kiln-ai 0.17.0__py3-none-any.whl → 0.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

Files changed (58) hide show
  1. kiln_ai/adapters/adapter_registry.py +28 -0
  2. kiln_ai/adapters/chat/chat_formatter.py +0 -1
  3. kiln_ai/adapters/data_gen/data_gen_prompts.py +121 -36
  4. kiln_ai/adapters/data_gen/data_gen_task.py +51 -38
  5. kiln_ai/adapters/data_gen/test_data_gen_task.py +318 -37
  6. kiln_ai/adapters/eval/base_eval.py +6 -7
  7. kiln_ai/adapters/eval/eval_runner.py +5 -1
  8. kiln_ai/adapters/eval/g_eval.py +17 -12
  9. kiln_ai/adapters/eval/test_base_eval.py +8 -2
  10. kiln_ai/adapters/eval/test_eval_runner.py +6 -12
  11. kiln_ai/adapters/eval/test_g_eval.py +115 -5
  12. kiln_ai/adapters/eval/test_g_eval_data.py +1 -1
  13. kiln_ai/adapters/fine_tune/base_finetune.py +2 -6
  14. kiln_ai/adapters/fine_tune/dataset_formatter.py +1 -5
  15. kiln_ai/adapters/fine_tune/fireworks_finetune.py +32 -20
  16. kiln_ai/adapters/fine_tune/test_dataset_formatter.py +1 -1
  17. kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +30 -21
  18. kiln_ai/adapters/fine_tune/test_vertex_finetune.py +2 -7
  19. kiln_ai/adapters/fine_tune/together_finetune.py +1 -1
  20. kiln_ai/adapters/ml_model_list.py +926 -125
  21. kiln_ai/adapters/model_adapters/base_adapter.py +11 -7
  22. kiln_ai/adapters/model_adapters/litellm_adapter.py +23 -1
  23. kiln_ai/adapters/model_adapters/test_base_adapter.py +1 -2
  24. kiln_ai/adapters/model_adapters/test_litellm_adapter.py +70 -3
  25. kiln_ai/adapters/model_adapters/test_structured_output.py +13 -13
  26. kiln_ai/adapters/parsers/parser_registry.py +0 -2
  27. kiln_ai/adapters/parsers/r1_parser.py +0 -1
  28. kiln_ai/adapters/parsers/test_r1_parser.py +1 -1
  29. kiln_ai/adapters/provider_tools.py +20 -19
  30. kiln_ai/adapters/remote_config.py +113 -0
  31. kiln_ai/adapters/repair/repair_task.py +2 -7
  32. kiln_ai/adapters/test_adapter_registry.py +30 -2
  33. kiln_ai/adapters/test_ml_model_list.py +30 -0
  34. kiln_ai/adapters/test_prompt_adaptors.py +0 -4
  35. kiln_ai/adapters/test_provider_tools.py +18 -12
  36. kiln_ai/adapters/test_remote_config.py +456 -0
  37. kiln_ai/datamodel/basemodel.py +54 -28
  38. kiln_ai/datamodel/datamodel_enums.py +2 -0
  39. kiln_ai/datamodel/dataset_split.py +5 -3
  40. kiln_ai/datamodel/eval.py +35 -3
  41. kiln_ai/datamodel/finetune.py +2 -3
  42. kiln_ai/datamodel/project.py +3 -3
  43. kiln_ai/datamodel/prompt.py +2 -2
  44. kiln_ai/datamodel/prompt_id.py +4 -4
  45. kiln_ai/datamodel/task.py +6 -6
  46. kiln_ai/datamodel/task_output.py +1 -3
  47. kiln_ai/datamodel/task_run.py +0 -2
  48. kiln_ai/datamodel/test_basemodel.py +210 -18
  49. kiln_ai/datamodel/test_eval_model.py +152 -10
  50. kiln_ai/datamodel/test_model_perf.py +1 -1
  51. kiln_ai/datamodel/test_prompt_id.py +5 -1
  52. kiln_ai/datamodel/test_task.py +5 -0
  53. kiln_ai/utils/config.py +10 -0
  54. kiln_ai/utils/logging.py +4 -3
  55. {kiln_ai-0.17.0.dist-info → kiln_ai-0.19.0.dist-info}/METADATA +33 -3
  56. {kiln_ai-0.17.0.dist-info → kiln_ai-0.19.0.dist-info}/RECORD +58 -56
  57. {kiln_ai-0.17.0.dist-info → kiln_ai-0.19.0.dist-info}/WHEEL +0 -0
  58. {kiln_ai-0.17.0.dist-info → kiln_ai-0.19.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -274,6 +274,36 @@ def test_token_case():
274
274
  assert token.lower() == token
275
275
 
276
276
 
277
+ def test_generate_run_description(test_eval_config, test_run_config, test_task_run):
278
+ """Test that generate_run_description correctly uses task_run.output.output (the string) rather than task_run.output (the object)."""
279
+ # Create G-Eval instance
280
+ g_eval = GEval(test_eval_config, test_run_config)
281
+
282
+ # Call generate_run_description
283
+ description = g_eval.generate_run_description(
284
+ test_task_run.input, test_task_run.output.output
285
+ )
286
+
287
+ # Verify that the actual string output is in the description
288
+ expected_output = "Why did the chicken cross the road? To get to the other side!"
289
+ assert expected_output in description
290
+
291
+ # Verify that the input is also in the description
292
+ assert "Tell me a chicken joke" in description
293
+
294
+ # Verify the description has the expected structure
295
+ assert "<eval_data>" in description
296
+ assert description.count("<eval_data>") == 2 # 2 opening tags
297
+ assert description.count("</eval_data>") == 2 # 2 closing tags
298
+ assert "The model was given the following input for the task:" in description
299
+ assert "The model produced the following output for the task:" in description
300
+
301
+ # Verify that we're getting the actual string value, not a Python object representation
302
+ # The string should not contain 'TaskOutput' or other object indicators
303
+ assert "TaskOutput" not in description
304
+ assert "output=" not in description # Would appear if object __repr__ was used
305
+
306
+
277
307
  def test_metric_offsets_and_search_ranges(
278
308
  test_eval_config, test_run_config, test_task_run
279
309
  ):
@@ -401,7 +431,7 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
401
431
 
