kiln-ai 0.5.5__py3-none-any.whl → 0.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/__init__.py +9 -1
- kiln_ai/adapters/base_adapter.py +24 -35
- kiln_ai/adapters/data_gen/__init__.py +11 -0
- kiln_ai/adapters/data_gen/data_gen_prompts.py +73 -0
- kiln_ai/adapters/data_gen/data_gen_task.py +185 -0
- kiln_ai/adapters/data_gen/test_data_gen_task.py +293 -0
- kiln_ai/adapters/langchain_adapters.py +39 -7
- kiln_ai/adapters/ml_model_list.py +55 -1
- kiln_ai/adapters/prompt_builders.py +66 -0
- kiln_ai/adapters/repair/test_repair_task.py +4 -1
- kiln_ai/adapters/test_langchain_adapter.py +73 -0
- kiln_ai/adapters/test_ml_model_list.py +56 -0
- kiln_ai/adapters/test_prompt_adaptors.py +52 -18
- kiln_ai/adapters/test_prompt_builders.py +97 -7
- kiln_ai/adapters/test_saving_adapter_results.py +16 -6
- kiln_ai/adapters/test_structured_output.py +33 -5
- kiln_ai/datamodel/__init__.py +28 -7
- kiln_ai/datamodel/json_schema.py +1 -0
- kiln_ai/datamodel/test_models.py +44 -8
- kiln_ai/utils/config.py +3 -2
- kiln_ai/utils/test_config.py +7 -0
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.1.dist-info}/METADATA +1 -2
- kiln_ai-0.6.1.dist-info/RECORD +37 -0
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.1.dist-info}/WHEEL +1 -1
- kiln_ai-0.5.5.dist-info/RECORD +0 -33
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.1.dist-info}/licenses/LICENSE.txt +0 -0
kiln_ai/adapters/__init__.py
CHANGED
|
@@ -12,7 +12,14 @@ The prompt_builders submodule contains classes that build prompts for use with t
|
|
|
12
12
|
The repair submodule contains an adapter for the repair task.
|
|
13
13
|
"""
|
|
14
14
|
|
|
15
|
-
from . import
|
|
15
|
+
from . import (
|
|
16
|
+
base_adapter,
|
|
17
|
+
data_gen,
|
|
18
|
+
langchain_adapters,
|
|
19
|
+
ml_model_list,
|
|
20
|
+
prompt_builders,
|
|
21
|
+
repair,
|
|
22
|
+
)
|
|
16
23
|
|
|
17
24
|
__all__ = [
|
|
18
25
|
"base_adapter",
|
|
@@ -20,4 +27,5 @@ __all__ = [
|
|
|
20
27
|
"ml_model_list",
|
|
21
28
|
"prompt_builders",
|
|
22
29
|
"repair",
|
|
30
|
+
"data_gen",
|
|
23
31
|
]
|
kiln_ai/adapters/base_adapter.py
CHANGED
|
@@ -24,6 +24,12 @@ class AdapterInfo:
|
|
|
24
24
|
prompt_builder_name: str
|
|
25
25
|
|
|
26
26
|
|
|
27
|
+
@dataclass
|
|
28
|
+
class RunOutput:
|
|
29
|
+
output: Dict | str
|
|
30
|
+
intermediate_outputs: Dict[str, str] | None
|
|
31
|
+
|
|
32
|
+
|
|
27
33
|
class BaseAdapter(metaclass=ABCMeta):
|
|
28
34
|
"""Base class for AI model adapters that handle task execution.
