kiln-ai 0.15.0__py3-none-any.whl → 0.17.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/__init__.py +2 -0
- kiln_ai/adapters/adapter_registry.py +22 -44
- kiln_ai/adapters/chat/__init__.py +8 -0
- kiln_ai/adapters/chat/chat_formatter.py +234 -0
- kiln_ai/adapters/chat/test_chat_formatter.py +131 -0
- kiln_ai/adapters/data_gen/test_data_gen_task.py +19 -6
- kiln_ai/adapters/eval/base_eval.py +8 -6
- kiln_ai/adapters/eval/eval_runner.py +9 -65
- kiln_ai/adapters/eval/g_eval.py +26 -8
- kiln_ai/adapters/eval/test_base_eval.py +166 -15
- kiln_ai/adapters/eval/test_eval_runner.py +3 -0
- kiln_ai/adapters/eval/test_g_eval.py +1 -0
- kiln_ai/adapters/fine_tune/base_finetune.py +2 -2
- kiln_ai/adapters/fine_tune/dataset_formatter.py +153 -197
- kiln_ai/adapters/fine_tune/test_base_finetune.py +10 -10
- kiln_ai/adapters/fine_tune/test_dataset_formatter.py +402 -211
- kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +3 -3
- kiln_ai/adapters/fine_tune/test_openai_finetune.py +6 -6
- kiln_ai/adapters/fine_tune/test_together_finetune.py +1 -0
- kiln_ai/adapters/fine_tune/test_vertex_finetune.py +4 -4
- kiln_ai/adapters/fine_tune/together_finetune.py +12 -1
- kiln_ai/adapters/ml_model_list.py +556 -45
- kiln_ai/adapters/model_adapters/base_adapter.py +100 -35
- kiln_ai/adapters/model_adapters/litellm_adapter.py +116 -100
- kiln_ai/adapters/model_adapters/litellm_config.py +3 -2
- kiln_ai/adapters/model_adapters/test_base_adapter.py +299 -52
- kiln_ai/adapters/model_adapters/test_litellm_adapter.py +121 -22
- kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +44 -2
- kiln_ai/adapters/model_adapters/test_structured_output.py +48 -18
- kiln_ai/adapters/parsers/base_parser.py +0 -3
- kiln_ai/adapters/parsers/parser_registry.py +5 -3
- kiln_ai/adapters/parsers/r1_parser.py +17 -2
- kiln_ai/adapters/parsers/request_formatters.py +40 -0
- kiln_ai/adapters/parsers/test_parser_registry.py +2 -2
- kiln_ai/adapters/parsers/test_r1_parser.py +44 -1
- kiln_ai/adapters/parsers/test_request_formatters.py +76 -0
- kiln_ai/adapters/prompt_builders.py +14 -17
- kiln_ai/adapters/provider_tools.py +39 -4
- kiln_ai/adapters/repair/test_repair_task.py +27 -5
- kiln_ai/adapters/test_adapter_registry.py +88 -28
- kiln_ai/adapters/test_ml_model_list.py +158 -0
- kiln_ai/adapters/test_prompt_adaptors.py +17 -3
- kiln_ai/adapters/test_prompt_builders.py +27 -19
- kiln_ai/adapters/test_provider_tools.py +130 -12
- kiln_ai/datamodel/__init__.py +2 -2
- kiln_ai/datamodel/datamodel_enums.py +43 -4
- kiln_ai/datamodel/dataset_filters.py +69 -1
- kiln_ai/datamodel/dataset_split.py +4 -0
- kiln_ai/datamodel/eval.py +8 -0
- kiln_ai/datamodel/finetune.py +13 -7
- kiln_ai/datamodel/prompt_id.py +1 -0
- kiln_ai/datamodel/task.py +68 -7
- kiln_ai/datamodel/task_output.py +1 -1
- kiln_ai/datamodel/task_run.py +39 -7
- kiln_ai/datamodel/test_basemodel.py +5 -8
