kiln-ai 0.5.5__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/base_adapter.py +24 -35
- kiln_ai/adapters/data_gen/data_gen_prompts.py +73 -0
- kiln_ai/adapters/data_gen/data_gen_task.py +117 -0
- kiln_ai/adapters/data_gen/test_data_gen_task.py +292 -0
- kiln_ai/adapters/langchain_adapters.py +39 -7
- kiln_ai/adapters/ml_model_list.py +55 -1
- kiln_ai/adapters/prompt_builders.py +66 -0
- kiln_ai/adapters/repair/test_repair_task.py +4 -1
- kiln_ai/adapters/test_langchain_adapter.py +73 -0
- kiln_ai/adapters/test_ml_model_list.py +56 -0
- kiln_ai/adapters/test_prompt_adaptors.py +52 -18
- kiln_ai/adapters/test_prompt_builders.py +97 -7
- kiln_ai/adapters/test_saving_adapter_results.py +16 -6
- kiln_ai/adapters/test_structured_output.py +33 -5
- kiln_ai/datamodel/__init__.py +28 -7
- kiln_ai/datamodel/json_schema.py +1 -0
- kiln_ai/datamodel/test_models.py +44 -8
- kiln_ai/utils/config.py +3 -2
- kiln_ai/utils/test_config.py +7 -0
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.0.dist-info}/METADATA +1 -2
- kiln_ai-0.6.0.dist-info/RECORD +36 -0
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.0.dist-info}/WHEEL +1 -1
- kiln_ai-0.5.5.dist-info/RECORD +0 -33
- {kiln_ai-0.5.5.dist-info → kiln_ai-0.6.0.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -89,6 +89,7 @@ class KilnModelProvider(BaseModel):
|
|
|
89
89
|
|
|
90
90
|
name: ModelProviderName
|
|
91
91
|
supports_structured_output: bool = True
|
|
92
|
+
supports_data_gen: bool = True
|
|
92
93
|
provider_options: Dict = {}
|
|
93
94
|
|
|
94
95
|
|
|
@@ -176,6 +177,8 @@ built_in_models: List[KilnModel] = [
|
|
|
176
177
|
providers=[
|
|
177
178
|
KilnModelProvider(
|
|
178
179
|
name=ModelProviderName.openrouter,
|
|
180
|
+
supports_structured_output=False, # it should, but doesn't work on openrouter
|
|
181
|
+
supports_data_gen=False, # doesn't work on openrouter
|
|
179
182
|
provider_options={"model": "google/gemini-pro-1.5"},
|
|
180
183
|
),
|
|
181
184
|
],
|
|
@@ -188,6 +191,7 @@ built_in_models: List[KilnModel] = [
|
|
|
188
191
|
providers=[
|
|
189
192
|
KilnModelProvider(
|
|
190
193
|
name=ModelProviderName.openrouter,
|
|
194
|
+
supports_data_gen=False,
|
|
191
195
|
provider_options={"model": "google/gemini-flash-1.5"},
|
|
192
196
|
),
|
|
193
197
|
],
|
|
@@ -200,6 +204,8 @@ built_in_models: List[KilnModel] = [
|
|
|
200
204
|
providers=[
|
|
201
205
|
KilnModelProvider(
|
|
202
206
|
name=ModelProviderName.openrouter,
|
|
207
|
+
supports_structured_output=False,
|
|
208
|
+
supports_data_gen=False,
|
|
203
209
|
provider_options={"model": "google/gemini-flash-1.5-8b"},
|
|
204
210
|
),
|
|
205
211
|
],
|
|
@@ -213,6 +219,7 @@ built_in_models: List[KilnModel] = [
|
|
|
213
219
|
KilnModelProvider(
|
|
214
220
|
name=ModelProviderName.openrouter,
|
|
215
221
|
supports_structured_output=False,
|
|
222
|
+
supports_data_gen=False,
|
|
216
223
|
provider_options={"model": "nvidia/llama-3.1-nemotron-70b-instruct"},
|
|
217
224
|
),
|
|
218
225
|
],
|
|
@@ -230,6 +237,7 @@ built_in_models: List[KilnModel] = [
|
|
|
230
237
|
KilnModelProvider(
|
|
231
238
|
name=ModelProviderName.amazon_bedrock,
|
|
232
239
|
supports_structured_output=False,
