kiln-ai 0.21.0__py3-none-any.whl → 0.22.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/extractors/litellm_extractor.py +52 -32
- kiln_ai/adapters/extractors/test_litellm_extractor.py +169 -71
- kiln_ai/adapters/ml_embedding_model_list.py +330 -28
- kiln_ai/adapters/ml_model_list.py +503 -23
- kiln_ai/adapters/model_adapters/litellm_adapter.py +39 -8
- kiln_ai/adapters/model_adapters/test_litellm_adapter.py +78 -0
- kiln_ai/adapters/model_adapters/test_litellm_adapter_tools.py +119 -5
- kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +9 -3
- kiln_ai/adapters/model_adapters/test_structured_output.py +6 -9
- kiln_ai/adapters/test_ml_embedding_model_list.py +89 -279
- kiln_ai/adapters/test_ml_model_list.py +0 -10
- kiln_ai/adapters/vector_store/lancedb_adapter.py +24 -70
- kiln_ai/adapters/vector_store/lancedb_helpers.py +101 -0
- kiln_ai/adapters/vector_store/test_lancedb_adapter.py +9 -16
- kiln_ai/adapters/vector_store/test_lancedb_helpers.py +142 -0
- kiln_ai/adapters/vector_store_loaders/__init__.py +0 -0
- kiln_ai/adapters/vector_store_loaders/test_lancedb_loader.py +282 -0
- kiln_ai/adapters/vector_store_loaders/test_vector_store_loader.py +544 -0
- kiln_ai/adapters/vector_store_loaders/vector_store_loader.py +91 -0
- kiln_ai/datamodel/basemodel.py +31 -3
- kiln_ai/datamodel/external_tool_server.py +206 -54
- kiln_ai/datamodel/extraction.py +14 -0
- kiln_ai/datamodel/task.py +5 -0
- kiln_ai/datamodel/task_output.py +41 -11
- kiln_ai/datamodel/test_attachment.py +3 -3
- kiln_ai/datamodel/test_basemodel.py +269 -13
- kiln_ai/datamodel/test_datasource.py +50 -0
- kiln_ai/datamodel/test_external_tool_server.py +534 -152
- kiln_ai/datamodel/test_extraction_model.py +31 -0
- kiln_ai/datamodel/test_task.py +35 -1
- kiln_ai/datamodel/test_tool_id.py +106 -1
- kiln_ai/datamodel/tool_id.py +49 -0
- kiln_ai/tools/base_tool.py +30 -6
- kiln_ai/tools/built_in_tools/math_tools.py +12 -4
- kiln_ai/tools/kiln_task_tool.py +162 -0
- kiln_ai/tools/mcp_server_tool.py +7 -5
- kiln_ai/tools/mcp_session_manager.py +50 -24
- kiln_ai/tools/rag_tools.py +17 -6
- kiln_ai/tools/test_kiln_task_tool.py +527 -0
- kiln_ai/tools/test_mcp_server_tool.py +4 -15
- kiln_ai/tools/test_mcp_session_manager.py +186 -226
- kiln_ai/tools/test_rag_tools.py +86 -5
- kiln_ai/tools/test_tool_registry.py +199 -5
- kiln_ai/tools/tool_registry.py +49 -17
- kiln_ai/utils/filesystem.py +4 -4
- kiln_ai/utils/open_ai_types.py +19 -2
- kiln_ai/utils/pdf_utils.py +21 -0
- kiln_ai/utils/test_open_ai_types.py +88 -12
- kiln_ai/utils/test_pdf_utils.py +14 -1
- {kiln_ai-0.21.0.dist-info → kiln_ai-0.22.1.dist-info}/METADATA +79 -1
- {kiln_ai-0.21.0.dist-info → kiln_ai-0.22.1.dist-info}/RECORD +53 -45
- {kiln_ai-0.21.0.dist-info → kiln_ai-0.22.1.dist-info}/WHEEL +0 -0
