kiln-ai 0.16.0__py3-none-any.whl → 0.17.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

Files changed (54) hide show
  1. kiln_ai/adapters/__init__.py +2 -0
  2. kiln_ai/adapters/adapter_registry.py +22 -44
  3. kiln_ai/adapters/chat/__init__.py +8 -0
  4. kiln_ai/adapters/chat/chat_formatter.py +234 -0
  5. kiln_ai/adapters/chat/test_chat_formatter.py +131 -0
  6. kiln_ai/adapters/data_gen/test_data_gen_task.py +19 -6
  7. kiln_ai/adapters/eval/base_eval.py +8 -6
  8. kiln_ai/adapters/eval/eval_runner.py +4 -1
  9. kiln_ai/adapters/eval/g_eval.py +23 -5
  10. kiln_ai/adapters/eval/test_base_eval.py +166 -15
  11. kiln_ai/adapters/eval/test_eval_runner.py +3 -0
  12. kiln_ai/adapters/eval/test_g_eval.py +1 -0
  13. kiln_ai/adapters/fine_tune/base_finetune.py +2 -2
  14. kiln_ai/adapters/fine_tune/dataset_formatter.py +138 -272
  15. kiln_ai/adapters/fine_tune/test_base_finetune.py +10 -10
  16. kiln_ai/adapters/fine_tune/test_dataset_formatter.py +287 -353
  17. kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +3 -3
  18. kiln_ai/adapters/fine_tune/test_openai_finetune.py +6 -6
  19. kiln_ai/adapters/fine_tune/test_together_finetune.py +1 -0
  20. kiln_ai/adapters/fine_tune/test_vertex_finetune.py +4 -4
  21. kiln_ai/adapters/fine_tune/together_finetune.py +12 -1
  22. kiln_ai/adapters/ml_model_list.py +80 -43
  23. kiln_ai/adapters/model_adapters/base_adapter.py +73 -26
  24. kiln_ai/adapters/model_adapters/litellm_adapter.py +79 -97
  25. kiln_ai/adapters/model_adapters/litellm_config.py +3 -2
  26. kiln_ai/adapters/model_adapters/test_base_adapter.py +235 -60
  27. kiln_ai/adapters/model_adapters/test_litellm_adapter.py +56 -21
  28. kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +41 -0
  29. kiln_ai/adapters/model_adapters/test_structured_output.py +44 -12
  30. kiln_ai/adapters/prompt_builders.py +0 -16
  31. kiln_ai/adapters/provider_tools.py +27 -9
  32. kiln_ai/adapters/repair/test_repair_task.py +24 -3
  33. kiln_ai/adapters/test_adapter_registry.py +88 -28
  34. kiln_ai/adapters/test_ml_model_list.py +158 -0
  35. kiln_ai/adapters/test_prompt_adaptors.py +17 -3
  36. kiln_ai/adapters/test_prompt_builders.py +3 -16
  37. kiln_ai/adapters/test_provider_tools.py +69 -20
  38. kiln_ai/datamodel/__init__.py +0 -2
  39. kiln_ai/datamodel/datamodel_enums.py +38 -13
  40. kiln_ai/datamodel/finetune.py +12 -7
  41. kiln_ai/datamodel/task.py +68 -7
  42. kiln_ai/datamodel/test_basemodel.py +2 -1
  43. kiln_ai/datamodel/test_dataset_split.py +0 -8
  44. kiln_ai/datamodel/test_models.py +33 -10
  45. kiln_ai/datamodel/test_task.py +168 -2
  46. kiln_ai/utils/config.py +3 -2
  47. kiln_ai/utils/dataset_import.py +1 -1
  48. kiln_ai/utils/logging.py +165 -0
  49. kiln_ai/utils/test_config.py +23 -0
  50. kiln_ai/utils/test_dataset_import.py +30 -0
  51. {kiln_ai-0.16.0.dist-info → kiln_ai-0.17.0.dist-info}/METADATA +1 -1
  52. {kiln_ai-0.16.0.dist-info → kiln_ai-0.17.0.dist-info}/RECORD +54 -49
  53. {kiln_ai-0.16.0.dist-info → kiln_ai-0.17.0.dist-info}/WHEEL +0 -0
  54. {kiln_ai-0.16.0.dist-info → kiln_ai-0.17.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -6,9 +6,13 @@ from pathlib import Path
6
6
  from typing import Any, Dict, Protocol
7
7
  from uuid import uuid4
8
8
 