|
|
240
|
+
supports_data_gen=False,
|
|
233
241
|
provider_options={
|
|
234
242
|
"model": "meta.llama3-1-8b-instruct-v1:0",
|
|
235
243
|
"region_name": "us-west-2", # Llama 3.1 only in west-2
|
|
@@ -237,6 +245,7 @@ built_in_models: List[KilnModel] = [
|
|
|
237
245
|
),
|
|
238
246
|
KilnModelProvider(
|
|
239
247
|
name=ModelProviderName.ollama,
|
|
248
|
+
supports_data_gen=False,
|
|
240
249
|
provider_options={
|
|
241
250
|
"model": "llama3.1:8b",
|
|
242
251
|
"model_aliases": ["llama3.1"], # 8b is default
|
|
@@ -245,6 +254,7 @@ built_in_models: List[KilnModel] = [
|
|
|
245
254
|
KilnModelProvider(
|
|
246
255
|
name=ModelProviderName.openrouter,
|
|
247
256
|
supports_structured_output=False,
|
|
257
|
+
supports_data_gen=False,
|
|
248
258
|
provider_options={"model": "meta-llama/llama-3.1-8b-instruct"},
|
|
249
259
|
),
|
|
250
260
|
],
|
|
@@ -261,7 +271,9 @@ built_in_models: List[KilnModel] = [
|
|
|
261
271
|
),
|
|
262
272
|
KilnModelProvider(
|
|
263
273
|
name=ModelProviderName.amazon_bedrock,
|
|
274
|
+
# not sure how AWS manages to break this, but it's not working
|
|
264
275
|
supports_structured_output=False,
|
|
276
|
+
supports_data_gen=False,
|
|
265
277
|
provider_options={
|
|
266
278
|
"model": "meta.llama3-1-70b-instruct-v1:0",
|
|
267
279
|
"region_name": "us-west-2", # Llama 3.1 only in west-2
|
|
@@ -285,6 +297,7 @@ built_in_models: List[KilnModel] = [
|
|
|
285
297
|
providers=[
|
|
286
298
|
KilnModelProvider(
|
|
287
299
|
name=ModelProviderName.amazon_bedrock,
|
|
300
|
+
supports_data_gen=False,
|
|
288
301
|
provider_options={
|
|
289
302
|
"model": "meta.llama3-1-405b-instruct-v1:0",
|
|
290
303
|
"region_name": "us-west-2", # Llama 3.1 only in west-2
|
|
@@ -344,8 +357,15 @@ built_in_models: List[KilnModel] = [
|
|
|
344
357
|
KilnModelProvider(
|
|
345
358
|
name=ModelProviderName.openrouter,
|
|
346
359
|
supports_structured_output=False,
|
|
360
|
+
supports_data_gen=False,
|
|
347
361
|
provider_options={"model": "meta-llama/llama-3.2-3b-instruct"},
|
|
348
362
|
),
|
|
363
|
+
KilnModelProvider(
|
|
364
|
+
name=ModelProviderName.ollama,
|
|
365
|
+
supports_structured_output=False,
|
|
366
|
+
supports_data_gen=False,
|
|
367
|
+
provider_options={"model": "llama3.2"},
|
|
368
|
+
),
|
|
349
369
|
],
|
|
350
370
|
),
|
|
351
371
|
# Llama 3.2 11B
|
|
@@ -357,8 +377,15 @@ built_in_models: List[KilnModel] = [
|
|
|
357
377
|
KilnModelProvider(
|
|
358
378
|
name=ModelProviderName.openrouter,
|
|
359
379
|
supports_structured_output=False,
|
|
380
|
+
supports_data_gen=False,
|
|
360
381
|
provider_options={"model": "meta-llama/llama-3.2-11b-vision-instruct"},
|
|
361
382
|
),
|
|
383
|
+
KilnModelProvider(
|
|
384
|
+
name=ModelProviderName.ollama,
|
|
385
|
+
supports_structured_output=False,
|
|
386
|
+
supports_data_gen=False,
|
|
387
|
+
provider_options={"model": "llama3.2-vision"},
|
|
388
|
+
),
|
|
362
389
|
],
|
|
363
390
|
),
|
|
364
391
|
# Llama 3.2 90B
|
|
@@ -370,8 +397,15 @@ built_in_models: List[KilnModel] = [
|
|
|
370
397
|
KilnModelProvider(
|
|
371
398
|
name=ModelProviderName.openrouter,
|
|
372
399
|
supports_structured_output=False,
|
|
400
|
+