|
|
29
35
|
|
|
@@ -36,22 +42,6 @@ class BaseAdapter(metaclass=ABCMeta):
|
|
|
36
42
|
kiln_task (Task): The task configuration and metadata
|
|
37
43
|
output_schema (dict | None): JSON schema for validating structured outputs
|
|
38
44
|
input_schema (dict | None): JSON schema for validating structured inputs
|
|
39
|
-
|
|
40
|
-
Example:
|
|
41
|
-
```python
|
|
42
|
-
class CustomAdapter(BaseAdapter):
|
|
43
|
-
async def _run(self, input: Dict | str) -> Dict | str:
|
|
44
|
-
# Implementation for specific model
|
|
45
|
-
pass
|
|
46
|
-
|
|
47
|
-
def adapter_info(self) -> AdapterInfo:
|
|
48
|
-
return AdapterInfo(
|
|
49
|
-
adapter_name="custom",
|
|
50
|
-
model_name="model-1",
|
|
51
|
-
model_provider="provider",
|
|
52
|
-
prompt_builder_name="simple"
|
|
53
|
-
)
|
|
54
|
-
```
|
|
55
45
|
"""
|
|
56
46
|
|
|
57
47
|
def __init__(
|
|
@@ -85,21 +75,23 @@ class BaseAdapter(metaclass=ABCMeta):
|
|
|
85
75
|
validate_schema(input, self.input_schema)
|
|
86
76
|
|
|
87
77
|
# Run
|
|
88
|
-
|
|
78
|
+
run_output = await self._run(input)
|
|
89
79
|
|
|
90
80
|
# validate output
|
|
91
81
|
if self.output_schema is not None:
|
|
92
|
-
if not isinstance(
|
|
93
|
-
raise RuntimeError(
|
|
94
|
-
|
|
82
|
+
if not isinstance(run_output.output, dict):
|
|
83
|
+
raise RuntimeError(
|
|
84
|
+
f"structured response is not a dict: {run_output.output}"
|
|
85
|
+
)
|
|
86
|
+
validate_schema(run_output.output, self.output_schema)
|
|
95
87
|
else:
|
|
96
|
-
if not isinstance(
|
|
88
|
+
if not isinstance(run_output.output, str):
|
|
97
89
|
raise RuntimeError(
|
|
98
|
-
f"response is not a string for non-structured task: {
|
|
90
|
+
f"response is not a string for non-structured task: {run_output.output}"
|
|
99
91
|
)
|
|
100
92
|
|
|
101
93
|
# Generate the run and output
|
|
102
|
-
run = self.generate_run(input, input_source,
|
|
94
|
+
run = self.generate_run(input, input_source, run_output)
|
|
103
95
|
|
|
104
96
|
# Save the run if configured to do so, and we have a path to save to
|
|
105
97
|
if Config.shared().autosave_runs and self.kiln_task.path is not None:
|
|
@@ -118,27 +110,23 @@ class BaseAdapter(metaclass=ABCMeta):
|
|
|
118
110
|
pass
|
|
119
111
|
|
|
120
112
|
@abstractmethod
|
|
121
|
-
async def _run(self, input: Dict | str) ->
|
|
113
|
+
async def _run(self, input: Dict | str) -> RunOutput:
|
|
122
114
|
pass
|
|
123
115
|
|
|
124
116
|
def build_prompt(self) -> str:
|
|
125
|
-
|
|
126
|
-
adapter_instructions = self.adapter_specific_instructions()
|
|
127
|
-
if adapter_instructions is not None:
|
|
128
|
-
prompt += f"# Format Instructions\n\n{adapter_instructions}\n\n"
|
|
129
|
-
return prompt
|
|
130
|
-
|
|
131
|
-
# override for adapter specific instructions (e.g. tool calling, json format, etc)
|
|
132
|
-
def adapter_specific_instructions(self) -> str | None:
|
|
133
|
-
return None
|
|
117
|
+
return self.prompt_builder.build_prompt()
|
|
134
118
|
|
|
135
119
|
# create a run and task output
|
|
136
120
|
def generate_run(
|
|
137
|
-
self, input: Dict | str, input_source: DataSource | None,
|
|
121
|
+
self, input: Dict | str, input_source: DataSource | None, run_output: RunOutput
|
|
138
122
|
) -> TaskRun:
|
|
139
123
|
# Convert input and output to JSON strings if they are dictionaries
|
|
140
124
|
input_str = json.dumps(input) if isinstance(input, dict) else input
|
|
141
|
-
output_str =
|
|
125
|
+
output_str = (
|
|
126
|
+
json.dumps(run_output.output)
|
|
127
|
+
if isinstance(run_output.output, dict)
|
|
128
|
+
else run_output.output
|
|
129
|
+
)
|
|
142
130
|
|
|
143
131
|
# If no input source is provided, use the human data source
|
|
144
132
|
if input_source is None:
|
|
@@ -159,6 +147,7 @@ class BaseAdapter(metaclass=ABCMeta):
|
|
|
159
147
|
properties=self._properties_for_task_output(),
|
|
160
148
|
),
|
|
161
149
|
),
|
|
150
|
+
intermediate_outputs=run_output.intermediate_outputs,
|
|
162
151
|
)
|
|
163
152
|
|
|
164
153
|
exclude_fields = {
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
"""
|
|
2
|
+
# Data Generation
|
|
3
|
+
|
|
4
|
+
A task to generate synthetic data for Kiln Tasks. This generates the inputs, which then can be run through the task.