9
- from kiln_ai.adapters.model_adapters.base_adapter import COT_FINAL_ANSWER_PROMPT
10
- from kiln_ai.datamodel import DatasetSplit, FinetuneDataStrategy, TaskRun
11
- from kiln_ai.datamodel.datamodel_enums import THINKING_DATA_STRATEGIES
9
+ from kiln_ai.adapters.chat.chat_formatter import (
10
+ ChatMessage,
11
+ get_chat_formatter,
12
+ )
13
+ from kiln_ai.datamodel import DatasetSplit, TaskRun
14
+ from kiln_ai.datamodel.datamodel_enums import THINKING_DATA_STRATEGIES, ChatStrategy
15
+ from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
12
16
 
13
17
 
14
18
  class DatasetFormat(str, Enum):
@@ -35,45 +39,23 @@ class DatasetFormat(str, Enum):
35
39
  VERTEX_GEMINI = "vertex_gemini"
36
40
 
37
41
 
38
- @dataclass
39
- class ModelTrainingData:
40
- input: str
41
- system_message: str
42
- final_output: str
43
- # These 3 are optional, and used for COT/Thinking style multi-message responses
44
- thinking_instructions: str | None = None
45
- thinking: str | None = None
46
- thinking_final_answer_prompt: str | None = None
47
- thinking_r1_style: bool = False
48
-
49
- def supports_cot(self) -> bool:
50
- if self.thinking_r1_style:
51
- raise ValueError("R1 style does not support COT")
52
-
53
- return (
54
- self.thinking_instructions is not None
55
- and self.thinking is not None
56
- and self.thinking_final_answer_prompt is not None
57
- )
58
-
59
-
60
42
  class FormatGenerator(Protocol):
61
43
  """Protocol for format generators"""
62
44
 
63
45
  def __call__(
64
46
  self,
65
- training_data: ModelTrainingData,
47
+ training_chat: list[ChatMessage],
66
48
  ) -> Dict[str, Any]: ...
67
49
 
68
50
 
69
- def build_training_data(
51
+ def build_training_chat(
70
52
  task_run: TaskRun,
71
53
  system_message: str,
72
- data_strategy: FinetuneDataStrategy,
54
+ data_strategy: ChatStrategy,
73
55
  thinking_instructions: str | None = None,
74
- ) -> ModelTrainingData:
56
+ ) -> list[ChatMessage]:
75
57
  """
76
- Generate data for training.
58
+ Generate chat message list for training.
77
59
 
78
60
  For final output, get the best task output from the task run, preferring repaired output if available.
79
61
 
@@ -84,52 +66,53 @@ def build_training_data(
84
66
  final_output = task_run.repaired_output.output
85
67
 
86
68
  thinking = None
87
- thinking_final_answer_prompt = None
88
- thinking_r1_style = False
89
- parent_task = task_run.parent_task()
90
69
 
91
- if data_strategy in THINKING_DATA_STRATEGIES:
92
- # Prefer reasoning to cot if both are present
93
- thinking = task_run.thinking_training_data()
94
-
95
- if data_strategy == FinetuneDataStrategy.final_and_intermediate_r1_compatible:
96
- if not task_run.has_thinking_training_data() or not thinking:
97
- raise ValueError(
98
- "Thinking data is required when fine-tuning thinking models (R1, QwQ, etc). Please ensure your fine-tuning dataset contains reasoning or chain of thought output for every entry."
99
- )
70
+ chat_formatter = get_chat_formatter(
71
+ data_strategy,
72
+ system_message,
73
+ task_run.input,
74
+ thinking_instructions,
75
+ )
76
+ # First turn already has it's content (user message)
77
+ chat_formatter.next_turn(None)
78
+
79
+ match data_strategy:
80
+ case ChatStrategy.single_turn:
81
+ chat_formatter.next_turn(final_output)
82
+ case ChatStrategy.two_message_cot:
83
+ thinking = get_thinking_data(task_run)
84
+ chat_formatter.next_turn(thinking)
85
+ chat_formatter.next_turn(final_output)
86
+ case ChatStrategy.two_message_cot_legacy:
87
+ thinking = get_thinking_data(task_run)
88
+ chat_formatter.next_turn(thinking)
89
+ chat_formatter.next_turn(final_output)
90
+ case ChatStrategy.single_turn_r1_thinking:
100
91
  if thinking_instructions:
101
92
  raise ValueError(
102
93
  "Thinking instructions are not supported when fine-tuning thinking models (R1, QwQ, etc). Please remove the thinking instructions."
103
94
  )
104
- thinking_r1_style = True
105
- elif (
106
- data_strategy == FinetuneDataStrategy.final_and_intermediate
107
- and task_run.has_thinking_training_data()
108
- ):
109
- if not parent_task:
110
- raise ValueError(
111
- "TaskRuns for training required a parent Task for building a chain of thought prompts. Train without COT, or save this TaskRun to a parent Task."
112
- )
113
95
 
