kiln-ai 0.18.0__py3-none-any.whl → 0.20.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/__init__.py +2 -2
- kiln_ai/adapters/adapter_registry.py +46 -0
- kiln_ai/adapters/chat/chat_formatter.py +8 -12
- kiln_ai/adapters/chat/test_chat_formatter.py +6 -2
- kiln_ai/adapters/data_gen/data_gen_task.py +2 -2
- kiln_ai/adapters/data_gen/test_data_gen_task.py +7 -3
- kiln_ai/adapters/docker_model_runner_tools.py +119 -0
- kiln_ai/adapters/eval/base_eval.py +2 -2
- kiln_ai/adapters/eval/eval_runner.py +3 -1
- kiln_ai/adapters/eval/g_eval.py +2 -2
- kiln_ai/adapters/eval/test_base_eval.py +1 -1
- kiln_ai/adapters/eval/test_eval_runner.py +6 -12
- kiln_ai/adapters/eval/test_g_eval.py +3 -4
- kiln_ai/adapters/eval/test_g_eval_data.py +1 -1
- kiln_ai/adapters/fine_tune/__init__.py +1 -1
- kiln_ai/adapters/fine_tune/base_finetune.py +1 -0
- kiln_ai/adapters/fine_tune/fireworks_finetune.py +32 -20
- kiln_ai/adapters/fine_tune/openai_finetune.py +14 -4
- kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +30 -21
- kiln_ai/adapters/fine_tune/test_openai_finetune.py +108 -111
- kiln_ai/adapters/ml_model_list.py +1009 -111
- kiln_ai/adapters/model_adapters/base_adapter.py +62 -28
- kiln_ai/adapters/model_adapters/litellm_adapter.py +397 -80
- kiln_ai/adapters/model_adapters/test_base_adapter.py +194 -18
- kiln_ai/adapters/model_adapters/test_litellm_adapter.py +428 -4
- kiln_ai/adapters/model_adapters/test_litellm_adapter_tools.py +1103 -0
- kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +5 -5
- kiln_ai/adapters/model_adapters/test_structured_output.py +120 -14
- kiln_ai/adapters/parsers/__init__.py +1 -1
- kiln_ai/adapters/parsers/test_r1_parser.py +1 -1
- kiln_ai/adapters/provider_tools.py +35 -20
- kiln_ai/adapters/remote_config.py +57 -10
- kiln_ai/adapters/repair/repair_task.py +1 -1
- kiln_ai/adapters/repair/test_repair_task.py +12 -9
- kiln_ai/adapters/run_output.py +3 -0
- kiln_ai/adapters/test_adapter_registry.py +109 -2
- kiln_ai/adapters/test_docker_model_runner_tools.py +305 -0
- kiln_ai/adapters/test_ml_model_list.py +51 -1
- kiln_ai/adapters/test_prompt_adaptors.py +13 -6
- kiln_ai/adapters/test_provider_tools.py +73 -12
- kiln_ai/adapters/test_remote_config.py +470 -16
- kiln_ai/datamodel/__init__.py +23 -21
- kiln_ai/datamodel/basemodel.py +54 -28
- kiln_ai/datamodel/datamodel_enums.py +3 -0
- kiln_ai/datamodel/dataset_split.py +5 -3
- kiln_ai/datamodel/eval.py +4 -4
- kiln_ai/datamodel/external_tool_server.py +298 -0
- kiln_ai/datamodel/finetune.py +2 -2
- kiln_ai/datamodel/json_schema.py +25 -10
- kiln_ai/datamodel/project.py +11 -4
- kiln_ai/datamodel/prompt.py +2 -2
- kiln_ai/datamodel/prompt_id.py +4 -4
- kiln_ai/datamodel/registry.py +0 -15
- kiln_ai/datamodel/run_config.py +62 -0
- kiln_ai/datamodel/task.py +8 -83
- kiln_ai/datamodel/task_output.py +7 -2
- kiln_ai/datamodel/task_run.py +41 -0
- kiln_ai/datamodel/test_basemodel.py +213 -21
- kiln_ai/datamodel/test_eval_model.py +6 -6
- kiln_ai/datamodel/test_example_models.py +175 -0
- kiln_ai/datamodel/test_external_tool_server.py +691 -0
- kiln_ai/datamodel/test_model_perf.py +1 -1
- kiln_ai/datamodel/test_prompt_id.py +5 -1
- kiln_ai/datamodel/test_registry.py +8 -3
- kiln_ai/datamodel/test_task.py +20 -47
- kiln_ai/datamodel/test_tool_id.py +239 -0
- kiln_ai/datamodel/tool_id.py +83 -0
- kiln_ai/tools/__init__.py +8 -0
- kiln_ai/tools/base_tool.py +82 -0
- kiln_ai/tools/built_in_tools/__init__.py +13 -0
- kiln_ai/tools/built_in_tools/math_tools.py +124 -0
- kiln_ai/tools/built_in_tools/test_math_tools.py +204 -0
- kiln_ai/tools/mcp_server_tool.py +95 -0
- kiln_ai/tools/mcp_session_manager.py +243 -0
- kiln_ai/tools/test_base_tools.py +199 -0
- kiln_ai/tools/test_mcp_server_tool.py +457 -0
- kiln_ai/tools/test_mcp_session_manager.py +1585 -0
- kiln_ai/tools/test_tool_registry.py +473 -0
- kiln_ai/tools/tool_registry.py +64 -0
- kiln_ai/utils/config.py +32 -0
- kiln_ai/utils/open_ai_types.py +94 -0
- kiln_ai/utils/project_utils.py +17 -0
- kiln_ai/utils/test_config.py +138 -1
- kiln_ai/utils/test_open_ai_types.py +131 -0
- {kiln_ai-0.18.0.dist-info → kiln_ai-0.20.1.dist-info}/METADATA +37 -6
- kiln_ai-0.20.1.dist-info/RECORD +138 -0
- kiln_ai-0.18.0.dist-info/RECORD +0 -115