- kiln_ai/datamodel/test_dataset_filters.py +82 -0
- kiln_ai/datamodel/test_dataset_split.py +2 -8
- kiln_ai/datamodel/test_example_models.py +54 -0
- kiln_ai/datamodel/test_models.py +80 -9
- kiln_ai/datamodel/test_task.py +168 -2
- kiln_ai/utils/async_job_runner.py +106 -0
- kiln_ai/utils/config.py +3 -2
- kiln_ai/utils/dataset_import.py +81 -19
- kiln_ai/utils/logging.py +165 -0
- kiln_ai/utils/test_async_job_runner.py +199 -0
- kiln_ai/utils/test_config.py +23 -0
- kiln_ai/utils/test_dataset_import.py +272 -10
- {kiln_ai-0.15.0.dist-info → kiln_ai-0.17.0.dist-info}/METADATA +1 -1
- kiln_ai-0.17.0.dist-info/RECORD +113 -0
- kiln_ai-0.15.0.dist-info/RECORD +0 -104
- {kiln_ai-0.15.0.dist-info → kiln_ai-0.17.0.dist-info}/WHEEL +0 -0
- {kiln_ai-0.15.0.dist-info → kiln_ai-0.17.0.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -3,16 +3,25 @@ import json
|
|
|
3
3
|
import logging
|
|
4
4
|
from io import StringIO
|
|
5
5
|
from pathlib import Path
|
|
6
|
+
from unittest.mock import patch
|
|
6
7
|
|
|
7
8
|
import pytest
|
|
8
9
|
from pydantic import BaseModel, ValidationError
|
|
9
10
|
|
|
10
|
-
from kiln_ai.datamodel import
|
|
11
|
+
from kiln_ai.datamodel import (
|
|
12
|
+
DataSource,
|
|
13
|
+
DataSourceType,
|
|
14
|
+
Project,
|
|
15
|
+
Task,
|
|
16
|
+
TaskOutput,
|
|
17
|
+
TaskRun,
|
|
18
|
+
)
|
|
11
19
|
from kiln_ai.utils.dataset_import import (
|
|
12
20
|
DatasetFileImporter,
|
|
13
21
|
DatasetImportFormat,
|
|
14
22
|
ImportConfig,
|
|
15
23
|
KilnInvalidImportFormat,
|
|
24
|
+
add_tag_splits,
|
|
16
25
|
deserialize_tags,
|
|
17
26
|
format_validation_error,
|
|
18
27
|
generate_import_tags,
|
|
@@ -144,16 +153,20 @@ def test_import_csv_plain_text(base_task: Task, tmp_path):
|
|
|
144
153
|
|
|
145
154
|
file_path = dicts_to_file_as_csv(row_data, "test.csv", tmp_path)
|
|
146
155
|
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
156
|
+
with patch("kiln_ai.utils.dataset_import.add_tag_splits") as mock_add_tag_splits:
|
|
157
|
+
importer = DatasetFileImporter(
|
|
158
|
+
base_task,
|
|
159
|
+
ImportConfig(
|
|
160
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
161
|
+
dataset_path=file_path,
|
|
162
|
+
dataset_name="test.csv",
|
|
163
|
+
),
|
|
164
|
+
)
|
|
155
165
|
|
|
156
|
-
|
|
166
|
+
importer.create_runs_from_file()
|
|
167
|
+
|
|
168
|
+
# Verify add_tag_splits was called
|
|
169
|
+
mock_add_tag_splits.assert_called_once()
|
|
157
170
|
|
|
158
171
|
assert len(base_task.runs()) == 4
|
|
159
172
|
|
|
@@ -248,6 +261,36 @@ def test_import_csv_plain_text_missing_output(base_task: Task, tmp_path):
|
|
|
248
261
|
assert "Missing required headers" in str(e.value)
|
|
249
262
|
|
|
250
263
|
|
|
264
|
+
def test_import_csv_utf8_encoding(base_task: Task, tmp_path):
|
|
265
|
+
"""Ensure UTF-8 encoded files are read correctly."""