114
- thinking_final_answer_prompt = COT_FINAL_ANSWER_PROMPT
96
+ thinking = get_thinking_data(task_run)
97
+ response_msg = serialize_r1_style_message(thinking, final_output)
98
+ chat_formatter.next_turn(response_msg)
99
+ case _:
100
+ raise_exhaustive_enum_error(data_strategy)
115
101
 
116
- # Always use the passed thinking instructions, but check they are present for COT
117
- if not thinking_instructions:
118
- raise ValueError(
119
- "Thinking instructions are required when data_strategy is final_and_intermediate"
120
- )
121
- else:
122
- raise ValueError(f"Unsupported data strategy: {data_strategy}")
123
-
124
- return ModelTrainingData(
125
- input=task_run.input,
126
- system_message=system_message,
127
- final_output=final_output,
128
- thinking=thinking,
129
- thinking_instructions=thinking_instructions,
130
- thinking_final_answer_prompt=thinking_final_answer_prompt,
131
- thinking_r1_style=thinking_r1_style,
132
- )
102
+ return chat_formatter.messages
103
+
104
+
105
+ def get_thinking_data(task_run: TaskRun) -> str:
106
+ """
107
+ Raises an error if thinking data is not present.
108
+ """
109
+ thinking = task_run.thinking_training_data()
110
+ if thinking is None:
111
+ raise ValueError(
112
+ "Thinking data is required when fine-tuning thinking models. Please ensure your fine-tuning dataset contains reasoning or chain of thought output for every entry."
113
+ )
114
+
115
+ return thinking
133
116
 
134
117
 
135
118
  def serialize_r1_style_message(thinking: str | None, final_output: str):
@@ -141,125 +124,78 @@ def serialize_r1_style_message(thinking: str | None, final_output: str):
141
124
  return f"<think>\n{thinking}\n</think>\n\n{final_output}"
142
125
 
143
126
 
144
- def generate_chat_message_response(
145
- training_data: ModelTrainingData,
146
- ) -> Dict[str, Any]:
147
- """Generate OpenAI chat format with plaintext response"""
127
+ def generate_chat_message_list(
128
+ training_chat: list[ChatMessage],
129
+ ) -> list[dict[str, str | None]]:
130
+ """Generate OpenAI chat list. Not the full OpenAI body, just the list of messages."""
148
131
 
149
- messages: list[dict[str, str | None]] = [
150
- {"role": "system", "content": training_data.system_message},
151
- {"role": "user", "content": training_data.input},
152
- ]
132
+ messages: list[dict[str, str | None]] = []
153
133
 
154
- if training_data.thinking_r1_style:
155
- messages.extend(
156
- [
157
- {
158
- "role": "assistant",
159
- "content": serialize_r1_style_message(
160
- thinking=training_data.thinking,
161
- final_output=training_data.final_output,
162
- ),
163
- }
164
- ]
165
- )
134
+ for msg in training_chat:
135
+ if msg.role not in ["user", "assistant", "system"]:
136
+ raise ValueError(f"Unsupported role for OpenAI chat format: {msg.role}")
166
137
 
167
- return {"messages": messages}
168
- elif training_data.supports_cot():
169
- messages.extend(
170
- [
171
- {"role": "user", "content": training_data.thinking_instructions},
172
- {"role": "assistant", "content": training_data.thinking},
173
- {
174
- "role": "user",
175
- "content": training_data.thinking_final_answer_prompt,
176
- },
177
- ]
138
+ messages.append(
139
+ {
140
+ "role": msg.role,
141
+ "content": msg.content,
142
+ }
178
143
  )
179
144
 