- {kiln_ai-0.18.0.dist-info → kiln_ai-0.20.1.dist-info}/WHEEL +0 -0
- {kiln_ai-0.18.0.dist-info → kiln_ai-0.20.1.dist-info}/licenses/LICENSE.txt +0 -0
kiln_ai/adapters/__init__.py
CHANGED
|
@@ -44,6 +44,23 @@ def adapter_for_task(
|
|
|
44
44
|
),
|
|
45
45
|
base_adapter_config=base_adapter_config,
|
|
46
46
|
)
|
|
47
|
+
case ModelProviderName.siliconflow_cn:
|
|
48
|
+
return LiteLlmAdapter(
|
|
49
|
+
kiln_task=kiln_task,
|
|
50
|
+
config=LiteLlmConfig(
|
|
51
|
+
run_config_properties=run_config_properties,
|
|
52
|
+
base_url=getenv("SILICONFLOW_BASE_URL")
|
|
53
|
+
or "https://api.siliconflow.cn/v1",
|
|
54
|
+
default_headers={
|
|
55
|
+
"HTTP-Referer": "https://kiln.tech/siliconflow",
|
|
56
|
+
"X-Title": "KilnAI",
|
|
57
|
+
},
|
|
58
|
+
additional_body_options={
|
|
59
|
+
"api_key": Config.shared().siliconflow_cn_api_key,
|
|
60
|
+
},
|
|
61
|
+
),
|
|
62
|
+
base_adapter_config=base_adapter_config,
|
|
63
|
+
)
|
|
47
64
|
case ModelProviderName.openai:
|
|
48
65
|
return LiteLlmAdapter(
|
|
49
66
|
kiln_task=kiln_task,
|
|
@@ -106,6 +123,24 @@ def adapter_for_task(
|
|
|
106
123
|
},
|
|
107
124
|
),
|
|
108
125
|
)
|
|
126
|
+
case ModelProviderName.docker_model_runner:
|
|
127
|
+
docker_base_url = (
|
|
128
|
+
Config.shared().docker_model_runner_base_url
|
|
129
|
+
or "http://localhost:12434/engines/llama.cpp"
|
|
130
|
+
)
|
|
131
|
+
return LiteLlmAdapter(
|
|
132
|
+
kiln_task=kiln_task,
|
|
133
|
+
base_adapter_config=base_adapter_config,
|
|
134
|
+
config=LiteLlmConfig(
|
|
135
|
+
run_config_properties=run_config_properties,
|
|
136
|
+
# Docker Model Runner uses OpenAI-compatible API at /v1 endpoint
|
|
137
|
+
base_url=docker_base_url + "/v1",
|
|
138
|
+
additional_body_options={
|
|
139
|
+
# LiteLLM errors without an api_key, even though Docker Model Runner doesn't require one.
|
|
140
|
+
"api_key": "DMR",
|
|
141
|
+
},
|
|
142
|
+
),
|
|
143
|
+
)
|
|
109
144
|
case ModelProviderName.fireworks_ai:
|
|
110
145
|
return LiteLlmAdapter(
|
|
111
146
|
kiln_task=kiln_task,
|
|
@@ -186,6 +221,17 @@ def adapter_for_task(
|
|
|
186
221
|
},
|
|
187
222
|
),
|
|
188
223
|
)
|
|
224
|
+
case ModelProviderName.cerebras:
|
|
225
|
+
return LiteLlmAdapter(
|
|
226
|
+
kiln_task=kiln_task,
|
|
227
|
+
base_adapter_config=base_adapter_config,
|
|
228
|
+
config=LiteLlmConfig(
|
|
229
|
+
run_config_properties=run_config_properties,
|
|
230
|
+
additional_body_options={
|
|
231
|
+
"api_key": Config.shared().cerebras_api_key,
|
|
232
|
+
},
|
|
233
|
+
),
|
|
234
|
+
)
|
|
189
235
|
# These are virtual providers that should have mapped to an actual provider in core_provider
|
|
190
236
|
case ModelProviderName.kiln_fine_tune:
|
|
191
237
|
raise ValueError(
|
|
@@ -106,14 +106,12 @@ class TwoMessageCotLegacyFormatter(ChatFormatter):
|
|
|
106
106
|
if self._state == "awaiting_thinking":
|
|
107
107
|
if previous_output is None:
|
|
108
108
|
raise ValueError("previous_output required for thinking step")
|
|
109
|
-
msgs = [
|
|
110
|
-
ChatMessage("assistant", previous_output),
|
|
111
|
-
ChatMessage("user", COT_FINAL_ANSWER_PROMPT),
|
|
112
|
-
]
|
|
113
109
|
self._intermediate_outputs["chain_of_thought"] = previous_output
|
|
114
110
|
self._state = "awaiting_final"
|
|
115
|
-
|
|
116
|
-
|
|
111
|
+
cot_message = ChatMessage("user", COT_FINAL_ANSWER_PROMPT)
|
|
112
|
+
self._messages.append(ChatMessage("assistant", previous_output))
|
|
113
|
+
self._messages.append(cot_message)
|
|
114
|
+
return ChatTurn(messages=[cot_message], final_call=True)
|
|
117
115
|
|
|
118
116
|
if self._state == "awaiting_final":
|
|
119
117
|
if previous_output is None:
|
|
@@ -155,14 +153,12 @@ class TwoMessageCotFormatter(ChatFormatter):
|
|
|
155
153
|
if self._state == "awaiting_thinking":
|
|
156
154
|
if previous_output is None:
|
|
157
155
|
raise ValueError("previous_output required for thinking step")
|
|
158
|
-
msgs = [
|
|
159
|
-
ChatMessage("assistant", previous_output),
|
|
160
|
-
ChatMessage("user", COT_FINAL_ANSWER_PROMPT),
|
|
161
|
-
]
|
|
162
156
|
self._intermediate_outputs["chain_of_thought"] = previous_output
|
|
163
157
|
self._state = "awaiting_final"
|
|
164
|
-
self._messages.