supports_data_gen=False,
|
|
373
401
|
provider_options={"model": "meta-llama/llama-3.2-90b-vision-instruct"},
|
|
374
402
|
),
|
|
403
|
+
KilnModelProvider(
|
|
404
|
+
name=ModelProviderName.ollama,
|
|
405
|
+
supports_structured_output=False,
|
|
406
|
+
supports_data_gen=False,
|
|
407
|
+
provider_options={"model": "llama3.2-vision:90b"},
|
|
408
|
+
),
|
|
375
409
|
],
|
|
376
410
|
),
|
|
377
411
|
# Phi 3.5
|
|
@@ -384,10 +418,13 @@ built_in_models: List[KilnModel] = [
|
|
|
384
418
|
KilnModelProvider(
|
|
385
419
|
name=ModelProviderName.ollama,
|
|
386
420
|
supports_structured_output=False,
|
|
421
|
+
supports_data_gen=False,
|
|
387
422
|
provider_options={"model": "phi3.5"},
|
|
388
423
|
),
|
|
389
424
|
KilnModelProvider(
|
|
390
425
|
name=ModelProviderName.openrouter,
|
|
426
|
+
supports_structured_output=False,
|
|
427
|
+
supports_data_gen=False,
|
|
391
428
|
provider_options={"model": "microsoft/phi-3.5-mini-128k-instruct"},
|
|
392
429
|
),
|
|
393
430
|
],
|
|
@@ -402,6 +439,7 @@ built_in_models: List[KilnModel] = [
|
|
|
402
439
|
KilnModelProvider(
|
|
403
440
|
name=ModelProviderName.ollama,
|
|
404
441
|
supports_structured_output=False,
|
|
442
|
+
supports_data_gen=False,
|
|
405
443
|
provider_options={
|
|
406
444
|
"model": "gemma2:2b",
|
|
407
445
|
},
|
|
@@ -417,12 +455,14 @@ built_in_models: List[KilnModel] = [
|
|
|
417
455
|
providers=[
|
|
418
456
|
KilnModelProvider(
|
|
419
457
|
name=ModelProviderName.ollama,
|
|
458
|
+
supports_data_gen=False,
|
|
420
459
|
provider_options={
|
|
421
460
|
"model": "gemma2:9b",
|
|
422
461
|
},
|
|
423
462
|
),
|
|
424
463
|
KilnModelProvider(
|
|
425
464
|
name=ModelProviderName.openrouter,
|
|
465
|
+
supports_data_gen=False,
|
|
426
466
|
provider_options={"model": "google/gemma-2-9b-it"},
|
|
427
467
|
),
|
|
428
468
|
],
|
|
@@ -436,12 +476,14 @@ built_in_models: List[KilnModel] = [
|
|
|
436
476
|
providers=[
|
|
437
477
|
KilnModelProvider(
|
|
438
478
|
name=ModelProviderName.ollama,
|
|
479
|
+
supports_data_gen=False,
|
|
439
480
|
provider_options={
|
|
440
481
|
"model": "gemma2:27b",
|
|
441
482
|
},
|
|
442
483
|
),
|
|
443
484
|
KilnModelProvider(
|
|
444
485
|
name=ModelProviderName.openrouter,
|
|
486
|
+
supports_data_gen=False,
|
|
445
487
|
provider_options={"model": "google/gemma-2-27b-it"},
|
|
446
488
|
),
|
|
447
489
|
],
|
|
@@ -449,6 +491,19 @@ built_in_models: List[KilnModel] = [
|
|
|
449
491
|
]
|
|
450
492
|
|
|
451
493
|
|
|
494
|
+
def get_model_and_provider(
|
|
495
|
+
model_name: str, provider_name: str
|
|
496
|
+
) -> tuple[KilnModel | None, KilnModelProvider | None]:
|
|
497
|
+
model = next(filter(lambda m: m.name == model_name, built_in_models), None)
|
|
498
|
+
if model is None:
|
|
499
|
+
return None, None
|
|
500
|
+
provider = next(filter(lambda p: p.name == provider_name, model.providers), None)
|
|
501
|
+
# all or nothing
|
|
502
|
+
if provider is None or model is None:
|
|
503
|
+
return None, None
|
|
504
|
+
return model, provider
|
|
505
|
+
|
|
506
|
+
|
|
452
507
|
def provider_name_from_id(id: str) -> str:
|
|
453
508
|
"""
|
|
454
509
|
Converts a provider ID to its human-readable name.