180
- messages.append({"role": "assistant", "content": training_data.final_output})
145
+ return messages
146
+
147
+
148
+ def generate_chat_message_response(
149
+ training_chat: list[ChatMessage],
150
+ ) -> Dict[str, Any]:
151
+ """Generate OpenAI chat format with plaintext response"""
152
+
153
+ messages: list[dict[str, str | None]] = generate_chat_message_list(training_chat)
181
154
 
182
155
  return {"messages": messages}
183
156
 
184
157
 
185
- def generate_json_schema_message(
186
- training_data: ModelTrainingData,
187
- ) -> Dict[str, Any]:
188
- """Generate OpenAI chat format with validated JSON response"""
189
- # Load and dump to ensure it's valid JSON and goes to 1 line
158
+ def last_message_structured_content(training_chat: list[ChatMessage]) -> Dict:
159
+ """Get the structured content of the last message"""
160
+ if len(training_chat) < 1:
161
+ raise ValueError("Training chat is empty")
190
162
  try:
191
- json_data = json.loads(training_data.final_output)
163
+ json_data = json.loads(training_chat[-1].content or "")
192
164
  except json.JSONDecodeError as e:
193
165
  raise ValueError(
194
- f"Invalid JSON in JSON Schema training set: {e}\nOutput Data: {training_data.final_output}"
195
- ) from e
196
- json_string = json.dumps(json_data, ensure_ascii=False)
197
-
198
- messages: list[dict[str, str | None]] = [
199
- {"role": "system", "content": training_data.system_message},
200
- {"role": "user", "content": training_data.input},
201
- ]
202
-
203
- if training_data.thinking_r1_style:
204
- messages.extend(
205
- [
206
- {
207
- "role": "assistant",
208
- "content": serialize_r1_style_message(
209
- thinking=training_data.thinking,
210
- final_output=training_data.final_output,
211
- ),
212
- }
213
- ]
166
+ f"Last message is not JSON (structured), and this format expects structured data: {e}"
214
167
  )
215
-
216
- return {"messages": messages}
217
- elif training_data.supports_cot():
218
- messages.extend(
219
- [
220
- {"role": "user", "content": training_data.thinking_instructions},
221
- {"role": "assistant", "content": training_data.thinking},
222
- {
223
- "role": "user",
224
- "content": training_data.thinking_final_answer_prompt,
225
- },
226
- ]
168
+ if not isinstance(json_data, dict):
169
+ raise ValueError(
170
+ "Last message is not a JSON Dictionary (structured data), and this format expects structured_data."
227
171
  )
172
+ return json_data
228
173
 
229
- messages.append({"role": "assistant", "content": json_string})
230
174
 
231
- return {"messages": messages}
175
+ def generate_json_schema_message(
176
+ training_chat: list[ChatMessage],
177
+ ) -> Dict[str, Any]:
178
+ """Generate OpenAI chat format with validated JSON response"""
179
+ # Load and dump to ensure it's valid JSON and goes to 1 line
180
+ last_msg_data = last_message_structured_content(training_chat)
181
+
182
+ # re-format the json string in the last message for consistency
183
+ json_string = json.dumps(last_msg_data, ensure_ascii=False)
184
+ training_chat[-1].content = json_string
185
+
186
+ return generate_chat_message_response(training_chat)
232
187
 
233
188
 
234
189
  def generate_chat_message_toolcall(
235
- training_data: ModelTrainingData,
190
+ training_chat: list[ChatMessage],
236
191
  ) -> Dict[str, Any]:
237
192
  """Generate OpenAI chat format with tool call response"""
238
- try:
239
- arguments = json.loads(training_data.final_output)
240
- except json.JSONDecodeError as e:
241
- raise ValueError(f"Invalid JSON in for tool call: {e}") from e
193
+ last_message_data = last_message_structured_content(training_chat)
242
194
 
243
- messages: list[dict[str, Any]] = [
244
- {"role": "system", "content": training_data.system_message},
245
- {"role": "user", "content": training_data.input},
246
- ]
195
+ messages: list[dict[str, Any]] = generate_chat_message_list(training_chat)
247
196
 