402
432
  # Test single token case
403
433
  token_logprob = MockTokenLogprob("5", [("5", 0.0)], logprob=1e-8) # log(1) = 0
404
- score = g_eval.rating_token_to_score(token_logprob)
434
+ score = g_eval.rating_token_to_score(token_logprob) # type: ignore
405
435
  assert score == 5.0
406
436
 
407
437
  # Test weighted average case
@@ -413,20 +443,62 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
413
443
  ],
414
444
  logprob=math.log(0.6),
415
445
  )
416
- score = g_eval.rating_token_to_score(token_logprob)
446
+ score = g_eval.rating_token_to_score(token_logprob) # type: ignore
417
447
  assert pytest.approx(score) == 4.4 # (4 * 0.6 + 5 * 0.4)
418
448
 
419
449
  # Test invalid token
420
450
  token_logprob = MockTokenLogprob(":", [(":", 0.0)], logprob=1e-8)
421
- assert g_eval.rating_token_to_score(token_logprob) is None
451
+ assert g_eval.rating_token_to_score(token_logprob) is None # type: ignore
422
452
 
423
453
  # Test missing from top logprobs
424
454
  token_logprob = MockTokenLogprob("5", [], logprob=1e-8)
425
- assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
455
+ assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0 # type: ignore
426
456
 
427
457
  # Test missing from top logprobs, with special case logprob
428
458
  token_logprob = MockTokenLogprob("5", [], logprob=-9999)
429
- assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
459
+ assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0 # type: ignore
460
+
461
+
462
+ def test_rating_token_to_score_zero_score_bug_fix(test_eval_config, test_run_config):
463
+ """Test that rating_token_to_score correctly handles 0.0 scores (like 'fail') and doesn't return None.
464
+
465
+ This test verifies the fix for the bug where 'if not primary_token_score:' would incorrectly
466
+ treat 0.0 as falsy and return None, when it should only return None for actual None values.
467
+ """
468
+ g_eval = GEval(test_eval_config, test_run_config)
469
+
470
+ class MockTopLogprob:
471
+ def __init__(self, token, logprob):
472
+ self.token = token
473
+ self.logprob = logprob
474
+
475
+ class MockTokenLogprob:
476
+ def __init__(self, token, top_logprobs, logprob):
477
+ self.token = token
478
+ self.top_logprobs = [MockTopLogprob(t, lp) for t, lp in top_logprobs]
479
+ self.logprob = logprob
480
+
481
+ # Test that "fail" token (which maps to 0.0) is handled correctly
482
+ token_logprob = MockTokenLogprob("fail", [("fail", 0.0)], logprob=1e-8)
483
+ score = g_eval.rating_token_to_score(token_logprob) # type: ignore
484
+ assert score == 0.0, f"Expected 0.0 for 'fail' token, got {score}"
485
+
486
+ # Test that "0" token (which maps to None) still returns None
487
+ token_logprob = MockTokenLogprob("0", [("0", 0.0)], logprob=1e-8)
488
+ score = g_eval.rating_token_to_score(token_logprob) # type: ignore
489
+ assert score is None, f"Expected None for '0' token, got {score}"
490
+
491
+ # Test weighted average case with fail token
492
+ token_logprob = MockTokenLogprob(
493
+ "fail",
494
+ [
495
+ ("fail", math.log(0.7)), # 70% probability for fail (0.0)
496
+ ("pass", math.log(0.3)), # 30% probability for pass (1.0)
497
+ ],
498
+ logprob=math.log(0.7),
499
+ )
500
+ score = g_eval.rating_token_to_score(token_logprob) # type: ignore
501
+ assert pytest.approx(score) == 0.3 # (0.0 * 0.7 + 1.0 * 0.3)
430
502
 