|
|
@@ -687,7 +742,6 @@ def parse_ollama_tags(tags: Any) -> OllamaConnection | None:
|
|
|
687
742
|
models = tags["models"]
|
|
688
743
|
if isinstance(models, list):
|
|
689
744
|
model_names = [model["model"] for model in models]
|
|
690
|
-
print(f"model_names: {model_names}")
|
|
691
745
|
available_supported_models = [
|
|
692
746
|
model
|
|
693
747
|
for model in model_names
|
|
@@ -54,6 +54,28 @@ class BasePromptBuilder(metaclass=ABCMeta):
|
|
|
54
54
|
|
|
55
55
|
return f"The input is:\n{input}"
|
|
56
56
|
|
|
57
|
+
def chain_of_thought_prompt(self) -> str | None:
|
|
58
|
+
"""Build and return the chain of thought prompt string.
|
|
59
|
+
|
|
60
|
+
Returns:
|
|
61
|
+
str: The constructed chain of thought prompt.
|
|
62
|
+
"""
|
|
63
|
+
return None
|
|
64
|
+
|
|
65
|
+
def build_prompt_for_ui(self) -> str:
|
|
66
|
+
"""Build a prompt for the UI. It includes additional instructions (like chain of thought), even if they are passed to the model in stages.
|
|
67
|
+
|
|
68
|
+
Designed for end-user consumption, not for model consumption.
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
str: The constructed prompt string.
|
|
72
|
+
"""
|
|
73
|
+
base_prompt = self.build_prompt()
|
|
74
|
+
cot_prompt = self.chain_of_thought_prompt()
|
|
75
|
+
if cot_prompt:
|
|
76
|
+
base_prompt += "\n# Thinking Instructions\n\n" + cot_prompt
|
|
77
|
+
return base_prompt
|
|
78
|
+
|
|
57
79
|
|
|
58
80
|
class SimplePromptBuilder(BasePromptBuilder):
|
|
59
81
|
"""A basic prompt builder that combines task instruction with requirements."""
|
|
@@ -187,11 +209,49 @@ class RepairsPromptBuilder(MultiShotPromptBuilder):
|
|
|
187
209
|
return prompt_section
|
|
188
210
|
|
|
189
211
|
|
|
212
|
+
def chain_of_thought_prompt(task: Task) -> str | None:
|
|
213
|
+
"""Standard implementation to build and return the chain of thought prompt string.
|
|
214
|
+
|
|
215
|
+
Returns:
|
|
216
|
+
str: The constructed chain of thought prompt.
|
|
217
|
+
"""
|
|
218
|
+
|
|
219
|
+
cot_instruction = task.thinking_instruction
|
|
220
|
+
if not cot_instruction:
|
|
221
|
+
cot_instruction = "Think step by step, explaining your reasoning."
|
|
222
|
+
|
|
223
|
+
return cot_instruction
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
class SimpleChainOfThoughtPromptBuilder(SimplePromptBuilder):
|
|
227
|
+
"""A prompt builder that includes a chain of thought prompt on top of the simple prompt."""
|
|
228
|
+
|
|
229
|
+
def chain_of_thought_prompt(self) -> str | None:
|
|
230
|
+
return chain_of_thought_prompt(self.task)
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
class FewShotChainOfThoughtPromptBuilder(FewShotPromptBuilder):
|
|
234
|
+
"""A prompt builder that includes a chain of thought prompt on top of the few shot prompt."""