248
- if training_data.thinking_r1_style:
249
- raise ValueError(
250
- "R1 style thinking is not supported for tool call downloads. Please use a different training strategy."
251
- )
252
- elif training_data.supports_cot():
253
- messages.extend(
254
- [
255
- {"role": "user", "content": training_data.thinking_instructions},
256
- {"role": "assistant", "content": training_data.thinking},
257
- {
258
- "role": "user",
259
- "content": training_data.thinking_final_answer_prompt,
260
- },
261
- ]
262
- )
197
+ # remove the last message, we're going to replace it with a toolcall
198
+ messages = messages[:-1]
263
199
 
264
200
  messages.append(
265
201
  {
@@ -271,8 +207,7 @@ def generate_chat_message_toolcall(
271
207
  "type": "function",
272
208
  "function": {
273
209
  "name": "task_response",
274
- # Yes we parse then dump again. This ensures it's valid JSON, and ensures it goes to 1 line
275
- "arguments": json.dumps(arguments, ensure_ascii=False),
210
+ "arguments": json.dumps(last_message_data, ensure_ascii=False),
276
211
  },
277
212
  }
278
213
  ],
@@ -283,76 +218,26 @@ def generate_chat_message_toolcall(
283
218
 
284
219
 
285
220
  def generate_huggingface_chat_template(
286
- training_data: ModelTrainingData,
221
+ training_chat: list[ChatMessage],
287
222
  ) -> Dict[str, Any]:
288
223
  """Generate HuggingFace chat template"""
289
224
 
290
- conversations: list[dict[str, Any]] = [
291
- {"role": "system", "content": training_data.system_message},
292
- {"role": "user", "content": training_data.input},
293
- ]
294
-
295
- if training_data.thinking_r1_style:
296
- conversations.extend(
297
- [
298
- {
299
- "role": "assistant",
300
- "content": serialize_r1_style_message(
301
- thinking=training_data.thinking,
302
- final_output=training_data.final_output,
303
- ),
304
- }
305
- ]
306
- )
307
- return {"conversations": conversations}
308
-
309
- if training_data.supports_cot():
310
- conversations.extend(
311
- [
312
- {"role": "user", "content": training_data.thinking_instructions},
313
- {"role": "assistant", "content": training_data.thinking},
314
- {
315
- "role": "user",
316
- "content": training_data.thinking_final_answer_prompt,
317
- },
318
- ]
319
- )
320
-
321
- conversations.append({"role": "assistant", "content": training_data.final_output})
225
+ conversations: list[dict[str, Any]] = generate_chat_message_list(training_chat)
322
226
 
323
227
  return {"conversations": conversations}
324
228
 
325
229
 
326
230
  def generate_huggingface_chat_template_toolcall(
327
- training_data: ModelTrainingData,
231
+ training_chat: list[ChatMessage],
328
232
  ) -> Dict[str, Any]:
329
233
  """Generate HuggingFace chat template with tool calls"""
330
- try:
331
- arguments = json.loads(training_data.final_output)
332
- except json.JSONDecodeError as e:
333
- raise ValueError(f"Invalid JSON in for tool call: {e}") from e
234
+ last_message_data = last_message_structured_content(training_chat)
334
235
 
335
236
  # See https://huggingface.co/docs/transformers/en/chat_templating
336
- conversations: list[dict[str, Any]] = [
337
- {"role": "system", "content": training_data.system_message},
338
- {"role": "user", "content": training_data.input},
339
- ]
237
+ conversations: list[dict[str, Any]] = generate_chat_message_list(training_chat)
340
238
 
341
- if training_data.thinking_r1_style:
342
- raise ValueError(
343
- "R1 style thinking is not supported for tool call downloads. Please use a different training strategy."
344
- )
345
- elif training_data.supports_cot():
346
- conversations.extend(
347
- [
348
- {"role": "user", "content": training_data.thinking_instructions},
349
- {"role": "assistant", "content": training_data.thinking},
350
- {
351
- "role": "user",
352
- "content": training_data.thinking_final_answer_prompt,
353
- },
354
- ]
355
- )
239
+ # remove the last message, we're going to replace it with a toolcall
240
+ conversations = conversations[:-1]
356
241
 
357
242
  conversations.append(
358
243
  {
@@ -363,7 +248,7 @@ def generate_huggingface_chat_template_toolcall(
363
248
  "function": {
364
249
  "name": "task_response",
365
250
  "id": str(uuid4()).replace("-", "")[:9],
366
- "arguments": arguments,
251
+ "arguments": last_message_data,
367
252
  },
368
253
  }
369
254
  ],
@@ -373,60 +258,41 @@ def generate_huggingface_chat_template_toolcall(
373
258
  return {"conversations": conversations}
374
259
 