- {kiln_ai-0.21.0.dist-info → kiln_ai-0.22.1.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -17,6 +17,15 @@ class KilnEmbeddingModelFamily(str, Enum):
|
|
|
17
17
|
gemini = "gemini"
|
|
18
18
|
gemma = "gemma"
|
|
19
19
|
nomic = "nomic"
|
|
20
|
+
qwen = "qwen"
|
|
21
|
+
baai = "baai"
|
|
22
|
+
modernbert = "modernbert"
|
|
23
|
+
intfloat = "intfloat"
|
|
24
|
+
together = "together"
|
|
25
|
+
thenlper = "thenlper"
|
|
26
|
+
where_is_ai = "where_is_ai"
|
|
27
|
+
mixedbread = "mixedbread"
|
|
28
|
+
netease = "netease"
|
|
20
29
|
|
|
21
30
|
|
|
22
31
|
class EmbeddingModelName(str, Enum):
|
|
@@ -33,6 +42,20 @@ class EmbeddingModelName(str, Enum):
|
|
|
33
42
|
gemini_embedding_001 = "gemini_embedding_001"
|
|
34
43
|
embedding_gemma_300m = "embedding_gemma_300m"
|
|
35
44
|
nomic_text_embedding_v1_5 = "nomic_text_embedding_v1_5"
|
|
45
|
+
qwen_3_embedding_0p6b = "qwen_3_embedding_0p6b"
|
|
46
|
+
qwen_3_embedding_4b = "qwen_3_embedding_4b"
|
|
47
|
+
qwen_3_embedding_8b = "qwen_3_embedding_8b"
|
|
48
|
+
baai_bge_small_1_5 = "baai_bge_small_1_5"
|
|
49
|
+
baai_bge_base_1_5 = "baai_bge_base_1_5"
|
|
50
|
+
baai_bge_large_1_5 = "baai_bge_large_1_5"
|
|
51
|
+
m2_bert_retrieval_32k = "m2_bert_retrieval_32k"
|
|
52
|
+
gte_modernbert_base = "gte_modernbert_base"
|
|
53
|
+
multilingual_e5_large_instruct = "multilingual_e5_large_instruct"
|
|
54
|
+
thenlper_gte_large = "thenlper_gte_large"
|
|
55
|
+
thenlper_gte_base = "thenlper_gte_base"
|
|
56
|
+
where_is_ai_uae_large_v1 = "where_is_ai_uae_large_v1"
|
|
57
|
+
mixedbread_ai_mxbai_embed_large_v1 = "mixedbread_ai_mxbai_embed_large_v1"
|
|
58
|
+
netease_youdao_bce_embedding_base_v1 = "netease_youdao_bce_embedding_base_v1"
|
|
36
59
|
|
|
37
60
|
|
|
38
61
|
class KilnEmbeddingModelProvider(BaseModel):
|
|
@@ -76,66 +99,68 @@ class KilnEmbeddingModel(BaseModel):
|
|
|
76
99
|
|
|
77
100
|
|
|
78
101
|
built_in_embedding_models: List[KilnEmbeddingModel] = [
|
|
79
|
-
#
|
|
102
|
+
# OpenAI Text Embedding 3 Large
|
|
80
103
|
KilnEmbeddingModel(
|
|
81
104
|
family=KilnEmbeddingModelFamily.openai,
|
|
82
|
-
name=EmbeddingModelName.
|
|
83
|
-
friendly_name="Text Embedding 3
|
|
105
|
+
name=EmbeddingModelName.openai_text_embedding_3_large,
|
|
106
|
+
friendly_name="Text Embedding 3 Large",
|
|
84
107
|
providers=[
|
|
85
108
|
KilnEmbeddingModelProvider(
|
|
86
109
|
name=ModelProviderName.openai,
|
|
87
|
-
model_id="text-embedding-3-
|
|
88
|
-
n_dimensions=
|
|
110
|
+
model_id="text-embedding-3-large",
|
|
111
|
+
n_dimensions=3072,
|
|
89
112
|
max_input_tokens=8192,
|
|
90
113
|
supports_custom_dimensions=True,
|
|
114
|
+
suggested_for_chunk_embedding=True,
|
|
91
115
|
),
|
|
92
116
|
],
|
|
93
117
|
),
|
|
118
|
+
# OpenAI Text Embedding 3 Small
|
|
94
119
|
KilnEmbeddingModel(
|
|
95
120
|
family=KilnEmbeddingModelFamily.openai,
|
|
96
|
-
name=EmbeddingModelName.