|
|
235
|
+
|
|
236
|
+
def chain_of_thought_prompt(self) -> str | None:
|
|
237
|
+
return chain_of_thought_prompt(self.task)
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
class MultiShotChainOfThoughtPromptBuilder(MultiShotPromptBuilder):
|
|
241
|
+
"""A prompt builder that includes a chain of thought prompt on top of the multi shot prompt."""
|
|
242
|
+
|
|
243
|
+
def chain_of_thought_prompt(self) -> str | None:
|
|
244
|
+
return chain_of_thought_prompt(self.task)
|
|
245
|
+
|
|
246
|
+
|
|
190
247
|
prompt_builder_registry = {
|
|
191
248
|
"simple_prompt_builder": SimplePromptBuilder,
|
|
192
249
|
"multi_shot_prompt_builder": MultiShotPromptBuilder,
|
|
193
250
|
"few_shot_prompt_builder": FewShotPromptBuilder,
|
|
194
251
|
"repairs_prompt_builder": RepairsPromptBuilder,
|
|
252
|
+
"simple_chain_of_thought_prompt_builder": SimpleChainOfThoughtPromptBuilder,
|
|
253
|
+
"few_shot_chain_of_thought_prompt_builder": FewShotChainOfThoughtPromptBuilder,
|
|
254
|
+
"multi_shot_chain_of_thought_prompt_builder": MultiShotChainOfThoughtPromptBuilder,
|
|
195
255
|
}
|
|
196
256
|
|
|
197
257
|
|
|
@@ -217,5 +277,11 @@ def prompt_builder_from_ui_name(ui_name: str) -> type[BasePromptBuilder]:
|
|
|
217
277
|
return MultiShotPromptBuilder
|
|
218
278
|
case "repairs":
|
|
219
279
|
return RepairsPromptBuilder
|
|
280
|
+
case "simple_chain_of_thought":
|
|
281
|
+
return SimpleChainOfThoughtPromptBuilder
|
|
282
|
+
case "few_shot_chain_of_thought":
|
|
283
|
+
return FewShotChainOfThoughtPromptBuilder
|
|
284
|
+
case "multi_shot_chain_of_thought":
|
|
285
|
+
return MultiShotChainOfThoughtPromptBuilder
|
|
220
286
|
case _:
|
|
221
287
|
raise ValueError(f"Unknown prompt builder: {ui_name}")
|
|
@@ -5,6 +5,7 @@ from unittest.mock import AsyncMock, patch
|
|
|
5
5
|
import pytest
|
|
6
6
|
from pydantic import ValidationError
|
|
7
7
|
|
|
8
|
+
from kiln_ai.adapters.base_adapter import RunOutput
|
|
8
9
|
from kiln_ai.adapters.langchain_adapters import (
|
|
9
10
|
LangChainPromptAdapter,
|
|
10
11
|
)
|
|
@@ -222,7 +223,9 @@ async def test_mocked_repair_task_run(sample_task, sample_task_run, sample_repai
|
|
|
222
223
|
with patch.object(
|
|
223
224
|
LangChainPromptAdapter, "_run", new_callable=AsyncMock
|
|
224
225
|
) as mock_run:
|
|
225
|
-
mock_run.return_value =
|
|
226
|
+
mock_run.return_value = RunOutput(
|
|
227
|
+
output=mocked_output, intermediate_outputs=None
|
|
228
|
+
)
|
|
226
229
|
|
|
227
230
|
adapter = LangChainPromptAdapter(
|
|
228
231
|
repair_task, model_name="llama_3_1_8b", provider="groq"
|
|
@@ -1,6 +1,10 @@
|
|
|
1
|
+
from unittest.mock import AsyncMock, MagicMock, patch
|
|
2
|
+
|
|
3
|
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
|
1
4
|
from langchain_groq import ChatGroq
|
|
2
5
|
|
|
3
6
|
from kiln_ai.adapters.langchain_adapters import LangChainPromptAdapter
|
|
7
|
+
from kiln_ai.adapters.prompt_builders import SimpleChainOfThoughtPromptBuilder
|
|
4
8
|
from kiln_ai.adapters.test_prompt_adaptors import build_test_task
|
|
5
9
|
|
|
6
10
|
|
|
@@ -49,3 +53,72 @@ def test_langchain_adapter_info(tmp_path):
|
|
|
49
53
|
assert model_info.adapter_name == "kiln_langchain_adapter"
|
|
50
54
|
assert model_info.model_name == "llama_3_1_8b"
|
|
51
55
|
assert model_info.model_provider == "ollama"
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
async def test_langchain_adapter_with_cot(tmp_path):
|
|
59
|
+
task = build_test_task(tmp_path)
|
|
60
|
+
task.output_json_schema = (
|
|
61
|
+
'{"type": "object", "properties": {"count": {"type": "integer"}}}'
|
|
62
|
+
)
|
|
63
|
+
lca = LangChainPromptAdapter(
|
|
64
|
+
kiln_task=task,
|
|
65
|
+
model_name="llama_3_1_8b",
|
|
66
|
+
provider="ollama",
|
|
67
|
+
prompt_builder=SimpleChainOfThoughtPromptBuilder(task),
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Mock the base model and its invoke method
|
|
71
|
+
mock_base_model = MagicMock()
|
|
72
|
+
mock_base_model.invoke.return_value = AIMessage(
|
|
73
|
+
content="Chain of thought reasoning..."