375
260
 
261
+ VERTEX_GEMINI_ROLE_MAP = {
262
+ "system": "system",
263
+ "user": "user",
264
+ "assistant": "model",
265
+ }
266
+
267
+
376
268
  def generate_vertex_gemini(
377
- training_data: ModelTrainingData,
269
+ training_chat: list[ChatMessage],
378
270
  ) -> Dict[str, Any]:
379
- """Generate Vertex Gemini 1.5 format (flash and pro)"""
271
+ """Generate Vertex Gemini format (flash and pro)"""
380
272
  # See https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-supervised-tuning-prepare
381
273
 
382
- system_instruction = {
383
- "role": "system",
384
- "parts": [
274
+ # System message get's it's own entry in top level UI
275
+ system_instruction = training_chat[0].content
276
+
277
+ messages: list[Dict[str, Any]] = []
278
+ for msg in training_chat[1:]:
279
+ messages.append(
385
280
  {
386
- "text": training_data.system_message,
281
+ "role": VERTEX_GEMINI_ROLE_MAP[msg.role],
282
+ "parts": [{"text": msg.content}],
387
283
  }
388
- ],
389
- }
390
- contents = [
391
- {
392
- "role": "user",
284
+ )
285
+
286
+ return {
287
+ "systemInstruction": {
288
+ "role": "system",
393
289
  "parts": [
394
290
  {
395
- "text": training_data.input,
291
+ "text": system_instruction,
396
292
  }
397
293
  ],
398
- }
399
- ]
400
-
401
- if training_data.thinking_r1_style:
402
- raise ValueError(
403
- "R1 style thinking is not supported for Vertex Gemini. Please use a different training strategy."
404
- )
405
- elif training_data.supports_cot():
406
- contents.extend(
407
- [
408
- {
409
- "role": "user",
410
- "parts": [{"text": training_data.thinking_instructions}],
411
- },
412
- {"role": "model", "parts": [{"text": training_data.thinking}]},
413
- {
414
- "role": "user",
415
- "parts": [{"text": training_data.thinking_final_answer_prompt}],
416
- },
417
- ]
418
- )
419
-
420
- contents.append(
421
- {
422
- "role": "model",
423
- "parts": [{"text": training_data.final_output}],
424
- }
425
- )
426
-
427
- return {
428
- "systemInstruction": system_instruction,
429
- "contents": contents,
294
+ },
295
+ "contents": messages,
430
296
  }
431
297
 
432
298
 
@@ -462,7 +328,7 @@ class DatasetFormatter:
462
328
  self,
463
329
  split_name: str,
464
330
  format_type: DatasetFormat,
465
- data_strategy: FinetuneDataStrategy,
331
+ data_strategy: ChatStrategy,
466
332
  path: Path | None = None,
467
333
  ) -> Path:
468
334
  """
@@ -508,13 +374,13 @@ class DatasetFormatter:
508
374
  f"Task run {run_id} not found. This is required by this dataset."
509
375
  )
510
376
 
511
- training_data = build_training_data(
377
+ training_chat = build_training_chat(
512
378
  task_run=task_run,
513
379
  system_message=self.system_message,
514
380
  data_strategy=data_strategy,
515
381
  thinking_instructions=self.thinking_instructions,
516
382
  )
517
- example = generator(training_data)
383
+ example = generator(training_chat)
518
384
  # Allow non-ascii characters in the dataset.
519
385
  # Better readability for non-English users. If you don't support UTF-8... you should.
520
386
  f.write(json.dumps(example, ensure_ascii=False) + "\n")
@@ -4,13 +4,13 @@ import pytest
4
4
 
5
5
  from kiln_ai.adapters.fine_tune.base_finetune import (
6
6
  BaseFinetuneAdapter,
7
- FinetuneDataStrategy,
8
7
  FineTuneParameter,
9
8
  FineTuneStatus,
10
9
  FineTuneStatusType,
11
10
  )
12
11
  from kiln_ai.datamodel import DatasetSplit, Task
13
12
  from kiln_ai.datamodel import Finetune as FinetuneModel
13
+ from kiln_ai.datamodel.datamodel_enums import ChatStrategy
14
14
 