|
|
165
|
-
|
|
158
|
+
self._messages.append(ChatMessage("assistant", previous_output))
|
|
159
|
+
cot_message = ChatMessage("user", COT_FINAL_ANSWER_PROMPT)
|
|
160
|
+
self._messages.append(cot_message)
|
|
161
|
+
return ChatTurn(messages=[cot_message], final_call=True)
|
|
166
162
|
|
|
167
163
|
if self._state == "awaiting_final":
|
|
168
164
|
if previous_output is None:
|
|
@@ -46,12 +46,14 @@ def test_chat_formatter_final_and_intermediate():
|
|
|
46
46
|
)
|
|
47
47
|
|
|
48
48
|
first = formatter.next_turn()
|
|
49
|
+
assert first is not None
|
|
49
50
|
assert [m.__dict__ for m in first.messages] == expected[:3]
|
|
50
51
|
assert not first.final_call
|
|
51
52
|
assert formatter.intermediate_outputs() == {}
|
|
52
53
|
|
|
53
54
|
second = formatter.next_turn("thinking output")
|
|
54
|
-
assert
|
|
55
|
+
assert second is not None
|
|
56
|
+
assert [m.__dict__ for m in second.messages] == expected[4:5]
|
|
55
57
|
assert second.final_call
|
|
56
58
|
assert formatter.intermediate_outputs() == {"chain_of_thought": "thinking output"}
|
|
57
59
|
|
|
@@ -78,12 +80,14 @@ def test_chat_formatter_two_message_cot():
|
|
|
78
80
|
)
|
|
79
81
|
|
|
80
82
|
first = formatter.next_turn()
|
|
83
|
+
assert first is not None
|
|
81
84
|
assert [m.__dict__ for m in first.messages] == expected[:2]
|
|
82
85
|
assert not first.final_call
|
|
83
86
|
assert formatter.intermediate_outputs() == {}
|
|
84
87
|
|
|
85
88
|
second = formatter.next_turn("thinking output")
|
|
86
|
-
assert
|
|
89
|
+
assert second is not None
|
|
90
|
+
assert [m.__dict__ for m in second.messages] == expected[3:4]
|
|
87
91
|
assert second.final_call
|
|
88
92
|
assert formatter.intermediate_outputs() == {"chain_of_thought": "thinking output"}
|
|
89
93
|
|
|
@@ -77,7 +77,7 @@ class DataGenCategoriesTask(Task, parent_of={}):
|
|
|
77
77
|
"""
|
|
78
78
|
|
|
79
79
|
def __init__(self, gen_type: Literal["training", "eval"], guidance: str | None):
|
|
80
|
-
# Keep the typechecker happy.
|
|
80
|
+
# Keep the typechecker happy. We should make this optional.
|
|
81
81
|
tmp_project = Project(name="DataGen")
|
|
82
82
|
|
|
83
83
|
instruction = generate_topic_tree_prompt(gen_type=gen_type, guidance=guidance)
|
|
@@ -181,7 +181,7 @@ class DataGenSampleTask(Task, parent_of={}):
|
|
|
181
181
|
gen_type: Literal["training", "eval"],
|
|
182
182
|
guidance: str | None,
|
|
183
183
|
):
|
|
184
|
-
# Keep the typechecker happy.
|
|
184
|
+
# Keep the typechecker happy. We should make this optional.
|
|
185
185
|
tmp_project = Project(name="DataGenSample")
|
|
186
186
|
|
|
187
187
|
instruction = generate_sample_generation_prompt(
|
|
@@ -255,11 +255,13 @@ async def test_data_gen_sample_all_models_providers(
|
|
|
255
255
|
tmp_path, model_name, provider_name, base_task
|
|
256
256
|
):
|
|
257
257
|
_, provider = get_model_and_provider(model_name, provider_name)
|
|
258
|
-
if not provider.supports_data_gen:
|
|
258
|
+
if provider is None or not provider.supports_data_gen:
|
|
259
259
|
# pass if the model doesn't support data gen (testing the support flag is part of this)
|
|
260
260
|
return
|
|
261
261
|
|
|
262
|
-
data_gen_task = DataGenSampleTask(
|
|
262
|
+
data_gen_task = DataGenSampleTask(
|
|
263
|
+
target_task=base_task, gen_type="training", guidance=None
|
|
264
|
+
)
|
|
263
265
|
data_gen_input = DataGenSampleTaskInput.from_task(
|
|
264
266
|
base_task, topic=["riding horses"], num_samples=4
|
|
265
267
|
)
|
|
@@ -313,7 +315,9 @@ async def test_data_gen_sample_all_models_providers_with_structured_output(
|
|
|
313
315
|
# pass if the model doesn't support data gen (testing the support flag is part of this)
|
|
314
316
|
return
|
|
315
317
|
|
|
316
|
-
data_gen_task = DataGenSampleTask(
|
|
318
|
+
data_gen_task = DataGenSampleTask(
|
|
319
|
+
target_task=task, gen_type="training", guidance=None
|
|
320
|
+
)
|
|
317
321
|
data_gen_input = DataGenSampleTaskInput.from_task(
|
|
318
322
|
task, topic=["Food"], num_samples=4
|
|
319
323
|
)
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
|
|
3
|
+
import httpx
|
|
4
|
+
import openai
|
|
5
|
+
from pydantic import BaseModel, Field
|
|
6
|
+
|
|
7
|
+
from kiln_ai.adapters.ml_model_list import ModelProviderName, built_in_models
|
|
8
|
+
from kiln_ai.utils.config import Config
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def docker_model_runner_base_url() -> str:
|
|
12
|
+
"""
|
|
13
|
+
Gets the base URL for Docker Model Runner API connections.