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
# Create a separate mock for self.model()
|
|
77
|
+
mock_model_instance = MagicMock()
|
|
78
|
+
mock_model_instance.invoke.return_value = {"parsed": {"count": 1}}
|
|
79
|
+
|
|
80
|
+
# Mock the langchain_model_from function to return the base model
|
|
81
|
+
mock_model_from = AsyncMock(return_value=mock_base_model)
|
|
82
|
+
|
|
83
|
+
# Patch both the langchain_model_from function and self.model()
|
|
84
|
+
with (
|
|
85
|
+
patch(
|
|
86
|
+
"kiln_ai.adapters.langchain_adapters.langchain_model_from", mock_model_from
|
|
87
|
+
),
|
|
88
|
+
patch.object(LangChainPromptAdapter, "model", return_value=mock_model_instance),
|
|
89
|
+
):
|
|
90
|
+
response = await lca._run("test input")
|
|
91
|
+
|
|
92
|
+
# First 3 messages are the same for both calls
|
|
93
|
+
for invoke_args in [
|
|
94
|
+
mock_base_model.invoke.call_args[0][0],
|
|
95
|
+
mock_model_instance.invoke.call_args[0][0],
|
|
96
|
+
]:
|
|
97
|
+
assert isinstance(
|
|
98
|
+
invoke_args[0], SystemMessage
|
|
99
|
+
) # First message should be system prompt
|
|
100
|
+
assert (
|
|
101
|
+
"You are an assistant which performs math tasks provided in plain text."
|
|
102
|
+
in invoke_args[0].content
|
|
103
|
+
)
|
|
104
|
+
assert isinstance(invoke_args[1], HumanMessage)
|
|
105
|
+
assert "test input" in invoke_args[1].content
|
|
106
|
+
assert isinstance(invoke_args[2], SystemMessage)
|
|
107
|
+
assert "step by step" in invoke_args[2].content
|
|
108
|
+
|
|
109
|
+
# the COT should only have 3 messages
|
|
110
|
+
assert len(mock_base_model.invoke.call_args[0][0]) == 3
|
|
111
|
+
assert len(mock_model_instance.invoke.call_args[0][0]) == 5
|
|
112
|
+
|
|
113
|
+
# the final response should have the COT content and the final instructions
|
|
114
|
+
invoke_args = mock_model_instance.invoke.call_args[0][0]
|
|
115
|
+
assert isinstance(invoke_args[3], AIMessage)
|
|
116
|
+
assert "Chain of thought reasoning..." in invoke_args[3].content
|
|
117
|
+
assert isinstance(invoke_args[4], SystemMessage)
|
|
118
|
+
assert "Considering the above, return a final result." in invoke_args[4].content
|
|
119
|
+
|
|
120
|
+
assert (
|
|
121
|
+
response.intermediate_outputs["chain_of_thought"]
|
|
122
|
+
== "Chain of thought reasoning..."