15
15
 
16
16
  class MockFinetune(BaseFinetuneAdapter):
@@ -162,7 +162,7 @@ async def test_create_and_start_success(mock_dataset):
162
162
  train_split_name="train",
163
163
  parameters={"epochs": 10}, # Required parameter
164
164
  system_message="Test system message",
165
- data_strategy=FinetuneDataStrategy.final_only,
165
+ data_strategy=ChatStrategy.single_turn,
166
166
  thinking_instructions=None,
167
167
  )
168
168
 
@@ -176,7 +176,7 @@ async def test_create_and_start_success(mock_dataset):
176
176
  assert datamodel.parameters == {"epochs": 10}
177
177
  assert datamodel.system_message == "Test system message"
178
178
  assert datamodel.path.exists()
179
- assert datamodel.data_strategy == FinetuneDataStrategy.final_only
179
+ assert datamodel.data_strategy == ChatStrategy.single_turn
180
180
  assert datamodel.thinking_instructions is None
181
181
 
182
182
 
@@ -192,7 +192,7 @@ async def test_create_and_start_with_all_params(mock_dataset):
192
192
  description="Custom Description",
193
193
  validation_split_name="test",
194
194
  system_message="Test system message",
195
- data_strategy=FinetuneDataStrategy.final_and_intermediate,
195
+ data_strategy=ChatStrategy.two_message_cot,
196
196
  thinking_instructions="Custom thinking instructions",
197
197
  )
198
198
 
@@ -202,7 +202,7 @@ async def test_create_and_start_with_all_params(mock_dataset):
202
202
  assert datamodel.parameters == {"epochs": 10, "learning_rate": 0.001}
203
203
  assert datamodel.system_message == "Test system message"
204
204
  assert adapter.datamodel == datamodel
205
- assert datamodel.data_strategy == FinetuneDataStrategy.final_and_intermediate
205
+ assert datamodel.data_strategy == ChatStrategy.two_message_cot
206
206
  assert datamodel.thinking_instructions == "Custom thinking instructions"
207
207
 
208
208
  # load the datamodel from the file, confirm it's saved
@@ -221,7 +221,7 @@ async def test_create_and_start_invalid_parameters(mock_dataset):
221
221
  parameters={"learning_rate": 0.001}, # Missing required 'epochs'
222
222
  system_message="Test system message",
223
223
  thinking_instructions=None,
224
- data_strategy=FinetuneDataStrategy.final_only,
224
+ data_strategy=ChatStrategy.single_turn,
225
225
  )
226
226
 
227
227
 
@@ -240,7 +240,7 @@ async def test_create_and_start_no_parent_task():
240
240
  train_split_name="train",
241
241
  parameters={"epochs": 10},
242
242
  system_message="Test system message",
243
- data_strategy=FinetuneDataStrategy.final_only,
243
+ data_strategy=ChatStrategy.single_turn,
244
244
  thinking_instructions=None,
245
245
  )
246
246
 
@@ -263,7 +263,7 @@ async def test_create_and_start_no_parent_task_path():
263
263
  train_split_name="train",
264
264
  parameters={"epochs": 10},
265
265
  system_message="Test system message",
266
- data_strategy=FinetuneDataStrategy.final_only,
266
+ data_strategy=ChatStrategy.single_turn,
267
267
  thinking_instructions=None,
268
268
  )
269
269
 
@@ -282,7 +282,7 @@ async def test_create_and_start_invalid_train_split(mock_dataset):
282
282
  train_split_name="invalid_train", # Invalid train split
283
283
  parameters={"epochs": 10},
284
284
  system_message="Test system message",
285
- data_strategy=FinetuneDataStrategy.final_only,
285
+ data_strategy=ChatStrategy.single_turn,
286
286
  thinking_instructions=None,
287
287
  )
288
288
 
@@ -302,6 +302,6 @@ async def test_create_and_start_invalid_validation_split(mock_dataset):
302
302
  validation_split_name="invalid_test", # Invalid validation split
303
303
  parameters={"epochs": 10},
304
304
  system_message="Test system message",
305
- data_strategy=FinetuneDataStrategy.final_only,
305
+ data_strategy=ChatStrategy.single_turn,
306
306
  thinking_instructions=None,
307
307
  )