only supports five star ratings for now, but extensible for custom values.
106
+ Supports:
107
+ - five_star: 1-5 star ratings
108
+ - pass_fail: boolean pass/fail (1.0 = pass, 0.0 = fail)
109
+ - pass_fail_critical: tri-state (1.0 = pass, 0.0 = fail, -1.0 = critical fail)
71
110
  """
72
111
 
73
112
  type: TaskOutputRatingType = Field(default=TaskOutputRatingType.five_star)
74
113
  value: float | None = Field(
75
- description="The overall rating value (typically 1-5 stars).",
114
+ description="The rating value. Interpretation depends on rating type:\n- five_star: 1-5 stars\n- pass_fail: 1.0 (pass) or 0.0 (fail)\n- pass_fail_critical: 1.0 (pass), 0.0 (fail), or -1.0 (critical fail)",
76
115
  default=None,
77
116
  )
78
- requirement_ratings: Dict[ID_TYPE, float] = Field(
117
+ requirement_ratings: Dict[ID_TYPE, RequirementRating] = Field(
79
118
  default={},
80
- description="The ratings of the requirements of the task. The keys are the ids of the requirements. The values are the ratings (typically 1-5 stars).",
119
+ description="The ratings of the requirements of the task.",
81
120
  )
82
121
 
122
+ # Previously we stored rating values as a dict of floats, but now we store them as RequirementRating objects.
123
+ @model_validator(mode="before")
124
+ def upgrade_old_format(cls, data: dict) -> dict:
125
+ if not isinstance(data, dict):
126
+ return data
127
+
128
+ # Check if we have the old format (dict of floats)
129
+ req_ratings = data.get("requirement_ratings", {})
130
+ if req_ratings and all(
131
+ isinstance(v, (int, float)) for v in req_ratings.values()
132
+ ):
133
+ # Convert each float to a RequirementRating object
134
+ # all ratings are five star at the point we used this format
135
+ data["requirement_ratings"] = {
136
+ k: {"value": v, "type": TaskOutputRatingType.five_star}
137
+ for k, v in req_ratings.items()
138
+ }
139
+
140
+ return data
141
+
83
142
  # Used to select high quality outputs for example selection (MultiShotPromptBuilder, etc)
84
143
  def is_high_quality(self) -> bool:
144
+ if self.value is None:
145
+ return False
146
+
85
147
  if self.type == TaskOutputRatingType.five_star:
86
- return self.value is not None and self.value >= 4
148
+ return self.value >= 4
149
+ elif self.type == TaskOutputRatingType.pass_fail:
150
+ return self.value == 1.0
151
+ elif self.type == TaskOutputRatingType.pass_fail_critical:
152
+ return self.value == 1.0
87
153
  return False
88
154
 
89
155
  @model_validator(mode="after")
@@ -91,24 +157,61 @@ class TaskOutputRating(KilnBaseModel):
91
157
  if self.type not in TaskOutputRatingType:
92
158
  raise ValueError(f"Invalid rating type: {self.type}")
93
159
 
94
- if self.type == TaskOutputRatingType.five_star:
95
- if self.value is not None:
96
- self._validate_five_star(self.value, "overall rating")
97
- for req_id, req_rating in self.requirement_ratings.items():
98
- self._validate_five_star(req_rating, f"requirement rating for {req_id}")
160
+ # Overall rating is optional
161
+ if self.value is not None:
162
+ self._validate_rating(self.type, self.value, "overall rating")
163
+
164
+ for req_id, req_rating in self.requirement_ratings.items():
165
+ self._validate_rating(
166
+ req_rating.type,
167
+ req_rating.value,
168
+ f"requirement rating for req ID: {req_id}",
169
+ )
99
170
 
100
171
  return self
101
172
 
102
- def _validate_five_star(self, rating: float, rating_name: str) -> None:
103
- if not isinstance(rating, float) or not rating.is_integer():
173
+ def _validate_rating(
174
+ self, type: TaskOutputRatingType, rating: float | None, rating_name: str
175
+ ) -> None:
176
+ if type == TaskOutputRatingType.five_star:
177
+ self._validate_five_star(rating, rating_name)
178
+ elif type == TaskOutputRatingType.pass_fail:
179
+ self._validate_pass_fail(rating, rating_name)
180
+ elif type == TaskOutputRatingType.pass_fail_critical:
181
+ self._validate_pass_fail_critical(rating, rating_name)
182
+
183
+ def _validate_five_star(self, rating: float | None, rating_name: str) -> None:
184
+ if rating is None or not isinstance(rating, float) or not rating.is_integer():
104
185
  raise ValueError(
105
- f"{rating_name.capitalize()} of type five_star must be an integer value (1.0, 2.0, 3.0, 4.0, or 5.0)"
186
+ f"{rating_name.capitalize()} of type five_star must be an integer value (1-5)"
106
187
  )
107
188
  if rating < 1 or rating > 5:
108
189
  raise ValueError(
109
190
  f"{rating_name.capitalize()} of type five_star must be between 1 and 5 stars"
110
191
  )
111
192
 