|
|
123
|
+
)
|
|
124
|
+
assert response.output == {"count": 1}
|
|
@@ -4,9 +4,11 @@ from unittest.mock import patch
|
|
|
4
4
|
import pytest
|
|
5
5
|
|
|
6
6
|
from kiln_ai.adapters.ml_model_list import (
|
|
7
|
+
ModelName,
|
|
7
8
|
ModelProviderName,
|
|
8
9
|
OllamaConnection,
|
|
9
10
|
check_provider_warnings,
|
|
11
|
+
get_model_and_provider,
|
|
10
12
|
ollama_model_supported,
|
|
11
13
|
parse_ollama_tags,
|
|
12
14
|
provider_name_from_id,
|
|
@@ -123,3 +125,57 @@ def test_ollama_model_supported():
|
|
|
123
125
|
assert ollama_model_supported(conn, "llama3.1:latest")
|
|
124
126
|
assert ollama_model_supported(conn, "llama3.1")
|
|
125
127
|
assert not ollama_model_supported(conn, "unknown_model")
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def test_get_model_and_provider_valid():
|
|
131
|
+
# Test with a known valid model and provider combination
|
|
132
|
+
model, provider = get_model_and_provider(
|
|
133
|
+
ModelName.phi_3_5, ModelProviderName.ollama
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
assert model is not None
|
|
137
|
+
assert provider is not None
|
|
138
|
+
assert model.name == ModelName.phi_3_5
|
|
139
|
+
assert provider.name == ModelProviderName.ollama
|
|
140
|
+
assert provider.provider_options["model"] == "phi3.5"
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def test_get_model_and_provider_invalid_model():
|
|
144
|
+
# Test with an invalid model name
|
|
145
|
+
model, provider = get_model_and_provider(
|
|
146
|
+
"nonexistent_model", ModelProviderName.ollama
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
assert model is None
|
|
150
|
+
assert provider is None
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def test_get_model_and_provider_invalid_provider():
|
|
154
|
+
# Test with a valid model but invalid provider
|
|
155
|
+
model, provider = get_model_and_provider(ModelName.phi_3_5, "nonexistent_provider")
|
|
156
|
+
|
|
157
|
+
assert model is None
|
|
158
|
+
assert provider is None
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
def test_get_model_and_provider_valid_model_wrong_provider():
|
|
162
|
+
# Test with a valid model but a provider that doesn't support it
|
|
163
|
+
model, provider = get_model_and_provider(
|
|
164
|
+
ModelName.phi_3_5, ModelProviderName.amazon_bedrock
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
assert model is None
|
|
168
|
+
assert provider is None
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
def test_get_model_and_provider_multiple_providers():
|
|
172
|
+
# Test with a model that has multiple providers
|
|
173
|
+
model, provider = get_model_and_provider(
|
|
174
|
+
ModelName.llama_3_1_70b, ModelProviderName.groq
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
assert model is not None
|
|
178
|
+
assert provider is not None
|
|
179
|
+
assert model.name == ModelName.llama_3_1_70b
|
|
180
|
+
assert provider.name == ModelProviderName.groq
|
|
181
|
+
assert provider.provider_options["model"] == "llama-3.1-70b-versatile"
|
|
@@ -7,6 +7,18 @@ from langchain_core.language_models.fake_chat_models import FakeListChatModel
|
|
|
7
7
|
import kiln_ai.datamodel as datamodel
|
|
8
8
|
from kiln_ai.adapters.langchain_adapters import LangChainPromptAdapter
|
|
9
9
|
from kiln_ai.adapters.ml_model_list import built_in_models, ollama_online
|
|
10
|
+
from kiln_ai.adapters.prompt_builders import (
|
|
11
|
+
BasePromptBuilder,
|
|
12
|
+
SimpleChainOfThoughtPromptBuilder,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def get_all_models_and_providers():
|
|
17
|
+