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
The base URL to use for Docker Model Runner API calls, using environment variable if set
|
|
17
|
+
or falling back to localhost default
|
|
18
|
+
"""
|
|
19
|
+
config_base_url = Config.shared().docker_model_runner_base_url
|
|
20
|
+
if config_base_url:
|
|
21
|
+
return config_base_url
|
|
22
|
+
return "http://localhost:12434/engines/llama.cpp"
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
async def docker_model_runner_online() -> bool:
|
|
26
|
+
"""
|
|
27
|
+
Checks if the Docker Model Runner service is available and responding.
|
|
28
|
+
|
|
29
|
+
Returns:
|
|
30
|
+
True if Docker Model Runner is available and responding, False otherwise
|
|
31
|
+
"""
|
|
32
|
+
try:
|
|
33
|
+
base_url = docker_model_runner_base_url()
|
|
34
|
+
# Docker Model Runner uses OpenAI-compatible endpoints
|
|
35
|
+
async with httpx.AsyncClient() as client:
|
|
36
|
+
response = await client.get(f"{base_url}/v1/models", timeout=5.0)
|
|
37
|
+
response.raise_for_status()
|
|
38
|
+
except httpx.RequestError:
|
|
39
|
+
return False
|
|
40
|
+
return True
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class DockerModelRunnerConnection(BaseModel):
|
|
44
|
+
message: str
|
|
45
|
+
version: str | None = None
|
|
46
|
+
supported_models: List[str]
|
|
47
|
+
untested_models: List[str] = Field(default_factory=list)
|
|
48
|
+
|
|
49
|
+
def all_models(self) -> List[str]:
|
|
50
|
+
return self.supported_models + self.untested_models
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
# Parse the Docker Model Runner /v1/models response
|
|
54
|
+
def parse_docker_model_runner_models(
|
|
55
|
+
models: List[openai.types.Model],
|
|
56
|
+
) -> DockerModelRunnerConnection | None:
|
|
57
|
+
# Build a list of models we support for Docker Model Runner from the built-in model list
|
|
58
|
+
supported_docker_models = [
|
|
59
|
+
provider.model_id
|
|
60
|
+
for model in built_in_models
|
|
61
|
+
for provider in model.providers
|
|
62
|
+
if provider.name == ModelProviderName.docker_model_runner
|
|
63
|
+
]
|
|
64
|
+
# Note: Docker Model Runner aliases will be added when we configure models
|
|
65
|
+
|
|
66
|
+
model_names = [model.id for model in models]
|
|
67
|
+
available_supported_models = []
|
|
68
|
+
untested_models = []
|
|
69
|
+
|
|
70
|
+
for model_name in model_names:
|
|
71
|
+
if model_name in supported_docker_models:
|
|
72
|
+
available_supported_models.append(model_name)
|
|
73
|
+
else:
|
|
74
|
+
untested_models.append(model_name)
|
|
75
|
+
|
|
76
|
+
if available_supported_models or untested_models:
|
|
77
|
+
return DockerModelRunnerConnection(
|
|
78
|
+
message="Docker Model Runner connected",
|
|
79
|
+
supported_models=available_supported_models,
|
|
80
|
+
untested_models=untested_models,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
return DockerModelRunnerConnection(
|
|
84
|
+
message="Docker Model Runner is running, but no supported models are available. Ensure models like 'ai/llama3.2:3B-Q4_K_M', 'ai/qwen3:8B-Q4_K_M', or 'ai/gemma3n:4B-Q4_K_M' are loaded.",
|
|
85
|
+
supported_models=[],
|
|
86
|
+
untested_models=[],
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
async def get_docker_model_runner_connection(
|
|
91
|
+
custom_url: str | None = None,
|
|
92
|
+
) -> DockerModelRunnerConnection | None:
|
|
93
|
+
"""
|
|
94
|
+
Gets the connection status for Docker Model Runner.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
custom_url: Optional custom URL to use instead of the configured one
|
|
98
|
+
"""
|
|
99
|
+
try:
|
|
100
|
+
base_url = custom_url or docker_model_runner_base_url()
|
|
101
|
+
# Use OpenAI client to get models list
|
|
102
|
+
client = openai.OpenAI(
|
|
103
|
+
api_key="dummy", # Docker Model Runner doesn't require API key
|
|
104
|
+
base_url=f"{base_url}/v1",
|
|
105
|
+
max_retries=0,
|
|
106
|
+
)
|
|
107
|
+
models_response = client.models.list()
|
|
108
|
+
|
|
109
|
+
except (openai.APIConnectionError, openai.APIError, httpx.RequestError):
|
|
110
|
+
return None
|
|
111
|
+
|
|
112
|
+
return parse_docker_model_runner_models(list(models_response))
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def docker_model_runner_model_installed(
|
|
116
|
+
conn: DockerModelRunnerConnection, model_name: str
|
|
117
|
+
) -> bool:
|
|
118
|
+
all_models = conn.all_models()
|
|
119
|
+
return model_name in all_models
|
|
@@ -7,7 +7,7 @@ from kiln_ai.adapters.ml_model_list import ModelProviderName
|
|
|
7
7
|
from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig
|
|
8
8
|
from kiln_ai.datamodel.eval import Eval, EvalConfig, EvalScores
|
|
9
9
|
from kiln_ai.datamodel.json_schema import validate_schema_with_value_error
|
|
10
|
-
from kiln_ai.datamodel.task import
|
|
10
|
+
from kiln_ai.datamodel.task import RunConfigProperties, TaskOutputRatingType, TaskRun
|
|
11
11
|
from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
|
|
12
12
|
|
|
13
13
|
|
|
@@ -18,7 +18,7 @@ class BaseEval:
|
|
|
18
18
|
Should be subclassed, and the run_eval method implemented.