431
503
 
432
504
  def test_g_eval_system_instruction():
@@ -502,3 +574,41 @@ async def test_all_built_in_models_logprobs_geval(
502
574
  model_name,
503
575
  provider_name.value,
504
576
  )
577
+
578
+
579
+ def check_supports_llm_as_judge(model_name: str, provider_name: str):
580
+ for model in built_in_models:
581
+ if model.name != model_name:
582
+ continue
583
+ for provider in model.providers:
584
+ if provider.name != provider_name:
585
+ continue
586
+ if not provider.supports_structured_output:
587
+ pytest.skip(
588
+ f"Skipping {model.name} {provider.name} because it does not support llm_as_judge (structured_output_mode)"
589
+ )
590
+ return
591
+ raise RuntimeError(f"No model {model_name} {provider_name} found")
592
+
593
+
594
+ @pytest.mark.paid
595
+ @pytest.mark.ollama
596
+ @pytest.mark.parametrize("model_name,provider_name", get_all_models_and_providers())
597
+ async def test_all_built_in_models_llm_as_judge(
598
+ model_name,
599
+ provider_name,
600
+ test_task,
601
+ test_eval_config,
602
+ test_task_run,
603
+ test_run_config,
604
+ ):
605
+ check_supports_llm_as_judge(model_name, provider_name)
606
+ await run_g_eval_test(
607
+ test_task,
608
+ test_eval_config,
609
+ test_task_run,
610
+ EvalConfigType.llm_as_judge,
611
+ test_run_config,
612
+ model_name,
613
+ provider_name.value,
614
+ )
@@ -1,4 +1,4 @@
1
1
  # Saved a real RunOutput, with real logprobs via:
2
2
  # po = pickle.dumps(result)
3
- # print(f"\n\nPickled result: \n{po}\n\n")
3
+ # Example inspection of the pickled result can be done with a print statement.
4
4
  serialized_run_output = b"\x80\x04\x95\xe8:\x00\x00\x00\x00\x00\x00\x8c\x1bkiln_ai.adapters.run_output\x94\x8c\tRunOutput\x94\x93\x94)\x81\x94}\x94(\x8c\x06output\x94}\x94(\x8c\x0ftopic_alignment\x94K\x05\x8c\x0fappropriateness\x94\x8c\x04pass\x94\x8c\x0eoverall_rating\x94K\x04u\x8c\x14intermediate_outputs\x94}\x94\x8c\x10chain_of_thought\x94X\x08\x06\x00\x001) **Is the joke funny?**\n The joke \"Why did the chicken cross the road? To get to the other side!\" is a classic joke that many consider to be humorous due to its simplicity and unexpected nature. However, as it's a very well-known punchline, some may find it less amusing for being overly familiar. Overall, it can elicit a chuckle, but it may not be considered original or particularly funny by everyone.\n\n2) **Is the content appropriate for all audiences?**\n Yes, the joke is appropriate for all audiences. It does not contain any offensive language or themes, making it suitable for children and adults alike.\n\n3) **Is the joke culturally sensitive?**\n Yes, the joke is culturally sensitive. It does not touch on any potentially sensitive topics or stereotypes. It\xe2\x80\x99s a universal humor that transcends cultural boundaries.\n\n4) **Is the joke politically correct?**\n Yes, the joke is politically correct. It does not make any political statements or discriminatory remarks. It simply presents a light-hearted situation involving a chicken, which is neutral and inoffensive.\n\n5) **Is the joke aligned with the provided topic?**\n Yes, the joke is aligned with the provided topic of a \"chicken joke.\" It directly references a chicken and is structured as a joke, fulfilling the prompt's requirements.\n\nIn summary, while the joke may lack originality, it is appropriate, sensitive, politically correct, and aligns well with the topic. The humor level can vary depending on personal taste, but overall, it meets the evaluation criteria.\x94s\x8c\x0foutput_logprobs\x94\x8c!openai.types.chat.chat_completion\x94\x8c\x0eChoiceLogprobs\x94\x93\x94)\x81\x94}\x94(\x8c\x08__dict__\x94}\x94(\x8c\x07content\x94]\x94(\x8c/openai.types.chat.chat_completion_token_logprob\x94\x8c\x1aChatCompletionTokenLogprob\x94\x93\x94)\x81\x94}\x94(h\x15}\x94(\x8c\x05token\x94\x8c\x02{\"\x94\x8c\x05bytes\x94]\x94(K{K\"e\x8c\x07logprob\x94G\xbf5\xfe.\xba\x97\xb1\xde\x8c\x0ctop_logprobs\x94]\x94(h\x19\x8c\nTopLogprob\x94\x93\x94)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{\"\x94h!]\x94(K{K\"eh#G\xbf5\xfe.\xba\x97\xb1\xdeu\x8c\x12__pydantic_extra__\x94}\x94\x8c\x17__pydantic_fields_set__\x94\x8f\x94(h\x1fh#h!\x90\x8c\x14__pydantic_private__\x94Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{\n\x94h!]\x94(K{K\neh#G\xc0 \x00,\nJ\x05\xdeuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01{\x94h!]\x94K{ah#G\xc0/\x80,\nJ\x05\xdeuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03{\r\n\x94h!]\x94(K{K\rK\neh#G\xc01@\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03{\n\n\x94h!]\x94(K{K\nK\neh#G\xc03\xc0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 {\"\x94h!]\x94(K K{K\"eh#G\xc05\x00\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 {\n\x94h!]\x94(K K{K\neh#G\xc06\xe0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\n\x94h!]\x94K\nah#G\xc07\xe0\x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02{}\x94h!]\x94(K{K}eh#G\xc08 \x16\x05%\x02\xefuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05topic\x94h!]\x94(KtKoKpKiKceh#G\xbfS\x8a+<\x99\xb9Oh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05topic\x94h!]\x94(KtKoKpKiKceh#G\xbfS\x8a+<\x99\xb9Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xc0\x1b\x818\xa2\x07\xfd%uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04type\x94h!]\x94(KtKyKpKeeh#G\xc0!\x80\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03top\x94h!]\x94(KtKoKpeh#G\xc0-\x00\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05theme\x94h!]\x94(KtKhKeKmKeeh#G\xc0.\x00\x9c^o\xf7\xe0uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05total\x94h!]\x94(KtKoKtKaKleh#G\xc00\x00N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06 topic\x94h!]\x94(K KtKoKpKiKceh#G\xc00@N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05Topic\x94h!]\x94(KTKoKpKiKceh#G\xc00\xa0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0bappropriate\x94h!]\x94(KaKpKpKrKoKpKrKiKaKtKeeh#G\xc00\xa0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05title\x94h!]\x94(KtKiKtKlKeeh#G\xc00\xc0N\x1eq\x04Ouh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_alignment\x94h!]\x94(K_KaKlKiKgKnKmKeKnKteh#G\xbe\xc1\x9f\x96D1\x8b\xf2h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_alignment\x94h!]\x94(K_KaKlKiKgKnKmKeKnKteh#G\xbe\xc1\x9f\x96D1\x8b\xf2uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n alignment\x94h!]\x94(K KaKlKiKgKnKmKeKnKteh#G\xc0+\x00\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06_align\x94h!]\x94(K_KaKlKiKgKneh#G\xc0.@\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n_ALIGNMENT\x94h!]\x94(K_KAKLKIKGKNKMKEKNKTeh#G\xc0.\x80\x00C\x1b\xde\x83uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\tAlignment\x94h!]\x94(KAKlKiKgKnKmKeKnKteh#G\xc00\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0b_assignment\x94h!]\x94(K_KaKsKsKiKgKnKmKeKnKteh#G\xc01@\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\n Alignment\x94h!]\x94(K KAKlKiKgKnKmKeKnKteh#G\xc01@\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03_al\x94h!]