|
|
97
|
-
friendly_name="Text Embedding 3
|
|
121
|
+
name=EmbeddingModelName.openai_text_embedding_3_small,
|
|
122
|
+
friendly_name="Text Embedding 3 Small",
|
|
98
123
|
providers=[
|
|
99
124
|
KilnEmbeddingModelProvider(
|
|
100
125
|
name=ModelProviderName.openai,
|
|
101
|
-
model_id="text-embedding-3-
|
|
102
|
-
n_dimensions=
|
|
126
|
+
model_id="text-embedding-3-small",
|
|
127
|
+
n_dimensions=1536,
|
|
103
128
|
max_input_tokens=8192,
|
|
104
129
|
supports_custom_dimensions=True,
|
|
105
|
-
suggested_for_chunk_embedding=True,
|
|
106
130
|
),
|
|
107
131
|
],
|
|
108
132
|
),
|
|
109
|
-
#
|
|
133
|
+
# Gemini Embedding 001
|
|
110
134
|
KilnEmbeddingModel(
|
|
111
135
|
family=KilnEmbeddingModelFamily.gemini,
|
|
112
|
-
name=EmbeddingModelName.
|
|
113
|
-
friendly_name="
|
|
136
|
+
name=EmbeddingModelName.gemini_embedding_001,
|
|
137
|
+
friendly_name="Gemini Embedding 001",
|
|
114
138
|
providers=[
|
|
115
139
|
KilnEmbeddingModelProvider(
|
|
116
140
|
name=ModelProviderName.gemini_api,
|
|
117
|
-
model_id="
|
|
118
|
-
n_dimensions=
|
|
141
|
+
model_id="gemini-embedding-001",
|
|
142
|
+
n_dimensions=3072,
|
|
119
143
|
max_input_tokens=2048,
|
|
144
|
+
supports_custom_dimensions=True,
|
|
145
|
+
suggested_for_chunk_embedding=True,
|
|
120
146
|
),
|
|
121
147
|
],
|
|
122
148
|
),
|
|
149
|
+
# Gemini Text Embedding 004
|
|
123
150
|
KilnEmbeddingModel(
|
|
124
151
|
family=KilnEmbeddingModelFamily.gemini,
|
|
125
|
-
name=EmbeddingModelName.
|
|
126
|
-
friendly_name="
|
|
152
|
+
name=EmbeddingModelName.gemini_text_embedding_004,
|
|
153
|
+
friendly_name="Text Embedding 004",
|
|
127
154
|
providers=[
|
|
128
155
|
KilnEmbeddingModelProvider(
|
|
129
156
|
name=ModelProviderName.gemini_api,
|
|
130
|
-
model_id="
|
|
131
|
-
n_dimensions=
|
|
157
|
+
model_id="text-embedding-004",
|
|
158
|
+
n_dimensions=768,
|
|
132
159
|
max_input_tokens=2048,
|
|
133
|
-
supports_custom_dimensions=True,
|
|
134
|
-
suggested_for_chunk_embedding=True,
|
|
135
160
|
),
|
|
136
161
|
],
|
|
137
162
|
),
|
|
138
|
-
#
|
|
163
|
+
# Embedding Gemma 300m
|
|
139
164
|
KilnEmbeddingModel(
|
|
140
165
|
family=KilnEmbeddingModelFamily.gemma,
|
|
141
166
|
name=EmbeddingModelName.embedding_gemma_300m,
|
|
@@ -146,14 +171,15 @@ built_in_embedding_models: List[KilnEmbeddingModel] = [
|
|
|
146
171
|
model_id="embeddinggemma:300m",
|
|
147
172
|
n_dimensions=768,
|
|
148
173
|
max_input_tokens=2048,
|
|
149
|
-
# the model itself does support custom dimensions, but
|
|
150
|
-
#
|
|
174
|
+
# the model itself does support custom dimensions, but not working
|
|
175
|
+
# because litellm rejects the param:
|
|
176
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
151
177
|
supports_custom_dimensions=False,
|
|
152
178
|
ollama_model_aliases=["embeddinggemma"],
|
|
153
179
|
),
|
|
154
180
|
],
|
|
155
181
|
),
|
|
156
|
-
#
|
|