|
|
5
|
+
|
|
6
|
+
Optional human guidance can be provided to guide the generation process.
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
from . import data_gen_task
|
|
10
|
+
|
|
11
|
+
__all__ = ["data_gen_task"]
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# The contents of this file are adapted from the promptwrite library (https://github.com/StacklokLabs/promptwright),
|
|
2
|
+
# which was adapted from the pluto library (https://github.com/redotvideo/pluto).
|
|
3
|
+
# These libraries are licensed under the Apache License 2.0. Any modifications
|
|
4
|
+
# are licensed under the kiln AI Core license (MIT at time of writing). See /libs/core/LICENSE.txt for details.
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
TREE_GENERATION_PROMPT = """I want to train a large language model and I am using another, bigger large language model to generate training data for this. However, if we always ask the bigger model to generate training data with the same prompt, it will end up generating very repetitive training samples. Therefore, we will slightly modify our prompt for each sampling procedure according to some aspects. For instance, when asking the model to generate news articles, we could modify the prompt to let the model tell news articles about particular topics, such as business or politics. To further generate training data, we will do this recursively, and generate submodifications to the prompt. For instance, within the domain of business, we could adapt the prompt to generate news about the stock market or business scandals, and within politics, we could ask the model to generate articles for subtopics like elections or climate policy. We do this recursively, and therefore, we get a tree-like structure of topics.
|
|
8
|
+
Your job is the following: I will give you a path of nodes down the topic tree - you should then come up with a list of new subtopics for this given node and return it as a python list. Here are a few examples of what your outputs should look like, related to the news example I just gave you:
|
|
9
|
+
|
|
10
|
+
Example 1:
|
|
11
|
+
node path: "News Topics" -> "Sports" -> "Football"
|
|
12
|
+
desired number of subtopics: 5
|
|
13
|
+
subtopics: ["College Football", "Football Stadiums", "Health Consequences Football", "Seattle Seahawks", "Football Sponsorships"]
|
|
14
|
+
|
|
15
|
+
Example 2:
|
|
16
|
+
node path: "News Topics" -> "Entertainment" -> "Movies" -> "Star Portraits"
|
|
17
|
+
desired number of subtopics: 8
|
|
18
|
+
subtopics: ["Tom Hanks", "Meryl Streep", "Leonardo DiCaprio", "Jennifer Lawrence", "Denzel Washington", "Charlize Theron", "Robert Downey Jr.", "Emma Stone"]
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
Here are three new examples, this time for generating smalltalk topics for a friendly chat assistant:
|
|
22
|
+
|
|
23
|
+
Example 1:
|
|
24
|
+
node path: "Small Talk Topics"
|
|
25
|
+
desired number of subtopics: 7
|
|
26
|
+
subtopics: ["Weather", "Weekend Plans", "Hobbies", "Family", "Books", "Food", "Music"]
|
|
27
|
+
|
|
28
|
+
Example 2:
|
|
29
|
+
node path: "Small Talk Topics" -> "Family"
|
|
30
|
+
desired number of subtopics: 5
|
|
31
|
+
subtopics: ["Parents", "Grandparents", "Siblings", "Family Traditions", "Family Vacations"]
|
|
32
|
+
|
|
33
|
+
Example 3:
|
|
34
|
+
node path: "Small Talk Topics" -> "Hobbies" -> "Cooking"
|
|
35
|
+
desired number of subtopics: 6
|
|
36
|
+
subtopics: ["Recipes", "Asian Food", "Favourite Dishes", "Cookbooks", "Kitchen Gadgets", "Vegan Cooking"]
|
|
37
|
+
|
|
38
|
+
The user message will contain the following:
|
|
39
|
+
- The system prompt for the model we want to train as system_prompt.