\x94(K_KaKleh#G\xc01\xa0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0b_similarity\x94h!]\x94(K_KsKiKmKiKlKaKrKiKtKyeh#G\xc01\xe0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xc02 \x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\xe2\x80\x9d:\x94h!]\x94(K\xe2K\x80K\x9dK:eh#G\xc02@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\\\":\x94h!]\x94(K\\K\"K:eh#G\xc03\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02':\x94h!]\x94(K'K:eh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\xc04\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02`:\x94h!]\x94(K`K:eh#G\xc05\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe2\x80\x9d\xef\xbc\x9a\x94h!]\x94(K\xe2K\x80K\x9dK\xefK\xbcK\x9aeh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\xc2\xbb:\x94h!]\x94(K\xc2K\xbbK:eh#G\xc07 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03+\":\x94h!]\x94(K+K\"K:eh#G\xc07@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":[\x94h!]\x94(K\"K:K[eh#G\xc07\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x015\x94h!]\x94K5ah#G\xbe\xf1\x93\xc3:x\xd77h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fjY\x01\x00\x00h!]\x94K5ah#G\xbe\xf1\x93\xc3:x\xd77uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x014\x94h!]\x94K4ah#G\xc0&\x00\x02:l\xe3Xuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01 \x94h!]\x94K ah#G\xc01\xc0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x013\x94h!]\x94K3ah#G\xc07\xc0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 \x94h!]\x94(K K eh#G\xc08\xa0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01-\x94h!]\x94K-ah#G\xc0; \x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01f\x94h!]\x94Kfah#G\xc0;0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\t\x94h!]\x94K\tah#G\xc0;0\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 \x94h!]\x94(K K K eh#G\xc0;@\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01\"\x94h!]\x94K\"ah#G\xc0;p\x01\x1d6q\xacuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01,\x94h!]\x94K,ah#G\xc05\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 ,\"\x94h!]\x94(K K,K\"eh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\"\\\x94h!]\x94(K,K\"K\\eh#G\xc07`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\"%\x94h!]\x94(K,K\"K%eh#G\xc07\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\",\x94h!]\x94(K,K\"K,eh#G\xc0:\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\n\x94h!]\x94(K,K\neh#G\xc0:\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03,\r\n\x94h!]\x94(K,K\rK\neh#G\xc0< \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x8f\x01\x00\x00h!]\x94K\tah#G\xc0=p\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01.\x94h!]\x94K.ah#G\xc0>@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07appropr\x94h!]\x94(KaKpKpKrKoKpKreh#G\xbf\x1d\x1c\xa4[(\x97\x91h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07appropr\x94h!]\x94(KaKpKpKrKoKpKreh#G\xbf\x1d\x1c\xa4[(\x97\x91uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05appro\x94h!]\x94(KaKpKpKrKoeh#G\xc0\"\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x0bappropriate\x94h!]\x94(KaKpKpKrKoKpKrKiKaKtKeeh#G\xc0&\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t appropri\x94h!]\x94(K KaKpKpKrKoKpKrKieh#G\xc0*\x80\x0e\x8c\x8a\xbd^uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02in\x94h!]\x94(KiKneh#G\xc00\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05Appro\x94h!]\x94(KAKpKpKrKoeh#G\xc02\x80\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06 Appro\x94h!]\x94(K KAKpKpKrKoeh#G\xc02\xa0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xc02\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04apro\x94h!]\x94(KaKpKrKoeh#G\xc03\xe0\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\rapproximately\x94h!]\x94(KaKpKpKrKoKxKiKmKaKtKeKlKyeh#G\xc04@\x075~g\x0euh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01i\x94h!]\x94Kiah#G\xbe\xaa~\xe0\xee\xab\x86\xb2h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fjA\x02\x00\x00h!]\x94Kiah#G\xbe\xaa~\xe0\xee\xab\x86\xb2uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06iation\x94h!]\x94(KiKaKtKiKoKneh#G\xc0.\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03iat\x94h!]\x94(KiKaKteh#G\xc0.\xc0\x00!\x8d\xefAuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xc00 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04iten\x94h!]\x94(KiKtKeKneh#G\xc00`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04iann\x94h!]\x94(KiKaKnKneh#G\xc01\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t appropri\x94h!]\x94(K KaKpKpKrKoKpKrKieh#G\xc01\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02ri\x94h!]\x94(KrKieh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06iately\x94h!]\x94(KiKaKtKeKlKyeh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05laten\x94h!]\x94(KlKaKtKeKneh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xbe\x89\xfcz\xe12u\x9dh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07ateness\x94h!]\x94(KaKtKeKnKeKsKseh#G\xbe\x89\xfcz\xe12u\x9duh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04aten\x94h!]\x94(KaKtKeKneh#G\xc0/@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05ensen\x94h!]\x94(KeKnKsKeKneh#G\xc05@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04ated\x94h!]\x94(KaKtKeKdeh#G\xc06 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06teness\x94h!]\x94(KtKeKnKeKsKseh#G\xc06@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04ates\x94h!]\x94(KaKtKeKseh#G\xc06`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05eness\x94h!]\x94(KeKnKeKsKseh#G\xc06\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04onen\x94h!]\x94(KoKnKeKneh#G\xc06\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04uten\x94h!]\x94(KuKtKeKneh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06enness\x94h!]\x94(KeKnKnKeKsKseh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":\"'\x94h!]\x94(K\"K:K\"K'eh#G\xc02\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04 \":\"\x94h!]\x94(K K\"K:K\"eh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\":\"\",\"\x94h!]\x94(K\"K:K\"K\"K,K\"eh#G\xc04\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":[\"\x94h!]\x94(K\"K:K[K\"eh#G\xc05\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc05\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":\"+\x94h!]\x94(K\"K:K\"K+eh#G\xc05\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\":{\"\x94h!]\x94(K\"K:K{K\"eh#G\xc06@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03':'\x94h!]\x94(K'K:K'eh#G\xc06\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\xc07\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04pass\x94h!]\x94(KpKaKsKseh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04pass\x94h!]\x94(KpKaKsKseh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05 pass\x94h!]\x94(K KpKaKsKseh#G\xc03 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04fail\x94h!]