model_provider_pairs = []
|
|
18
|
+
for model in built_in_models:
|
|
19
|
+
for provider in model.providers:
|
|
20
|
+
model_provider_pairs.append((model.name, provider.name))
|
|
21
|
+
return model_provider_pairs
|
|
10
22
|
|
|
11
23
|
|
|
12
24
|
@pytest.mark.paid
|
|
@@ -30,6 +42,7 @@ async def test_groq(tmp_path):
|
|
|
30
42
|
"llama_3_2_90b",
|
|
31
43
|
"claude_3_5_haiku",
|
|
32
44
|
"claude_3_5_sonnet",
|
|
45
|
+
"phi_3_5",
|
|
33
46
|
],
|
|
34
47
|
)
|
|
35
48
|
@pytest.mark.paid
|
|
@@ -119,15 +132,19 @@ async def test_mock_returning_run(tmp_path):
|
|
|
119
132
|
|
|
120
133
|
@pytest.mark.paid
|
|
121
134
|
@pytest.mark.ollama
|
|
122
|
-
|
|
135
|
+
@pytest.mark.parametrize("model_name,provider_name", get_all_models_and_providers())
|
|
136
|
+
async def test_all_models_providers_plaintext(tmp_path, model_name, provider_name):
|
|
123
137
|
task = build_test_task(tmp_path)
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
138
|
+
await run_simple_task(task, model_name, provider_name)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
@pytest.mark.paid
|
|
142
|
+
@pytest.mark.ollama
|
|
143
|
+
@pytest.mark.parametrize("model_name,provider_name", get_all_models_and_providers())
|
|
144
|
+
async def test_cot_prompt_builder(tmp_path, model_name, provider_name):
|
|
145
|
+
task = build_test_task(tmp_path)
|
|
146
|
+
pb = SimpleChainOfThoughtPromptBuilder(task)
|
|
147
|
+
await run_simple_task(task, model_name, provider_name, pb)
|
|
131
148
|
|
|
132
149
|
|
|
133
150
|
def build_test_task(tmp_path: Path):
|
|
@@ -159,13 +176,25 @@ def build_test_task(tmp_path: Path):
|
|
|
159
176
|
return task
|
|
160
177
|
|
|
161
178
|
|
|
162
|
-
async def run_simple_test(
|
|
179
|
+
async def run_simple_test(
|
|
180
|
+
tmp_path: Path,
|
|
181
|
+
model_name: str,
|
|
182
|
+
provider: str | None = None,
|
|
183
|
+
prompt_builder: BasePromptBuilder | None = None,
|
|
184
|
+
):
|
|
163
185
|
task = build_test_task(tmp_path)
|
|
164
|
-
return await run_simple_task(task, model_name, provider)
|
|
186
|
+
return await run_simple_task(task, model_name, provider, prompt_builder)
|
|
165
187
|
|
|
166
188
|
|
|
167
|
-
async def run_simple_task(
|
|
168
|
-
|
|
189
|
+
async def run_simple_task(
|
|
190
|
+
task: datamodel.Task,
|
|
191
|
+
model_name: str,
|
|
192
|
+
provider: str,
|
|
193
|
+
prompt_builder: BasePromptBuilder | None = None,
|
|
194
|
+
) -> datamodel.TaskRun:
|
|
195
|
+
adapter = LangChainPromptAdapter(
|
|
196
|
+
task, model_name=model_name, provider=provider, prompt_builder=prompt_builder
|
|
197
|
+
)
|
|
169
198
|
|
|
170
199
|
run = await adapter.invoke(
|
|
171
200
|
"You should answer the following question: four plus six times 10"
|
|
@@ -176,9 +205,14 @@ async def run_simple_task(task: datamodel.Task, model_name: str, provider: str):
|
|
|
176
205
|
run.input == "You should answer the following question: four plus six times 10"
|
|
177
206
|
)
|
|
178
207
|
assert "64" in run.output.output
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
208
|
+
source_props = run.output.source.properties
|
|
209
|
+
assert source_props["adapter_name"] == "kiln_langchain_adapter"
|
|
210
|
+
assert source_props["model_name"] == model_name
|
|
211
|
+
assert source_props["model_provider"] == provider
|
|
212
|
+
expected_prompt_builder_name = (
|
|
213
|
+
prompt_builder.__class__.prompt_builder_name()
|
|
214
|
+
if prompt_builder
|
|
215
|
+
else "simple_prompt_builder"
|
|
216
|
+
)
|
|
217
|
+
assert source_props["prompt_builder_name"] == expected_prompt_builder_name
|
|
218
|
+
return run
|