|
|
19
19
|
"""
|
|
20
20
|
|
|
21
|
-
def __init__(self, eval_config: EvalConfig, run_config:
|
|
21
|
+
def __init__(self, eval_config: EvalConfig, run_config: RunConfigProperties | None):
|
|
22
22
|
self.eval_config = eval_config
|
|
23
23
|
eval = eval_config.parent_eval()
|
|
24
24
|
if not eval:
|
|
@@ -169,7 +169,9 @@ class EvalRunner:
|
|
|
169
169
|
# Create the evaluator for this eval config/run config pair
|
|
170
170
|
evaluator = eval_adapter_from_type(job.eval_config.config_type)(
|
|
171
171
|
job.eval_config,
|
|
172
|
-
job.task_run_config.
|
|
172
|
+
job.task_run_config.run_config_properties
|
|
173
|
+
if job.task_run_config
|
|
174
|
+
else None,
|
|
173
175
|
)
|
|
174
176
|
if not isinstance(evaluator, BaseEval):
|
|
175
177
|
raise ValueError("Not able to create evaluator from eval config")
|
kiln_ai/adapters/eval/g_eval.py
CHANGED
|
@@ -12,7 +12,7 @@ from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, RunOutpu
|
|
|
12
12
|
from kiln_ai.adapters.prompt_builders import PromptGenerators
|
|
13
13
|
from kiln_ai.datamodel import Project, Task, TaskRun
|
|
14
14
|
from kiln_ai.datamodel.eval import EvalConfig, EvalConfigType, EvalScores
|
|
15
|
-
from kiln_ai.datamodel.task import
|
|
15
|
+
from kiln_ai.datamodel.task import RunConfigProperties, StructuredOutputMode
|
|
16
16
|
|
|
17
17
|
# all the tokens we score for, and their float scores.
|
|
18
18
|
TOKEN_TO_SCORE_MAP: Dict[str, float] = {
|
|
@@ -89,7 +89,7 @@ class GEval(BaseEval):
|
|
|
89
89
|
}
|
|
90
90
|
"""
|
|
91
91
|
|
|
92
|
-
def __init__(self, eval_config: EvalConfig, run_config:
|
|
92
|
+
def __init__(self, eval_config: EvalConfig, run_config: RunConfigProperties | None):
|
|
93
93
|
if (
|
|
94
94
|
eval_config.config_type != EvalConfigType.g_eval
|
|
95
95
|
and eval_config.config_type != EvalConfigType.llm_as_judge
|
|
@@ -380,7 +380,7 @@ async def test_run_task_and_eval():
|
|
|
380
380
|
async def run_eval(self, task_run):
|
|
381
381
|
return {"overall_rating": 5, "quality": 4}, {"thinking": "test thinking"}
|
|
382
382
|
|
|
383
|
-
evaluator = MockEval(eval_config, run_config.
|
|
383
|
+
evaluator = MockEval(eval_config, run_config.run_config_properties)
|
|
384
384
|
|
|
385
385
|
# Mock dependencies
|
|
386
386
|
mock_adapter = AsyncMock()
|
|
@@ -485,18 +485,17 @@ async def test_run_job_success_task_run_eval(
|
|
|
485
485
|
)
|
|
486
486
|
|
|
487
487
|
# Mock the evaluator
|
|
488
|
-
mock_result_run = TaskRun(
|
|
489
|
-
input="test input",
|
|
490
|
-
input_source=data_source,
|
|
491
|
-
output=TaskOutput(output="evaluated output"),
|
|
492
|
-
intermediate_outputs={"intermediate_output": "intermediate output"},
|
|
493
|
-
)
|
|
494
488
|
mock_scores = {"accuracy": 0.95}
|
|
495
489
|
|
|
496
490
|
class MockEvaluator(BaseEval):
|
|
497
491
|
async def run_task_and_eval(self, input_text):
|
|
498
492
|
return (
|
|
499
|
-
|
|
493
|
+
TaskRun(
|
|
494
|
+
input="test input",
|
|
495
|
+
input_source=data_source,
|
|
496
|
+
output=TaskOutput(output="evaluated output"),
|
|
497
|
+
intermediate_outputs={"intermediate_output": "intermediate output"},
|
|
498
|
+
),
|
|
500
499
|
mock_scores,
|
|
501
500
|
{"intermediate_output": "intermediate output"},
|
|
502
501
|
)
|
|
@@ -546,11 +545,6 @@ async def test_run_job_success_eval_config_eval(
|
|
|
546
545
|
)
|
|
547
546
|
|
|
548
547
|
# Mock the evaluator
|
|
549
|
-
mock_result_run = TaskRun(
|
|
550
|
-
input="test input",
|
|
551
|
-
input_source=data_source,
|
|
552
|
-
output=TaskOutput(output="evaluated output"),
|
|
553
|
-
)
|
|
554
548
|
mock_scores: EvalScores = {"accuracy": 0.95}
|
|
555
549
|
|
|
556
550
|
class MockEvaluator(BaseEval):
|
|
@@ -19,7 +19,7 @@ from kiln_ai.datamodel import (
|
|
|
19
19
|
TaskRun,
|
|
20
20
|
)
|
|
21
21
|
from kiln_ai.datamodel.eval import Eval, EvalConfig, EvalConfigType, EvalOutputScore
|
|
22
|
-
from kiln_ai.datamodel.task import
|
|
22
|
+
from kiln_ai.datamodel.task import RunConfigProperties
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
@pytest.fixture
|
|
@@ -93,11 +93,10 @@ def test_eval_config(test_task):
|
|
|
93
93
|
|
|
94
94
|
|
|
95
95
|
@pytest.fixture
|
|
96
|
-
def test_run_config(
|
|
97
|
-
return
|
|
96
|
+
def test_run_config():