\x94(KfKaKiKleh#G\xc07\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03pas\x94h!]\x94(KpKaKseh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05.pass\x94h!]\x94(K.KpKaKsKseh#G\xc08\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04Pass\x94h!]\x94(KPKaKsKseh#G\xc09\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04PASS\x94h!]\x94(KPKAKSKSeh#G\xc09 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06passed\x94h!]\x94(KpKaKsKsKeKdeh#G\xc09\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05-pass\x94h!]\x94(K-KpKaKsKseh#G\xc09\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06passes\x94h!]\x94(KpKaKsKsKeKseh#G\xc0: \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\",\"\x94h!]\x94(K\"K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\",\"\x94h!]\x94(K\"K,K\"eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04 \",\"\x94h!]\x94(K K\"K,K\"eh#G\xc02\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\xc04\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04.\",\"\x94h!]\x94(K.K\"K,K\"eh#G\xc04@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc05\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03','\x94h!]\x94(K'K,K'eh#G\xc06 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"#\x94h!]\x94(K\"K,K\"K#eh#G\xc07 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"+\x94h!]\x94(K\"K,K\"K+eh#G\xc07\xf0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05\\\",\\\"\x94h!]\x94(K\\K\"K,K\\K\"eh#G\xc08@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\",\"\\\x94h!]\x94(K\"K,K\"K\\eh#G\xc08\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xbe\x89\xfcz\xe12u\x9dh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07overall\x94h!]\x94(KoKvKeKrKaKlKleh#G\xbe\x89\xfcz\xe12u\x9duh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07Overall\x94h!]\x94(KOKvKeKrKaKlKleh#G\xc00\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08 overall\x94h!]\x94(K KoKvKeKrKaKlKleh#G\xc02@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01c\x94h!]\x94Kcah#G\xc06\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08overview\x94h!]\x94(KoKvKeKrKvKiKeKweh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05total\x94h!]\x94(KtKoKtKaKleh#G\xc08@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04over\x94h!]\x94(KoKvKeKreh#G\xc08\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x08 Overall\x94h!]\x94(K KOKvKeKrKaKlKleh#G\xc09 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe6\x95\xb4\xe4\xbd\x93\x94h!]\x94(K\xe6K\x95K\xb4K\xe4K\xbdK\x93eh#G\xc09`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05polit\x94h!]\x94(KpKoKlKiKteh#G\xc0:\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xbe\x94\xfe$\xc4\xceLIh$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07_rating\x94h!]\x94(K_KrKaKtKiKnKgeh#G\xbe\x94\xfe$\xc4\xceLIuh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07 rating\x94h!]\x94(K KrKaKtKiKnKgeh#G\xc0/@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06rating\x94h!]\x94(KrKaKtKiKnKgeh#G\xc01\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07 Rating\x94h!]\x94(K KRKaKtKiKnKgeh#G\xc01\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06Rating\x94h!]\x94(KRKaKtKiKnKgeh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07-rating\x94h!]\x94(K-KrKaKtKiKnKgeh#G\xc01\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07.rating\x94h!]\x94(K.KrKaKtKiKnKgeh#G\xc02\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05_rate\x94h!]\x94(K_KrKaKtKeeh#G\xc03\x80\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\t_rotation\x94h!]\x94(K_KrKoKtKaKtKiKoKneh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02_r\x94h!]\x94(K_Kreh#G\xc04 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\":\x94h!]\x94(K\"K:eh#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04\xe2\x80\x9d:\x94h!]\x94(K\xe2K\x80K\x9dK:eh#G\xc04\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\\\":\x94h!]\x94(K\\K\"K:eh#G\xc04\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02':\x94h!]\x94(K'K:eh#G\xc05@\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":\"\x94h!]\x94(K\"K:K\"eh#G\xc06\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07<|end|>\x94h!Nh#G\xc06\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x06\xe2\x80\x9d\xef\xbc\x9a\x94h!]\x94(K\xe2K\x80K\x9dK\xefK\xbcK\x9aeh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02`:\x94h!]\x94(K`K:eh#G\xc07\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03\":[\x94h!]\x94(K\"K:K[eh#G\xc08\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03 \":\x94h!]\x94(K K\"K:eh#G\xc08 \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1fje\x01\x00\x00h!]\x94K4ah#G\xbfdI\x15\x1e\x7f\x84\xe1h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fje\x01\x00\x00h!]\x94K4ah#G\xbfdI\x15\x1e\x7f\x84\xe1uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjs\x01\x00\x00h!]\x94K3ah#G\xc0\x18\x02\x89\x11\x8c\x19~uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjY\x01\x00\x00h!]\x94K5ah#G\xc0,\x81D\xaaS\xfc\x01uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fjl\x01\x00\x00h!]\x94K ah#G\xc05\x10\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x012\x94h!]\x94K2ah#G\xc070\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x81\x01\x00\x00h!]\x94K-ah#G\xc08\xd0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02\n\n\x94h!]\x94(K\nK\neh#G\xc09\x80\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fh_h!]\x94K\nah#G\xc09\xc0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 \x94h!]\x94(K K eh#G\xc09\xf0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\x88\x01\x00\x00h!]\x94Kfah#G\xc0:0\xa2Dc\x06`uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nubh\x1b)\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x01}\x94h!]\x94K}ah#G\x00\x00\x00\x00\x00\x00\x00\x00h$]\x94(h')\x81\x94}\x94(h\x15}\x94(h\x1fj\xf3\x04\x00\x00h!]\x94K}ah#G\x00\x00\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02 }\x94h!]\x94(K K}eh#G\xc01\xe0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02,\"\x94h!]\x94(K,K\"eh#G\xc05`\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x02}\n\x94h!]\x94(K}K\neh#G\xc07\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03}\n\n\x94h!]\x94(K}K\nK\neh#G\xc08\xc0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1fj\xea\x01\x00\x00h!]\x94K.ah#G\xc0:\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x03}\r\n\x94h!]\x94(K}K\rK\neh#G\xc0; \x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x05}\r\n\r\n\x94h!]\x94(K}K\rK\nK\rK\neh#G\xc0=\x90\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x04}\n\n\n\x94h!]\x94(K}K\nK\nK\neh#G\xc0=\xa0\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubh')\x81\x94}\x94(h\x15}\x94(h\x1f\x8c\x07}\n\n\n\n\n\n\x94h!]\x94(K}K\nK\nK\nK\nK\nK\neh#G\xc0>\x00\x00\x00\x00\x00\x00uh-}\x94h/\x8f\x94(h\x1fh#h!\x90h1Nubeuh-}\x94h/\x8f\x94(h\x1fh#h!h$\x90h1Nube\x8c\x07refusal\x94Nuh-}\x94h/\x8f\x94(h\x17j<\x05\x00\x00\x90h1Nubub."
@@ -3,12 +3,7 @@ from typing import Literal
3
3
 