193
+ def _validate_pass_fail(self, rating: float | None, rating_name: str) -> None:
194
+ if rating is None or not isinstance(rating, float) or not rating.is_integer():
195
+ raise ValueError(
196
+ f"{rating_name.capitalize()} of type pass_fail must be an integer value (0 or 1)"
197
+ )
198
+ if rating not in [0, 1]:
199
+ raise ValueError(
200
+ f"{rating_name.capitalize()} of type pass_fail must be 0 (fail) or 1 (pass)"
201
+ )
202
+
203
+ def _validate_pass_fail_critical(
204
+ self, rating: float | None, rating_name: str
205
+ ) -> None:
206
+ if rating is None or not isinstance(rating, float) or not rating.is_integer():
207
+ raise ValueError(
208
+ f"{rating_name.capitalize()} of type pass_fail_critical must be an integer value (-1, 0, or 1)"
209
+ )
210
+ if rating not in [-1, 0, 1]:
211
+ raise ValueError(
212
+ f"{rating_name.capitalize()} of type pass_fail_critical must be -1 (critical fail), 0 (fail), or 1 (pass)"
213
+ )
214
+
112
215
 
113
216
  class TaskOutput(KilnBaseModel):
114
217
  """
@@ -121,8 +224,9 @@ class TaskOutput(KilnBaseModel):
121
224
  output: str = Field(
122
225
  description="The output of the task. JSON formatted for structured output, plaintext for unstructured output."
123
226
  )
124
- source: DataSource = Field(
125
- description="The source of the output: human or synthetic."
227
+ source: DataSource | None = Field(
228
+ description="The source of the output: human or synthetic.",
229
+ default=None,
126
230
  )
127
231
  rating: TaskOutputRating | None = Field(
128
232
  default=None, description="The rating of the output"
@@ -139,6 +243,18 @@ class TaskOutput(KilnBaseModel):
139
243
  raise ValueError(f"Output does not match task output schema: {e}")
140
244
  return self
141
245
 
246
+ @model_validator(mode="after")
247
+ def validate_output_source(self, info: ValidationInfo) -> Self:
248
+ # On strict mode and not loaded from file, we validate output_source is not None.
249
+ # We want to be able to load any data, even if it's not perfect. But we want to create perfect data when adding new data.
250
+ if not strict_mode():
251
+ return self
252
+ if self.loaded_from_file(info):
253
+ return self
254
+ if self.source is None:
255
+ raise ValueError("Output source is required when strict mode is enabled")
256
+ return self
257
+
142
258
 
143
259
  class FineTuneStatusType(str, Enum):
144
260
  """
@@ -326,8 +442,8 @@ class TaskRun(KilnParentedModel):
326
442
  input: str = Field(
327
443
  description="The inputs to the task. JSON formatted for structured input, plaintext for unstructured input."
328
444
  )
329
- input_source: DataSource = Field(
330
- description="The source of the input: human or synthetic."
445
+ input_source: DataSource | None = Field(
446
+ default=None, description="The source of the input: human or synthetic."
331
447
  )
332
448
 
333
449
  output: TaskOutput = Field(description="The output of the task run.")
@@ -343,6 +459,10 @@ class TaskRun(KilnParentedModel):
343
459
  default=None,
344
460
  description="Intermediate outputs from the task run. Keys are the names of the intermediate output steps (cot=chain of thought, etc), values are the output data.",
345
461
  )
462
+ tags: List[str] = Field(
463
+ default=[],
464
+ description="Tags for the task run. Tags are used to categorize task runs for filtering and reporting.",
465
+ )
346
466
 
347
467
  def parent_task(self) -> Task | None:
348
468
  if not isinstance(self.parent, Task):
@@ -392,6 +512,28 @@ class TaskRun(KilnParentedModel):
392
512
  )
393
513
  return self
394
514
 
515
+ @model_validator(mode="after")
516
+ def validate_input_source(self, info: ValidationInfo) -> Self:
517
+ # On strict mode and not loaded from file, we validate input_source is not None.
518
+ # We want to be able to load any data, even if it's not perfect. But we want to create perfect data when adding new data.
519
+ if not strict_mode():
520
+ return self
521
+ if self.loaded_from_file(info):
522
+ return self
523
+ if self.input_source is None:
524
+ raise ValueError("input_source is required when strict mode is enabled")
525
+ return self
526
+
527
+ @model_validator(mode="after")
528
+ def validate_tags(self) -> Self:
529
+ for tag in self.tags:
530
+ if not tag:
531
+ raise ValueError("Tags cannot be empty strings")
532
+ if " " in tag:
533
+ raise ValueError("Tags cannot contain spaces. Try underscores.")
534
+
535
+ return self
536
+
395
537
 
396
538
  # Define the type alias for clarity
397
539
  DatasetFilter = Callable[[TaskRun], bool]
@@ -552,7 +694,7 @@ class TaskRequirement(BaseModel):
552
694
  Defines a specific requirement that should be met by task outputs.
553
695
 
554
696
  Includes an identifier, name, description, instruction for meeting the requirement,
555
- and priority level.
697
+ priority level, and rating type (five_star, pass_fail, pass_fail_critical, custom).
556
698
  """
557
699
 
558
700
  id: ID_TYPE = ID_FIELD
@@ -560,6 +702,7 @@ class TaskRequirement(BaseModel):
560
702
  description: str | None = Field(default=None)
561
703
  instruction: str = Field(min_length=1)
562
704
  priority: Priority = Field(default=Priority.p2)
705
+ type: TaskOutputRatingType = Field(default=TaskOutputRatingType.five_star)
563
706
 
564
707
 
565
708
  class TaskDeterminism(str, Enum):