182
|
+
# Nomic Embed Text v1.5
|
|
157
183
|
KilnEmbeddingModel(
|
|
158
184
|
family=KilnEmbeddingModelFamily.nomic,
|
|
159
185
|
name=EmbeddingModelName.nomic_text_embedding_v1_5,
|
|
@@ -163,12 +189,288 @@ built_in_embedding_models: List[KilnEmbeddingModel] = [
|
|
|
163
189
|
name=ModelProviderName.ollama,
|
|
164
190
|
model_id="nomic-embed-text:v1.5",
|
|
165
191
|
n_dimensions=768,
|
|
166
|
-
max_input_tokens=
|
|
167
|
-
# the model itself does support custom dimensions, but
|
|
168
|
-
#
|
|
192
|
+
max_input_tokens=8192,
|
|
193
|
+
# the model itself does support custom dimensions, but not working
|
|
194
|
+
# because litellm rejects the param:
|
|
195
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
169
196
|
supports_custom_dimensions=False,
|
|
170
197
|
ollama_model_aliases=["nomic-embed-text"],
|
|
171
198
|
),
|
|
199
|
+
KilnEmbeddingModelProvider(
|
|
200
|
+
name=ModelProviderName.fireworks_ai,
|
|
201
|
+
model_id="nomic-ai/nomic-embed-text-v1.5",
|
|
202
|
+
n_dimensions=768,
|
|
203
|
+
max_input_tokens=8192,
|
|
204
|
+
supports_custom_dimensions=True,
|
|
205
|
+
),
|
|
206
|
+
],
|
|
207
|
+
),
|
|
208
|
+
# Qwen3 Embedding 8B
|
|
209
|
+
KilnEmbeddingModel(
|
|
210
|
+
family=KilnEmbeddingModelFamily.qwen,
|
|
211
|
+
name=EmbeddingModelName.qwen_3_embedding_8b,
|
|
212
|
+
friendly_name="Qwen 3 Embedding 8B",
|
|
213
|
+
providers=[
|
|
214
|
+
KilnEmbeddingModelProvider(
|
|
215
|
+
name=ModelProviderName.ollama,
|
|
216
|
+
model_id="qwen3-embedding:8b",
|
|
217
|
+
n_dimensions=4096,
|
|
218
|
+
max_input_tokens=32_000,
|
|
219
|
+
# the model itself does support custom dimensions, but not working
|
|
220
|
+
# because litellm rejects the param:
|
|
221
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
222
|
+
supports_custom_dimensions=False,
|
|
223
|
+
ollama_model_aliases=[
|
|
224
|
+
# 8b is default
|
|
225
|
+
"qwen3-embedding",
|
|
226
|
+
],
|
|
227
|
+
),
|
|
228
|
+
KilnEmbeddingModelProvider(
|
|
229
|
+
name=ModelProviderName.fireworks_ai,
|
|
230
|
+
model_id="accounts/fireworks/models/qwen3-embedding-8b",
|
|
231
|
+
n_dimensions=4096,
|
|
232
|
+
max_input_tokens=32_000,
|
|
233
|
+
# the model itself does support custom dimensions, but not working
|
|
234
|
+
supports_custom_dimensions=True,
|
|
235
|
+
),
|
|
236
|
+
KilnEmbeddingModelProvider(
|
|
237
|
+
name=ModelProviderName.siliconflow_cn,
|
|
238
|
+
model_id="Qwen/Qwen3-Embedding-8B",
|
|
239
|
+
n_dimensions=4096,
|
|
240
|
+
max_input_tokens=32_000,
|
|
241
|
+
# the model itself does support custom dimensions, but not working
|
|
242
|
+
# because litellm rejects the param:
|
|
243
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
244
|
+
supports_custom_dimensions=False,
|
|
245
|
+
),
|
|
246
|
+
],
|
|
247
|
+
),
|
|
248
|
+
# Qwen3 Embedding 4B
|
|
249
|
+
KilnEmbeddingModel(
|
|
250
|
+
family=KilnEmbeddingModelFamily.qwen,