4
4
  from pydantic import BaseModel
5
5
 
6
- from kiln_ai.adapters.ml_model_list import built_in_models
7
- from kiln_ai.datamodel import (
8
- DatasetSplit,
9
- FineTuneStatusType,
10
- Task,
11
- )
6
+ from kiln_ai.datamodel import DatasetSplit, FineTuneStatusType, Task
12
7
  from kiln_ai.datamodel import Finetune as FinetuneModel
13
8
  from kiln_ai.datamodel.datamodel_enums import ChatStrategy
14
9
  from kiln_ai.utils.name_generator import generate_memorable_name
@@ -21,6 +16,7 @@ class FineTuneStatus(BaseModel):
21
16
 
22
17
  status: FineTuneStatusType
23
18
  message: str | None = None
19
+ error_details: str | None = None
24
20
 
25
21
 
26
22
  class FineTuneParameter(BaseModel):
@@ -1,15 +1,11 @@
1
1
  import json
2
2
  import tempfile
3
- from dataclasses import dataclass
4
3
  from enum import Enum
5
4
  from pathlib import Path
6
5
  from typing import Any, Dict, Protocol
7
6
  from uuid import uuid4
8
7
 
9
- from kiln_ai.adapters.chat.chat_formatter import (
10
- ChatMessage,
11
- get_chat_formatter,
12
- )
8
+ from kiln_ai.adapters.chat.chat_formatter import ChatMessage, get_chat_formatter
13
9
  from kiln_ai.datamodel import DatasetSplit, TaskRun
14
10
  from kiln_ai.datamodel.datamodel_enums import THINKING_DATA_STRATEGIES, ChatStrategy
15
11
  from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
@@ -1,4 +1,5 @@
1
1
  import logging
2
+ from dataclasses import dataclass
2
3
  from typing import List, Tuple
3
4
  from uuid import uuid4
4
5
 
@@ -23,6 +24,12 @@ serverless_models = [
23
24
  ]
24
25
 
25
26
 
27
+ @dataclass
28
+ class DeployStatus:
29
+ success: bool
30
+ error_details: str | None = None
31
+
32
+
26
33
  class FireworksFinetune(BaseFinetuneAdapter):
27
34
  """
28
35
  A fine-tuning adapter for Fireworks.
@@ -39,8 +46,9 @@ class FireworksFinetune(BaseFinetuneAdapter):
39
46
  # Deploy every time we check status. This can help resolve issues, Fireworks will undeploy unused models after a time.
40
47
  if status.status == FineTuneStatusType.completed:
41
48
  deployed = await self._deploy()
42
- if not deployed:
49
+ if not deployed.success:
43
50
  status.message = "Fine-tuning job completed but failed to deploy model."
51
+ status.error_details = deployed.error_details
44
52
 
45
53
  return status
46
54
 
@@ -292,7 +300,7 @@ class FireworksFinetune(BaseFinetuneAdapter):
292
300
  }
293
301
  return {k: v for k, v in payload.items() if v is not None}
294
302
 
295
- async def _deploy(self) -> bool:
303
+ async def _deploy(self) -> DeployStatus:
296
304
  if self.datamodel.base_model_id in serverless_models:
297
305
  return await self._deploy_serverless()
298
306
  else:
@@ -321,7 +329,7 @@ class FireworksFinetune(BaseFinetuneAdapter):
321
329
  return None
322
330
  return model_id
323
331
 
324
- async def _deploy_serverless(self) -> bool:
332
+ async def _deploy_serverless(self) -> DeployStatus:
325
333
  # Now we "deploy" the model using PEFT serverless.
326
334
  # A bit complicated: most fireworks deploys are server based.
327
335
  # However, a Lora can be serverless (PEFT).
@@ -334,10 +342,11 @@ class FireworksFinetune(BaseFinetuneAdapter):
334
342
  url = f"https://api.fireworks.ai/v1/accounts/{account_id}/deployedModels"
335
343
  model_id = await self.model_id_checking_status()
336
344
  if not model_id:
337
- logger.error(
345
+ error_details = (
338
346
  "Model ID not found - can't deploy model to Fireworks serverless"
339
347
  )
340
- return False
348
+ logger.error(error_details)
349
+ return DeployStatus(success=False, error_details=error_details)
341
350
 
342
351
  payload = {
343
352
  "displayName": self.deployment_display_name(),
@@ -357,14 +366,13 @@ class FireworksFinetune(BaseFinetuneAdapter):
357
366
  self.datamodel.fine_tune_model_id = model_id
358
367
  if self.datamodel.path:
359
368
  self.datamodel.save_to_file()
360
- return True
369
+ return DeployStatus(success=True)
361
370
 
362
- logger.error(
363
- f"Failed to deploy model to Fireworks serverless: [{response.status_code}] {response.text}"
364
- )
365
- return False
371
+ error_msg = f"Failed to deploy model to Fireworks serverless: [{response.status_code}] {response.text}"
372
+ logger.error(error_msg)
373
+ return DeployStatus(success=False, error_details=error_msg)
366
374
 
367
- async def _check_or_deploy_server(self) -> bool:
375
+ async def _check_or_deploy_server(self) -> DeployStatus:
368
376
  """
369
377
  Check if the model is already deployed. If not, deploy it to a dedicated server.
370
378
  """
@@ -380,19 +388,22 @@ class FireworksFinetune(BaseFinetuneAdapter):
380
388
  "READY",
381
389
  "CREATING",
382
390
  ]:
383
- return True
391
+ return DeployStatus(success=True)
384
392
 