|
|
97
|
+
return RunConfigProperties(
|
|
98
98
|
model_name="llama_3_1_8b",
|
|
99
99
|
model_provider_name="groq",
|
|
100
|
-
task=test_task,
|
|
101
100
|
prompt_id="simple_prompt_builder",
|
|
102
101
|
structured_output_mode="json_schema",
|
|
103
102
|
)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
1
|
# Saved a real RunOutput, with real logprobs via:
|
|
2
2
|
# po = pickle.dumps(result)
|
|
3
|
-
#
|
|
3
|
+
# Example inspection of the pickled result can be done with a print statement.
|
|
4
4
|
serialized_run_output = b"\x80\x04\x95\xe8:\x00\x00\x00\x00\x00\x00\x8c\x1bkiln_ai.adapters.run_output\x94\x8c\tRunOutput\x94\x93\x94)\x81\x94}\x94(\x8c\x06output\x94}\x94(\x8c\x0ftopic_alignment\x94K\x05\x8c\x0fappropriateness\x94\x8c\x04pass\x94\x8c\x0eoverall_rating\x94K\x04u\x8c\x14intermediate_outputs\x94}\x94\x8c\x10chain_of_thought\x94X\x08\x06\x00\x001) **Is the joke funny?**\n The joke \"Why did the chicken cross the road? To get to the other side!\" is a classic joke that many consider to be humorous due to its simplicity and unexpected nature. However, as it's a very well-known punchline, some may find it less amusing for being overly familiar. Overall, it can elicit a chuckle, but it may not be considered original or particularly funny by everyone.\n\n2) **Is the content appropriate for all audiences?**\n Yes, the joke is appropriate for all audiences. It does not contain any offensive language or themes, making it suitable for children and adults alike.\n\n3) **Is the joke culturally sensitive?**\n Yes, the joke is culturally sensitive. It does not touch on any potentially sensitive topics or stereotypes. It\xe2\x80\x99s a universal humor that transcends cultural boundaries.\n\n4) **Is the joke politically correct?**\n Yes, the joke is politically correct. It does not make any political statements or discriminatory remarks. It simply presents a light-hearted situation involving a chicken, which is neutral and inoffensive.\n\n5) **Is the joke aligned with the provided topic?**\n Yes, the joke is aligned with the provided topic of a \"chicken joke.\" It directly references a chicken and is structured as a joke, fulfilling the prompt's requirements.\n\nIn summary, while the joke may lack originality, it is appropriate, sensitive, politically correct, and aligns well with the topic. The humor level can vary depending on personal taste, but overall, it meets the evaluation criteria.\x94s\x8c\x0foutput_logprobs\x94\x8c!openai.types.chat.chat_completion\x94\x8c\x0eChoiceLogprobs\x94\x93\x94)\x81\x94}\x94(\x8c\x08__dict__\x94}\x94(\x8c\x07content\x94]\x94(\x8c/openai.types.chat.chat_completion_token_logprob\x94\x8c\x1aChatCompletionTokenLogprob\x94\x93\x94)\x81\x94}\x94(h\x15}\x94(\x8c\x05token\x94\x8c\x02{\"\x94\x8c\x05bytes\x94]\x94(K{K\"e\x8c\x07logprob\x94G\xbf5\xfe.\xba\x97\xb1\xde\x8c\x0ctop_logprobs\x94]\x94(h\x19\x8c\nTopLogprob\x94\x93\x94)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{\"\x94h!]\x94(K{K\"eh#G\xbf5\xfe.\xba\x97\xb1\xdeu\x8c\x12__pydantic_extra__\x94}\x94\x8c\x17__pydantic_fields_set__\x94\x8f\x94(h\x1fh#h!\x90\x8c\x14__pydantic_private__\x94Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{\n\x94h!]\x94(K{K\neh#G\xc0 \x00,\nJ\x05\xdeuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01{\x94h!]\x94K{ah#G\xc0/\x80,\nJ\x05\xdeuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03{\r\n\x94h!]\x94(K{K\rK\neh#G\xc01@\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03{\n\n\x94h!]\x94(K{K\nK\neh#G\xc03\xc0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 {\"\x94h!]\x94(K K{K\"eh#G\xc05\x00\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 {\n\x94h!]\x94(K K{K\neh#G\xc06\xe0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\n\x94h!]\x94K\nah#G\xc07\xe0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{}\x94h!]\x94(K{K}eh#G\xc08 \x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05topic\x94h!]\x94(KtKoKpKiKceh#G\xbfS\x8a+<\x99\xb9Oh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05topic\x94h!]\x94(KtKoKpKiKceh#G\xbfS\x8a+<\x99\xb9Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xc0\x1b\x818\xa2\x07\xfd%uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04type\x94h!]\x94(KtKyKpKeeh#G\xc0!\x80\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03top\x94h!]\x94(KtKoKpeh#G\xc0-\x00\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05theme\x94h!]\x94(KtKhKeKmKeeh#G\xc0.\x00\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05total\x94h!]\x94(KtKoKtKaKleh#G\xc00\x00N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06 topic\x94h!]\x94(K KtKoKpKiKceh#G\xc00@N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05Topic\x94h!]\x94(KTKoKpKiKceh#G\xc00\xa0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0bappropriate\x94h!]\x94(KaKpKpKrKoKpKrKiKaKtKeeh#G\xc00\xa0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05title\x94h!]\x94(KtKiKtKlKeeh#G\xc00\xc0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_alignment\x94h!]\x94(K_KaKlKiKgKnKmKeKnKteh#G\xbe\xc1\x9f\x96D1\x8b\xf2h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_alignment\x94h!]\x94(K_KaKlKiKgKnKmKeKnKteh#G\xbe\xc1\x9f\x96D1\x8b\xf2uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n alignment\x94h!]\x94(K KaKlKiKgKnKmKeKnKteh#G\xc0+\x00\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06_align\x94h!]\x94(K_KaKlKiKgKneh#G\xc0.@\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_ALIGNMENT\x94h!]\x94(K_KAKLKIKGKNKMKEKNKTeh#G\xc0.\x80\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\tAlignment\x94h!]\x94(KAKlKiKgKnKmKeKnKteh#G\xc00\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0b_assignment\x94h!]\x94(K_KaKsKsKiKgKnKmKeKnKteh#G\xc01@\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n Alignment\x94h!]\x94(K KAKlKiKgKnKmKeKnKteh#G\xc01@\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03_al\x94h!]\x94(K_KaKleh#G\xc01\xa0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0b_similarity\x94h!]\x94(K_KsKiKmKiKlKaKrKiKtKyeh#G\xc01\xe0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xc02 \x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\xe2\x80\x9d:\x94h!]\x94(K\xe2K\x80K\x9dK:eh#G\xc02@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\\\":\x94h!]\x94(K\\K\"K:eh#G\xc03\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02':\x94h!]