|
|
251
|
+
name=EmbeddingModelName.qwen_3_embedding_4b,
|
|
252
|
+
friendly_name="Qwen 3 Embedding 4B",
|
|
253
|
+
providers=[
|
|
254
|
+
KilnEmbeddingModelProvider(
|
|
255
|
+
name=ModelProviderName.ollama,
|
|
256
|
+
model_id="qwen3-embedding:4b",
|
|
257
|
+
n_dimensions=2560,
|
|
258
|
+
max_input_tokens=32_000,
|
|
259
|
+
# the model itself does support custom dimensions, but not working
|
|
260
|
+
# because litellm rejects the param:
|
|
261
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
262
|
+
supports_custom_dimensions=False,
|
|
263
|
+
),
|
|
264
|
+
KilnEmbeddingModelProvider(
|
|
265
|
+
name=ModelProviderName.siliconflow_cn,
|
|
266
|
+
model_id="Qwen/Qwen3-Embedding-4B",
|
|
267
|
+
n_dimensions=2560,
|
|
268
|
+
max_input_tokens=32_000,
|
|
269
|
+
# the model itself does support custom dimensions, but not working
|
|
270
|
+
# because litellm rejects the param:
|
|
271
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
272
|
+
supports_custom_dimensions=False,
|
|
273
|
+
),
|
|
274
|
+
],
|
|
275
|
+
),
|
|
276
|
+
# Qwen3 Embedding 0.6B
|
|
277
|
+
KilnEmbeddingModel(
|
|
278
|
+
family=KilnEmbeddingModelFamily.qwen,
|
|
279
|
+
name=EmbeddingModelName.qwen_3_embedding_0p6b,
|
|
280
|
+
friendly_name="Qwen 3 Embedding 0.6B",
|
|
281
|
+
providers=[
|
|
282
|
+
KilnEmbeddingModelProvider(
|
|
283
|
+
name=ModelProviderName.ollama,
|
|
284
|
+
model_id="qwen3-embedding:0.6b",
|
|
285
|
+
n_dimensions=1024,
|
|
286
|
+
max_input_tokens=32_000,
|
|
287
|
+
# the model itself does support custom dimensions, but not working
|
|
288
|
+
# because litellm rejects the param:
|
|
289
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
290
|
+
supports_custom_dimensions=False,
|
|
291
|
+
),
|
|
292
|
+
KilnEmbeddingModelProvider(
|
|
293
|
+
name=ModelProviderName.siliconflow_cn,
|
|
294
|
+
model_id="Qwen/Qwen3-Embedding-0.6B",
|
|
295
|
+
n_dimensions=1024,
|
|
296
|
+
max_input_tokens=32_000,
|
|
297
|
+
# the model itself does support custom dimensions, but not working
|
|
298
|
+
# because litellm rejects the param:
|
|
299
|
+
# https://github.com/BerriAI/litellm/issues/11940
|
|
300
|
+
supports_custom_dimensions=False,
|
|
301
|
+
),
|
|
302
|
+
],
|
|
303
|
+
),
|
|
304
|
+
# BAAI-Bge-Large-1.5
|
|
305
|
+
KilnEmbeddingModel(
|
|
306
|
+
family=KilnEmbeddingModelFamily.baai,
|
|
307
|
+
name=EmbeddingModelName.baai_bge_large_1_5,
|
|
308
|
+
friendly_name="BAAI Bge Large 1.5",
|
|
309
|
+
providers=[
|
|
310
|
+
KilnEmbeddingModelProvider(
|
|
311
|
+
name=ModelProviderName.together_ai,
|
|
312
|
+
model_id="BAAI/bge-large-en-v1.5",
|
|
313
|
+
n_dimensions=1024,
|
|
314
|
+
max_input_tokens=512,
|
|
315
|
+
supports_custom_dimensions=False,
|
|
316
|
+
),
|
|
317
|
+
],
|
|
318
|
+
),
|
|
319
|
+
# BAAI-Bge-Base-1.5
|
|
320
|
+
KilnEmbeddingModel(
|
|
321
|
+
family=KilnEmbeddingModelFamily.baai,