385
393
  # If the model is not deployed, deploy it
386
394
  return await self._deploy_server()
387
395
 
388
- async def _deploy_server(self) -> bool:
396
+ async def _deploy_server(self) -> DeployStatus:
389
397
  # For models that are not serverless, we just need to deploy the model to a server.
390
398
  # We use a scale-to-zero on-demand deployment. If you stop using it, it
391
399
  # will scale to zero and charges will stop.
392
400
  model_id = await self.model_id_checking_status()
393
401
  if not model_id:
394
- logger.error("Model ID not found - can't deploy model to Fireworks server")
395
- return False
402
+ error_details = (
403
+ "Model ID not found - can't deploy model to Fireworks server"
404
+ )
405
+ logger.error(error_details)
406
+ return DeployStatus(success=False, error_details=error_details)
396
407
 
397
408
  api_key, account_id = self.api_key_and_account_id()
398
409
  url = f"https://api.fireworks.ai/v1/accounts/{account_id}/deployments"
@@ -408,6 +419,8 @@ class FireworksFinetune(BaseFinetuneAdapter):
408
419
  # Scale to zero after 5 minutes of inactivity - this is the minimum allowed
409
420
  "scaleToZeroWindow": "300s",
410
421
  },
422
+ # H100s are much more reliable than default A100
423
+ "acceleratorType": "NVIDIA_H100_80GB",
411
424
  "baseModel": model_id,
412
425
  }
413
426
  headers = {
@@ -424,12 +437,11 @@ class FireworksFinetune(BaseFinetuneAdapter):
424
437
  self.datamodel.fine_tune_model_id = basemodel
425
438
  if self.datamodel.path:
426
439
  self.datamodel.save_to_file()
427
- return True
440
+ return DeployStatus(success=True)
428
441
 
429
- logger.error(
430
- f"Failed to deploy model to Fireworks server: [{response.status_code}] {response.text}"
431
- )
432
- return False
442
+ error_msg = f"Failed to deploy model to Fireworks server: [{response.status_code}] {response.text}"
443
+ logger.error(error_msg)
444
+ return DeployStatus(success=False, error_details=error_msg)
433
445
 
434
446
  async def _fetch_all_deployments(self) -> List[dict]:
435
447
  """
@@ -857,7 +857,7 @@ def test_serialize_r1_style_message_missing_thinking(thinking, final_output):
857
857
 
858
858
  def test_vertex_gemini_role_map_coverage():
859
859
  """Test that VERTEX_GEMINI_ROLE_MAP covers all possible ChatMessage.role values"""
860
- from typing import Literal, get_type_hints
860
+ from typing import get_type_hints
861
861
 
862
862
  # Get the Literal type from ChatMessage.role
863
863
  role_type = get_type_hints(ChatMessage)["role"]
@@ -10,7 +10,10 @@ from kiln_ai.adapters.fine_tune.base_finetune import (
10
10
  FineTuneStatusType,
11
11
  )
12
12
  from kiln_ai.adapters.fine_tune.dataset_formatter import DatasetFormat, DatasetFormatter
13
- from kiln_ai.adapters.fine_tune.fireworks_finetune import FireworksFinetune
13
+ from kiln_ai.adapters.fine_tune.fireworks_finetune import (
14
+ DeployStatus,
15
+ FireworksFinetune,
16
+ )
14
17
  from kiln_ai.datamodel import (
15
18
  DatasetSplit,
16
19
  StructuredOutputMode,
@@ -175,7 +178,9 @@ async def test_status_job_states(
175
178
 
176
179
  with (
177
180
  patch("httpx.AsyncClient") as mock_client_class,
178
- patch.object(fireworks_finetune, "_deploy", return_value=True),
181
+ patch.object(
182
+ fireworks_finetune, "_deploy", return_value=DeployStatus(success=True)
183
+ ),
179
184
  ):
180
185
  mock_client_class.return_value.__aenter__.return_value = mock_client
181
186
  status = await fireworks_finetune.status()
@@ -468,7 +473,7 @@ async def test_deploy_serverless_success(fireworks_finetune, mock_api_key):
468
473
  mock_client_class.return_value.__aenter__.return_value = mock_client
469
474
 
470
475
  result = await fireworks_finetune._deploy_serverless()
471
- assert result is True
476
+ assert result.success is True
472
477
  assert fireworks_finetune.datamodel.fine_tune_model_id == "ftm-123"
473
478
 
474
479
 
@@ -495,7 +500,7 @@ async def test_deploy_serverless_already_deployed(fireworks_finetune, mock_api_k
495
500
  mock_client_class.return_value.__aenter__.return_value = mock_client
496
501
 
497
502
  result = await fireworks_finetune._deploy_serverless()
498
- assert result is True
503
+ assert result.success is True
499
504
  assert fireworks_finetune.datamodel.fine_tune_model_id == "ftm-123"
500
505
 
501
506
 
@@ -511,7 +516,7 @@ async def test_deploy_serverless_failure(fireworks_finetune, mock_api_key):
511
516
  mock_client_class.return_value.__aenter__.return_value = mock_client
512
517
 
513
518
  result = await fireworks_finetune._deploy_serverless()
514
- assert result is False
519
+ assert result.success is False
515
520
 
516
521
 
517
522
  async def test_deploy_serverless_missing_credentials(fireworks_finetune):
@@ -531,7 +536,7 @@ async def test_deploy_server_missing_credentials(fireworks_finetune):
531
536
  mock_config.return_value.fireworks_account_id = None
532
537
 
533
538
  response = await fireworks_finetune._check_or_deploy_server()
534
- assert response is False
539
+ assert response.success is False
535
540
 
536
541
 
537
542
  async def test_deploy_missing_model_id(fireworks_finetune, mock_api_key):
@@ -546,7 +551,7 @@ async def test_deploy_missing_model_id(fireworks_finetune, mock_api_key):
546
551
  patch.object(fireworks_finetune, "_status", return_value=status_response),
547
552
  ):
548
553
  response = await fireworks_finetune._deploy()
549
- assert response is False
554
+ assert response.success is False
550
555
 