|
|
40
|
+
- The node path as node_path. It will be formated as a list of strings from most general to most specific. For example, the node_path for Example 3 above would be ["Small Talk Topics", "Hobbies", "Cooking"]. If empty, the node path is the root node.
|
|
41
|
+
- The desired number of subtopics for this node as num_subtopics. Return exactly this number of subtopics.
|
|
42
|
+
- Optionally, it may contain human_guidance, which is a string that contains additional instructions for how to generate the subtopics.
|
|
43
|
+
- Optionally, it may contain existing_topics, which is a list of subtopics that already exist at this node. You should not generate subtopics that are in this list.
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
When generating subtopics, remain somewhat vague. Things can only be tangentially related and they don't have to be interpreted in a single way. Importantly, make sure that the subtopics fit the system prompt.
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
SAMPLE_GENERATION_PROMPT = """I want to train a large language model and you should help me generate training data for it.
|
|
51
|
+
|
|
52
|
+
Your job is to generate a list of potential inputs to the provided system prompt. They should be diverse and relevant to the system prompt, and the topic if provided.
|
|
53
|
+
|
|
54
|
+
In the user message we'll provide the following:
|
|
55
|
+
- The system prompt as system_prompt
|
|
56
|
+
- A potential topic to generate samples for. This will be a list of strings from most general to most specific. For example, the topic ["Small Talk Topics", "Hobbies", "Cooking"] would represent the topic "Cooking" in the "Hobbies" category of "Small Talk Topics". The list may be empty, in which case you should generate samples using the system prompt alone.
|
|
57
|
+
- The number of samples to generate as num_samples. If greater than 1, generate a range of samples that are diverse and relevant to the system prompt, and the topic if provided.
|
|
58
|
+
- The user message may optionally contain human_guidance, which is a string that contains additional instructions for how to generate the samples.
|
|
59
|
+
|
|
60
|
+
The output must be formatted:
|
|
61
|
+
- in the provided structured format, as an object with a single property "generated_samples" that maps to a list of generated samples that would be inputs to the provided system prompt.
|
|
62
|
+
- With the correct number of samples (num_samples).
|
|
63
|
+
- Do not include any other text or break the schema in any way.
|
|
64
|
+
|
|
65
|
+
Example inputs:
|
|
66
|
+
- system_prompt: "You are an assistant that classifies the tone of a tweet. You should output one of the following labels: 'positive', 'negative', 'neutral'."
|
|
67
|
+
- topic: ["Technology", "New iPhone Event"]
|
|
68
|
+
- num_samples: 2
|
|
69
|
+
Example output: {"generated_samples": ["New iPhone looks amazing! I need that camera.", "Another boring event from Apple.", "New iPhone looks interesting, but I'm waiting for reviews."]}
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
Note how the output of this task is data to input to the system prompt, not the expected output of the system prompt.
|
|
73
|
+
"""
|
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
import json
|
|
2
|
+
|
|
3
|
+
from pydantic import BaseModel
|
|
4
|
+
|
|
5
|
+
from kiln_ai.adapters.prompt_builders import SimplePromptBuilder
|
|
6
|
+
from kiln_ai.datamodel import Project, Task
|
|
7
|
+
|
|
8
|
+
from .data_gen_prompts import (
|
|
9
|
+
SAMPLE_GENERATION_PROMPT,
|
|
10
|
+
TREE_GENERATION_PROMPT,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class DataGenCategoriesTaskInput(BaseModel):
|
|
15
|
+
"""Input model for generating categories/subtopics.