\x94(K'K:eh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\xc04\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02`:\x94h!]\x94(K`K:eh#G\xc05\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe2\x80\x9d\xef\xbc\x9a\x94h!]\x94(K\xe2K\x80K\x9dK\xefK\xbcK\x9aeh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\xc2\xbb:\x94h!]\x94(K\xc2K\xbbK:eh#G\xc07 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03+\":\x94h!]\x94(K+K\"K:eh#G\xc07@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":[\x94h!]\x94(K\"K:K[eh#G\xc07\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x015\x94h!]\x94K5ah#G\xbe\xf1\x93\xc3:x\xd77h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fjY\x01\x00\x00h!]\x94K5ah#G\xbe\xf1\x93\xc3:x\xd77uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x014\x94h!]\x94K4ah#G\xc0&\x00\x02:l\xe3Xuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01 \x94h!]\x94K ah#G\xc01\xc0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x013\x94h!]\x94K3ah#G\xc07\xc0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 \x94h!]\x94(K K eh#G\xc08\xa0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01-\x94h!]\x94K-ah#G\xc0; \x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01f\x94h!]\x94Kfah#G\xc0;0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\t\x94h!]\x94K\tah#G\xc0;0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 \x94h!]\x94(K K K eh#G\xc0;@\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\"\x94h!]\x94K\"ah#G\xc0;p\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01,\x94h!]\x94K,ah#G\xc05\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 ,\"\x94h!]\x94(K K,K\"eh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\"\\\x94h!]\x94(K,K\"K\\eh#G\xc07`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\"%\x94h!]\x94(K,K\"K%eh#G\xc07\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\",\x94h!]\x94(K,K\"K,eh#G\xc0:\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\n\x94h!]\x94(K,K\neh#G\xc0:\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\r\n\x94h!]\x94(K,K\rK\neh#G\xc0< \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x8f\x01\x00\x00h!]\x94K\tah#G\xc0=p\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01.\x94h!]\x94K.ah#G\xc0>@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07appropr\x94h!]\x94(KaKpKpKrKoKpKreh#G\xbf\x1d\x1c\xa4[(\x97\x91h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07appropr\x94h!]\x94(KaKpKpKrKoKpKreh#G\xbf\x1d\x1c\xa4[(\x97\x91uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05appro\x94h!]\x94(KaKpKpKrKoeh#G\xc0\"\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0bappropriate\x94h!]\x94(KaKpKpKrKoKpKrKiKaKtKeeh#G\xc0&\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t appropri\x94h!]\x94(K KaKpKpKrKoKpKrKieh#G\xc0*\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02in\x94h!]\x94(KiKneh#G\xc00\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05Appro\x94h!]\x94(KAKpKpKrKoeh#G\xc02\x80\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06 Appro\x94h!]\x94(K KAKpKpKrKoeh#G\xc02\xa0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xc02\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04apro\x94h!]\x94(KaKpKrKoeh#G\xc03\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\rapproximately\x94h!]\x94(KaKpKpKrKoKxKiKmKaKtKeKlKyeh#G\xc04@\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01i\x94h!]\x94Kiah#G\xbe\xaa~\xe0\xee\xab\x86\xb2h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fjA\x02\x00\x00h!]\x94Kiah#G\xbe\xaa~\xe0\xee\xab\x86\xb2uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06iation\x94h!]\x94(KiKaKtKiKoKneh#G\xc0.\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03iat\x94h!]\x94(KiKaKteh#G\xc0.\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xc00 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04iten\x94h!]\x94(KiKtKeKneh#G\xc00`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04iann\x94h!]\x94(KiKaKnKneh#G\xc01\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t appropri\x94h!]\x94(K KaKpKpKrKoKpKrKieh#G\xc01\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02ri\x94h!]\x94(KrKieh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06iately\x94h!]\x94(KiKaKtKeKlKyeh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05laten\x94h!]\x94(KlKaKtKeKneh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xbe\x89\xfcz\xe12u\x9dh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xbe\x89\xfcz\xe12u\x9duh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04aten\x94h!]\x94(KaKtKeKneh#G\xc0/@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05ensen\x94h!]\x94(KeKnKsKeKneh#G\xc05@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04ated\x94h!]\x94(KaKtKeKdeh#G\xc06 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06teness\x94h!]\x94(KtKeKnKeKsKseh#G\xc06@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04ates\x94h!]\x94(KaKtKeKseh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05eness\x94h!]\x94(KeKnKeKsKseh#G\xc06\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04onen\x94h!]\x94(KoKnKeKneh#G\xc06\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04uten\x94h!]\x94(KuKtKeKneh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06enness\x94h!]\x94(KeKnKnKeKsKseh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":\"'\x94h!]\x94(K\"K:K\"K'eh#G\xc02\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04 \":\"\x94h!]\x94(K K\"K:K\"eh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\":\"\",\"\x94h!]\x94(K\"K:K\"K\"K,K\"eh#G\xc04\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":[\"\x94h!]\x94(K\"K:K[K\"eh#G\xc05\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc05\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":\"+\x94h!]\x94(K\"K:K\"K+eh#G\xc05\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":{\"\x94h!]\x94(K\"K:K{K\"eh#G\xc06@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03':'\x94h!]\x94(K'K:K'eh#G\xc06\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\xc07\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04pass\x94h!]\x94(KpKaKsKseh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04pass\x94h!]\x94(KpKaKsKseh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05 pass\x94h!]\x94(K KpKaKsKseh#G\xc03 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04fail\x94h!]\x94(KfKaKiKleh#G\xc07\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03pas\x94h!]