551
556
 
552
557
  async def test_status_with_deploy(fireworks_finetune, mock_api_key):
@@ -561,7 +566,9 @@ async def test_status_with_deploy(fireworks_finetune, mock_api_key):
561
566
  patch.object(
562
567
  fireworks_finetune, "_status", return_value=status_response
563
568
  ) as mock_status,
564
- patch.object(fireworks_finetune, "_deploy", return_value=False) as mock_deploy,
569
+ patch.object(
570
+ fireworks_finetune, "_deploy", return_value=DeployStatus(success=False)
571
+ ) as mock_deploy,
565
572
  ):
566
573
  status = await fireworks_finetune.status()
567
574
 
@@ -810,11 +817,6 @@ async def test_deploy_server_success(fireworks_finetune, mock_api_key):
810
817
  success_response.status_code = 200
811
818
  success_response.json.return_value = {"baseModel": "model-123"}
812
819
 
813
- status_response = (
814
- FineTuneStatus(status=FineTuneStatusType.completed, message=""),
815
- "model-123",
816
- )
817
-
818
820
  with (
819
821
  patch("httpx.AsyncClient") as mock_client_class,
820
822
  patch.object(
@@ -828,7 +830,7 @@ async def test_deploy_server_success(fireworks_finetune, mock_api_key):
828
830
  result = await fireworks_finetune._deploy_server()
829
831
 
830
832
  # Verify result
831
- assert result is True
833
+ assert result.success is True
832
834
 
833
835
  # Verify fine_tune_model_id was updated
834
836
  assert fireworks_finetune.datamodel.fine_tune_model_id == "model-123"
@@ -868,7 +870,11 @@ async def test_deploy_server_failure(fireworks_finetune, mock_api_key):
868
870
  result = await fireworks_finetune._deploy_server()
869
871
 
870
872
  # Verify result
871
- assert result is False
873
+ assert result.success is False
874
+ assert (
875
+ "Failed to deploy model to Fireworks server: [500] Internal Server Error"
876
+ in result.error_details
877
+ )
872
878
 
873
879
  # Verify API was called
874
880
  mock_client.post.assert_called_once()
@@ -895,7 +901,8 @@ async def test_deploy_server_non_200_but_valid_response(
895
901
  result = await fireworks_finetune._deploy_server()
896
902
 
897
903
  # Verify result - should fail because baseModel is missing
898
- assert result is False
904
+ assert result.success is False
905
+ assert "Failed to deploy model to Fireworks server:" in result.error_details
899
906
 
900
907
 
901
908
  async def test_deploy_server_missing_model_id(fireworks_finetune, mock_api_key):
@@ -906,7 +913,7 @@ async def test_deploy_server_missing_model_id(fireworks_finetune, mock_api_key):
906
913
  result = await fireworks_finetune._deploy_server()
907
914
 
908
915
  # Verify result - should fail because model ID is missing
909
- assert result is False
916
+ assert result.success is False
910
917
 
911
918
 
912
919
  @pytest.mark.parametrize(
@@ -937,10 +944,10 @@ async def test_check_or_deploy_server_already_deployed(
937
944
  ) as mock_fetch,
938
945
  patch.object(fireworks_finetune, "_deploy_server") as mock_deploy,
939
946
  ):
940
- mock_deploy.return_value = True
947
+ mock_deploy.return_value = DeployStatus(success=True)
941
948
  result = await fireworks_finetune._check_or_deploy_server()
942
949
  # Even true if the model is in a non-ready state, as we'll call deploy (checked below)
943
- assert result is True
950
+ assert result.success is True
944
951
 
945
952
  if expected_already_deployed:
946
953
  assert mock_deploy.call_count == 0
@@ -968,13 +975,15 @@ async def test_check_or_deploy_server_not_deployed(fireworks_finetune, mock_api_
968
975
  fireworks_finetune, "_fetch_all_deployments", return_value=mock_deployments
969
976
  ) as mock_fetch,
970
977
  patch.object(
971
- fireworks_finetune, "_deploy_server", return_value=True
978
+ fireworks_finetune,
979
+ "_deploy_server",
980
+ return_value=DeployStatus(success=True),
972
981
  ) as mock_deploy,
973
982
  ):
974
983
  result = await fireworks_finetune._check_or_deploy_server()
975
984
 
976
985
  # Verify method returned True (from _deploy_server)
977
- assert result is True
986
+ assert result.success is True
978
987
 
979
988
  # Verify _fetch_all_deployments was called
980
989
  mock_fetch.assert_called_once()
@@ -1,6 +1,5 @@
1
- import time
2
1
  from pathlib import Path
3
- from unittest.mock import AsyncMock, MagicMock, patch
2
+ from unittest.mock import MagicMock, patch
4
3
 
5
4
  import pytest
6
5
  from google.cloud import storage
@@ -10,11 +9,7 @@ from vertexai.tuning import sft
10
9
  from kiln_ai.adapters.fine_tune.base_finetune import FineTuneStatusType
11
10
  from kiln_ai.adapters.fine_tune.dataset_formatter import DatasetFormat, DatasetFormatter
12
11
  from kiln_ai.adapters.fine_tune.vertex_finetune import VertexFinetune
13
- from kiln_ai.datamodel import (
14
- DatasetSplit,
15
- StructuredOutputMode,
16
- Task,
17
- )
12
+ from kiln_ai.datamodel import DatasetSplit, StructuredOutputMode, Task
18
13
  from kiln_ai.datamodel import Finetune as FinetuneModel
19
14
  from kiln_ai.datamodel.datamodel_enums import ChatStrategy
20
15
  from kiln_ai.datamodel.dataset_split import Train80Test20SplitDefinition
@@ -1,4 +1,4 @@
1
- from typing import Literal, Tuple
1
+ from typing import Tuple
2
2
 
3
3
  from together import Together
4
4
  from together.types.files import FilePurpose