|
|
322
|
+
name=EmbeddingModelName.baai_bge_base_1_5,
|
|
323
|
+
friendly_name="BAAI Bge Base 1.5",
|
|
324
|
+
providers=[
|
|
325
|
+
KilnEmbeddingModelProvider(
|
|
326
|
+
name=ModelProviderName.fireworks_ai,
|
|
327
|
+
model_id="BAAI/bge-base-en-v1.5",
|
|
328
|
+
n_dimensions=768,
|
|
329
|
+
max_input_tokens=512,
|
|
330
|
+
supports_custom_dimensions=False,
|
|
331
|
+
),
|
|
332
|
+
KilnEmbeddingModelProvider(
|
|
333
|
+
name=ModelProviderName.together_ai,
|
|
334
|
+
model_id="BAAI/bge-base-en-v1.5",
|
|
335
|
+
n_dimensions=768,
|
|
336
|
+
max_input_tokens=512,
|
|
337
|
+
supports_custom_dimensions=False,
|
|
338
|
+
),
|
|
339
|
+
],
|
|
340
|
+
),
|
|
341
|
+
# BAAI-Bge-Small-1.5
|
|
342
|
+
KilnEmbeddingModel(
|
|
343
|
+
family=KilnEmbeddingModelFamily.baai,
|
|
344
|
+
name=EmbeddingModelName.baai_bge_small_1_5,
|
|
345
|
+
friendly_name="BAAI Bge Small 1.5",
|
|
346
|
+
providers=[
|
|
347
|
+
KilnEmbeddingModelProvider(
|
|
348
|
+
name=ModelProviderName.fireworks_ai,
|
|
349
|
+
model_id="BAAI/bge-small-en-v1.5",
|
|
350
|
+
n_dimensions=384,
|
|
351
|
+
max_input_tokens=512,
|
|
352
|
+
supports_custom_dimensions=False,
|
|
353
|
+
),
|
|
354
|
+
],
|
|
355
|
+
),
|
|
356
|
+
# M2-BERT-Retrieval-32k
|
|
357
|
+
KilnEmbeddingModel(
|
|
358
|
+
family=KilnEmbeddingModelFamily.together,
|
|
359
|
+
name=EmbeddingModelName.m2_bert_retrieval_32k,
|
|
360
|
+
friendly_name="M2 BERT Retrieval 32k",
|
|
361
|
+
providers=[
|
|
362
|
+
KilnEmbeddingModelProvider(
|
|
363
|
+
name=ModelProviderName.together_ai,
|
|
364
|
+
model_id="togethercomputer/m2-bert-80M-32k-retrieval",
|
|
365
|
+
n_dimensions=768,
|
|
366
|
+
max_input_tokens=32_768,
|
|
367
|
+
supports_custom_dimensions=False,
|
|
368
|
+
),
|
|
369
|
+
],
|
|
370
|
+
),
|
|
371
|
+
# Gte Modernbert Base
|
|
372
|
+
KilnEmbeddingModel(
|
|
373
|
+
family=KilnEmbeddingModelFamily.modernbert,
|
|
374
|
+
name=EmbeddingModelName.gte_modernbert_base,
|
|
375
|
+
friendly_name="Gte Modernbert Base",
|
|
376
|
+
providers=[
|
|
377
|
+
KilnEmbeddingModelProvider(
|
|
378
|
+
name=ModelProviderName.together_ai,
|
|
379
|
+
model_id="Alibaba-NLP/gte-modernbert-base",
|
|
380
|
+
n_dimensions=768,
|
|
381
|
+
max_input_tokens=8192,
|
|
382
|
+
supports_custom_dimensions=False,
|
|
383
|
+
),
|
|
384
|
+
],
|
|
385
|
+
),
|
|
386
|
+
# Multilingual E5 Large Instruct
|
|
387
|
+
KilnEmbeddingModel(
|
|
388
|
+
family=KilnEmbeddingModelFamily.intfloat,
|
|
389
|
+
name=EmbeddingModelName.multilingual_e5_large_instruct,
|
|
390
|
+
friendly_name="Multilingual E5 Large Instruct",
|
|
391
|
+
providers=[
|
|
392
|
+
KilnEmbeddingModelProvider(
|
|
393
|
+
name=ModelProviderName.together_ai,
|
|
394
|
+
model_id="intfloat/multilingual-e5-large-instruct",
|
|
395
|
+
n_dimensions=1024,
|
|
396
|
+
max_input_tokens=512,
|
|
397
|
+
supports_custom_dimensions=False,
|
|
398