\x94(KpKaKseh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05.pass\x94h!]\x94(K.KpKaKsKseh#G\xc08\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04Pass\x94h!]\x94(KPKaKsKseh#G\xc09\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04PASS\x94h!]\x94(KPKAKSKSeh#G\xc09 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06passed\x94h!]\x94(KpKaKsKsKeKdeh#G\xc09\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05-pass\x94h!]\x94(K-KpKaKsKseh#G\xc09\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06passes\x94h!]\x94(KpKaKsKsKeKseh#G\xc0: \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\",\"\x94h!]\x94(K\"K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\",\"\x94h!]\x94(K\"K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04 \",\"\x94h!]\x94(K K\"K,K\"eh#G\xc02\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\xc04\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04.\",\"\x94h!]\x94(K.K\"K,K\"eh#G\xc04@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc05\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03','\x94h!]\x94(K'K,K'eh#G\xc06 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"#\x94h!]\x94(K\"K,K\"K#eh#G\xc07 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"+\x94h!]\x94(K\"K,K\"K+eh#G\xc07\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05\\\",\\\"\x94h!]\x94(K\\K\"K,K\\K\"eh#G\xc08@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"\\\x94h!]\x94(K\"K,K\"K\\eh#G\xc08\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xbe\x89\xfcz\xe12u\x9dh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xbe\x89\xfcz\xe12u\x9duh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07Overall\x94h!]\x94(KOKvKeKrKaKlKleh#G\xc00\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08 overall\x94h!]\x94(K KoKvKeKrKaKlKleh#G\xc02@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01c\x94h!]\x94Kcah#G\xc06\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08overview\x94h!]\x94(KoKvKeKrKvKiKeKweh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05total\x94h!]\x94(KtKoKtKaKleh#G\xc08@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04over\x94h!]\x94(KoKvKeKreh#G\xc08\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08 Overall\x94h!]\x94(K KOKvKeKrKaKlKleh#G\xc09 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe6\x95\xb4\xe4\xbd\x93\x94h!]\x94(K\xe6K\x95K\xb4K\xe4K\xbdK\x93eh#G\xc09`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05polit\x94h!]\x94(KpKoKlKiKteh#G\xc0:\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xbe\x94\xfe$\xc4\xceLIh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xbe\x94\xfe$\xc4\xceLIuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07 rating\x94h!]\x94(K KrKaKtKiKnKgeh#G\xc0/@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06rating\x94h!]\x94(KrKaKtKiKnKgeh#G\xc01\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07 Rating\x94h!]\x94(K KRKaKtKiKnKgeh#G\xc01\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06Rating\x94h!]\x94(KRKaKtKiKnKgeh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07-rating\x94h!]\x94(K-KrKaKtKiKnKgeh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07.rating\x94h!]\x94(K.KrKaKtKiKnKgeh#G\xc02\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05_rate\x94h!]\x94(K_KrKaKtKeeh#G\xc03\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t_rotation\x94h!]\x94(K_KrKoKtKaKtKiKoKneh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02_r\x94h!]\x94(K_Kreh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\xe2\x80\x9d:\x94h!]\x94(K\xe2K\x80K\x9dK:eh#G\xc04\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\\\":\x94h!]\x94(K\\K\"K:eh#G\xc04\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02':\x94h!]\x94(K'K:eh#G\xc05@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\xc06\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc06\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe2\x80\x9d\xef\xbc\x9a\x94h!]\x94(K\xe2K\x80K\x9dK\xefK\xbcK\x9aeh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02`:\x94h!]\x94(K`K:eh#G\xc07\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":[\x94h!]\x94(K\"K:K[eh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 \":\x94h!]\x94(K K\"K:eh#G\xc08 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1fje\x01\x00\x00h!]\x94K4ah#G\xbfdI\x15\x1e\x7f\x84\xe1h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fje\x01\x00\x00h!]\x94K4ah#G\xbfdI\x15\x1e\x7f\x84\xe1uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjs\x01\x00\x00h!]\x94K3ah#G\xc0\x18\x02\x89\x11\x8c\x19~uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjY\x01\x00\x00h!]\x94K5ah#G\xc0,\x81D\xaaS\xfc\x01uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjl\x01\x00\x00h!]\x94K ah#G\xc05\x10\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x012\x94h!]\x94K2ah#G\xc070\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x81\x01\x00\x00h!]\x94K-ah#G\xc08\xd0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\n\n\x94h!]\x94(K\nK\neh#G\xc09\x80\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fh_h!]\x94K\nah#G\xc09\xc0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 \x94h!]\x94(K K eh#G\xc09\xf0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x88\x01\x00\x00h!]\x94Kfah#G\xc0:0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01}\x94h!]\x94K}ah#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fj\xf3\x04\x00\x00h!]\x94K}ah#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 }\x94h!]\x94(K K}eh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\xc05`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02}\n\x94h!]\x94(K}K\neh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03}\n\n\x94h!]\x94(K}K\nK\neh#G\xc08\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\xea\x01\x00\x00h!]\x94K.ah#G\xc0:\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03}\r\n\x94h!]\x94(K}K\rK\neh#G\xc0; \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05}\r\n\r\n\x94h!]\x94(K}K\rK\nK\rK\neh#G\xc0=\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04}\n\n\n\x94h!]\x94(K}K\nK\nK\neh#G\xc0=\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07}\n\n\n\n\n\n\x94h!]\x94(K}K\nK\nK\nK\nK\nK\neh#G\xc0>\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nube\x8c\x07refusal\x94Nuh-}\x94h/\x8f\x94(h\x17j<\x05\x00\x00\x90h1Nubub."
|