|
|
16
|
+
|
|
17
|
+
Attributes:
|
|
18
|
+
node_path: List of strings representing the hierarchical path to current node
|
|
19
|
+
system_prompt: System prompt to guide the AI generation
|
|
20
|
+
num_subtopics: Number of subtopics to generate
|
|
21
|
+
human_guidance: Optional human guidance to influence generation
|
|
22
|
+
existing_topics: Optional list of existing topics to avoid duplication
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
node_path: list[str]
|
|
26
|
+
system_prompt: str
|
|
27
|
+
num_subtopics: int
|
|
28
|
+
human_guidance: str | None = None
|
|
29
|
+
existing_topics: list[str] | None = None
|
|
30
|
+
|
|
31
|
+
@classmethod
|
|
32
|
+
def from_task(
|
|
33
|
+
cls,
|
|
34
|
+
task: Task,
|
|
35
|
+
node_path: list[str] = [],
|
|
36
|
+
num_subtopics: int = 6,
|
|
37
|
+
human_guidance: str | None = None,
|
|
38
|
+
existing_topics: list[str] | None = None,
|
|
39
|
+
) -> "DataGenCategoriesTaskInput":
|
|
40
|
+
"""Create a DataGenCategoriesTaskInput instance from a Task.
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
task: The source Task object
|
|
44
|
+
node_path: Path to current node in topic hierarchy
|
|
45
|
+
num_subtopics: Number of subtopics to generate
|
|
46
|
+
human_guidance: Optional guidance for generation
|
|
47
|
+
existing_topics: Optional list of existing topics
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
A new DataGenCategoriesTaskInput instance
|
|
51
|
+
"""
|
|
52
|
+
prompt_builder = SimplePromptBuilder(task=task)
|
|
53
|
+
return cls(
|
|
54
|
+
node_path=node_path,
|
|
55
|
+
num_subtopics=num_subtopics,
|
|
56
|
+
human_guidance=human_guidance,
|
|
57
|
+
existing_topics=existing_topics,
|
|
58
|
+
system_prompt=prompt_builder.build_prompt(),
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class DataGenCategoriesTaskOutput(BaseModel):
|
|
63
|
+
"""Output model for generated categories/subtopics.
|
|
64
|
+
|
|
65
|
+
Attributes:
|
|
66
|
+
subtopics: List of generated subtopic strings
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
subtopics: list[str]
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class DataGenCategoriesTask(Task, parent_of={}):
|
|
73
|
+
"""Task for generating hierarchical categories/subtopics.
|
|
74
|
+
|
|
75
|
+
Generates synthetic data categories which can be used to generate
|
|
76
|
+
training data for model learning.
|
|
77
|
+
"""
|
|
78
|
+
|
|
79
|
+
def __init__(self):
|
|
80
|
+
# Keep the typechecker happy. TODO: shouldn't need this or parent_of above.
|
|
81
|
+
tmp_project = Project(name="DataGen")
|
|
82
|
+
super().__init__(
|
|
83
|
+
name="DataGen",
|
|
84
|
+
parent=tmp_project,
|
|
85
|
+
description="A task which generates synthetic data categories, which in turn are used to generate training data for a model to learn from.",
|
|
86
|
+
instruction=TREE_GENERATION_PROMPT,
|
|
87
|
+
input_json_schema=json.dumps(
|
|
88
|
+
DataGenCategoriesTaskInput.model_json_schema()
|
|
89
|
+
),
|
|
90
|
+
output_json_schema=json.dumps(
|
|
91
|
+
DataGenCategoriesTaskOutput.model_json_schema()
|
|
92
|
+
),
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class DataGenSampleTaskInput(BaseModel):
|
|
97
|
+
"""Input model for generating data samples for a kiln task.