|
+
),
|
|
399
|
+
],
|
|
400
|
+
),
|
|
401
|
+
# Thenlper Gte Large
|
|
402
|
+
KilnEmbeddingModel(
|
|
403
|
+
family=KilnEmbeddingModelFamily.thenlper,
|
|
404
|
+
name=EmbeddingModelName.thenlper_gte_large,
|
|
405
|
+
friendly_name="Thenlper Gte Large",
|
|
406
|
+
providers=[
|
|
407
|
+
KilnEmbeddingModelProvider(
|
|
408
|
+
name=ModelProviderName.fireworks_ai,
|
|
409
|
+
model_id="thenlper/gte-large",
|
|
410
|
+
n_dimensions=1024,
|
|
411
|
+
max_input_tokens=512,
|
|
412
|
+
supports_custom_dimensions=False,
|
|
413
|
+
),
|
|
414
|
+
],
|
|
415
|
+
),
|
|
416
|
+
# Thenlper Gte Base
|
|
417
|
+
KilnEmbeddingModel(
|
|
418
|
+
family=KilnEmbeddingModelFamily.thenlper,
|
|
419
|
+
name=EmbeddingModelName.thenlper_gte_base,
|
|
420
|
+
friendly_name="Thenlper Gte Base",
|
|
421
|
+
providers=[
|
|
422
|
+
KilnEmbeddingModelProvider(
|
|
423
|
+
name=ModelProviderName.fireworks_ai,
|
|
424
|
+
model_id="thenlper/gte-base",
|
|
425
|
+
n_dimensions=768,
|
|
426
|
+
max_input_tokens=512,
|
|
427
|
+
supports_custom_dimensions=False,
|
|
428
|
+
),
|
|
429
|
+
],
|
|
430
|
+
),
|
|
431
|
+
# Where Is AI UAE Large V1
|
|
432
|
+
KilnEmbeddingModel(
|
|
433
|
+
family=KilnEmbeddingModelFamily.where_is_ai,
|
|
434
|
+
name=EmbeddingModelName.where_is_ai_uae_large_v1,
|
|
435
|
+
friendly_name="Where Is AI UAE Large V1",
|
|
436
|
+
providers=[
|
|
437
|
+
KilnEmbeddingModelProvider(
|
|
438
|
+
name=ModelProviderName.fireworks_ai,
|
|
439
|
+
model_id="WhereIsAI/UAE-Large-V1",
|
|
440
|
+
n_dimensions=1024,
|
|
441
|
+
max_input_tokens=512,
|
|
442
|
+
supports_custom_dimensions=False,
|
|
443
|
+
),
|
|
444
|
+
],
|
|
445
|
+
),
|
|
446
|
+
# Mixedbread AI Mxbai Embed Large V1
|
|
447
|
+
KilnEmbeddingModel(
|
|
448
|
+
family=KilnEmbeddingModelFamily.mixedbread,
|
|
449
|
+
name=EmbeddingModelName.mixedbread_ai_mxbai_embed_large_v1,
|
|
450
|
+
friendly_name="Mixedbread AI Mxbai Embed Large V1",
|
|
451
|
+
providers=[
|
|
452
|
+
KilnEmbeddingModelProvider(
|
|
453
|
+
name=ModelProviderName.fireworks_ai,
|
|
454
|
+
model_id="mixedbread-ai/mxbai-embed-large-v1",
|
|
455
|
+
n_dimensions=1024,
|
|
456
|
+
max_input_tokens=512,
|
|
457
|
+
supports_custom_dimensions=False,
|
|
458
|
+
),
|
|
459
|
+
],
|
|
460
|
+
),
|
|
461
|
+
# Netease Youdao Bce Embedding Base V1
|
|
462
|
+
KilnEmbeddingModel(
|
|
463
|
+
family=KilnEmbeddingModelFamily.netease,
|
|
464
|
+
name=EmbeddingModelName.netease_youdao_bce_embedding_base_v1,
|
|
465
|
+
friendly_name="Netease Youdao Bce Embedding Base V1",
|
|
466
|
+
providers=[
|
|
467
|
+
KilnEmbeddingModelProvider(
|
|
468
|
+
name=ModelProviderName.siliconflow_cn,
|
|
469
|
+
model_id="netease-youdao/bce-embedding-base_v1",
|
|
470
|
+
n_dimensions=768,
|
|
471
|
+
max_input_tokens=512,
|
|
472
|
+
supports_custom_dimensions=False,
|
|
473
|
+
),
|
|
172
474
|
],
|
|
173
475
|
),
|
|
174
476
|
]
|