|
|
98
|
+
|
|
99
|
+
Attributes:
|
|
100
|
+
topic: List of strings representing the topic path
|
|
101
|
+
system_prompt: System prompt to guide the AI generation
|
|
102
|
+
num_samples: Number of samples to generate
|
|
103
|
+
human_guidance: Optional human guidance to influence generation
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
topic: list[str]
|
|
107
|
+
system_prompt: str
|
|
108
|
+
num_samples: int
|
|
109
|
+
human_guidance: str | None = None
|
|
110
|
+
|
|
111
|
+
@classmethod
|
|
112
|
+
def from_task(
|
|
113
|
+
cls,
|
|
114
|
+
task: Task,
|
|
115
|
+
topic: list[str] = [],
|
|
116
|
+
num_samples: int = 8,
|
|
117
|
+
human_guidance: str | None = None,
|
|
118
|
+
) -> "DataGenSampleTaskInput":
|
|
119
|
+
"""Create a DataGenSampleTaskInput instance from a Task.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
task: The source Task object
|
|
123
|
+
topic: Topic path for sample generation
|
|
124
|
+
num_samples: Number of samples to generate
|
|
125
|
+
human_guidance: Optional guidance for generation
|
|
126
|
+
|
|
127
|
+
Returns:
|
|
128
|
+
A new DataGenSampleTaskInput instance
|
|
129
|
+
"""
|
|
130
|
+
prompt_builder = SimplePromptBuilder(task=task)
|
|
131
|
+
return cls(
|
|
132
|
+
topic=topic,
|
|
133
|
+
num_samples=num_samples,
|
|
134
|
+
human_guidance=human_guidance,
|
|
135
|
+
system_prompt=prompt_builder.build_prompt(),
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def list_json_schema_for_task(task: Task) -> str:
|
|
140
|
+
"""Generate a JSON schema for a list of task inputs (json schema)
|
|
141
|
+
|
|
142
|
+
Args:
|
|
143
|
+
task: Task object whose input schema will be used
|
|
144
|
+
|
|
145
|
+
Returns:
|
|
146
|
+
JSON string representing the schema for a list of task inputs
|
|
147
|
+
"""
|
|
148
|
+
if task.input_json_schema:
|
|
149
|
+
items_schema = json.loads(task.input_json_schema)
|
|
150
|
+
else:
|
|
151
|
+
items_schema = {"type": "string"}
|
|
152
|
+
|
|
153
|
+
list_schema = {
|
|
154
|
+
"type": "array",
|
|
155
|
+
"items": items_schema,
|
|
156
|
+
}
|
|
157
|
+
|
|
158
|
+
top_level_schema = {
|
|
159
|
+
"type": "object",
|
|
160
|
+
"properties": {
|
|
161
|
+
"generated_samples": list_schema,
|
|
162
|
+
},
|
|
163
|
+
"required": ["generated_samples"],
|
|
164
|
+
}
|
|
165
|
+
|
|
166
|
+
return json.dumps(top_level_schema)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
class DataGenSampleTask(Task, parent_of={}):
|
|
170
|
+
"""Task for generating data samples for a given topic.
|
|
171
|
+
|
|
172
|
+
Generates synthetic data samples based on provided topics and subtopics.
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
def __init__(self, target_task: Task, num_samples: int = 8):
|
|
176
|
+
# Keep the typechecker happy. TODO: shouldn't need this or parent_of above.
|
|
177
|
+
tmp_project = Project(name="DataGenSample")
|
|
178
|
+
super().__init__(
|
|
179
|
+
name="DataGenSample",
|
|
180
|
+
parent=tmp_project,
|
|
181
|
+
description="A task which generates synthetic data samples for a given topic (and optional subtopic).",
|
|
182
|
+
instruction=SAMPLE_GENERATION_PROMPT,
|
|
183
|
+
input_json_schema=json.dumps(DataGenSampleTaskInput.model_json_schema()),
|
|
184
|
+
output_json_schema=list_json_schema_for_task(target_task),
|
|
185
|
+
)
|