|
|
266
|
+
|
|
267
|
+
row_data = [
|
|
268
|
+
{
|
|
269
|
+
"input": "Español entrada 你好👋",
|
|
270
|
+
"output": "salida áéí 你好👋",
|
|
271
|
+
"tags": "",
|
|
272
|
+
},
|
|
273
|
+
]
|
|
274
|
+
|
|
275
|
+
file_path = dicts_to_file_as_csv(row_data, "utf8.csv", tmp_path)
|
|
276
|
+
|
|
277
|
+
importer = DatasetFileImporter(
|
|
278
|
+
base_task,
|
|
279
|
+
ImportConfig(
|
|
280
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
281
|
+
dataset_path=file_path,
|
|
282
|
+
dataset_name="utf8.csv",
|
|
283
|
+
),
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
importer.create_runs_from_file()
|
|
287
|
+
|
|
288
|
+
assert len(base_task.runs()) == 1
|
|
289
|
+
run = base_task.runs()[0]
|
|
290
|
+
assert run.input == "Español entrada 你好👋"
|
|
291
|
+
assert run.output.output == "salida áéí 你好👋"
|
|
292
|
+
|
|
293
|
+
|
|
251
294
|
def test_import_csv_structured_output(task_with_structured_output: Task, tmp_path):
|
|
252
295
|
row_data = [
|
|
253
296
|
{
|
|
@@ -594,3 +637,222 @@ def test_format_validation_error():
|
|
|
594
637
|
|
|
595
638
|
def test_generate_import_tags():
|
|
596
639
|
assert generate_import_tags("123") == ["imported", "imported_123"]
|
|
640
|
+
|
|
641
|
+
|
|
642
|
+
def test_add_tag_splits(base_task: Task):
|
|
643
|
+
"""Test that tag splits are assigned correctly with exact proportions."""
|
|
644
|
+
# Create some test runs
|
|
645
|
+
runs = []
|
|
646
|
+
for i in range(10):
|
|
647
|
+
run = TaskRun(
|
|
648
|
+
parent=base_task,
|
|
649
|
+
input=f"input {i}",
|
|
650
|
+
input_source=DataSource(
|
|
651
|
+
type=DataSourceType.file_import,
|
|
652
|
+
properties={"file_name": "test.csv"},
|
|
653
|
+
),
|
|
654
|
+
output=TaskOutput(
|
|
655
|
+
output=f"output {i}",
|
|
656
|
+
source=DataSource(
|
|
657
|
+
type=DataSourceType.file_import,
|
|
658
|
+
properties={"file_name": "test.csv"},
|
|
659
|
+
),
|
|
660
|
+
),
|
|
661
|
+
)
|
|
662
|
+
runs.append(run)
|
|
663
|
+
|
|
664
|
+
# Test with 70/30 split
|
|
665
|
+
tag_splits = {"train": 0.7, "test": 0.3}
|
|
666
|
+
add_tag_splits(runs, tag_splits)
|
|
667
|
+
|
|
668
|
+
# Count the tags
|
|
669
|
+
train_count = sum(1 for run in runs if "train" in run.tags)
|
|
670
|
+
test_count = sum(1 for run in runs if "test" in run.tags)
|
|
671
|
+
|
|
672
|
+
# With 10 runs, we should get exactly 7 train and 3 test
|
|
673
|
+
assert train_count == 7
|
|
674
|
+
assert test_count == 3
|
|
675
|
+
assert len(runs) == train_count + test_count
|
|
676
|
+
|
|
677
|
+
|
|
678
|
+
def test_add_tag_splits_rounding(base_task: Task):
|
|
679
|
+
"""Test that tag splits handle rounding correctly."""
|
|
680
|
+
# Test a 33/33/34 split
|
|
681
|
+
runs = []
|
|
682
|
+
for i in range(34):
|
|
683
|
+
run = TaskRun(
|
|
684
|
+
parent=base_task,
|
|
685
|
+
input=f"input {i}",
|
|
686
|
+
input_source=DataSource(
|
|
687
|
+
type=DataSourceType.file_import,
|
|
688
|
+
properties={"file_name": "test.csv"},
|
|
689
|
+
),
|
|
690
|
+
output=TaskOutput(
|
|
691
|
+
output=f"output {i}",
|
|
692
|
+
source=DataSource(
|
|
693
|
+
type=DataSourceType.file_import,
|
|
694
|
+
properties={"file_name": "test.csv"},
|
|
695
|
+
),
|
|
696
|
+
),
|
|
697
|
+
)
|
|
698
|
+
runs.append(run)
|
|
699
|
+
|
|
700
|
+
# Test with three equal splits
|
|
701
|
+
tag_splits = {"train": 0.33, "val": 0.33, "test": 0.34}
|
|
702
|
+
add_tag_splits(runs, tag_splits)
|
|
703
|
+
|
|
704
|
+
# Count the tags
|
|
705
|
+
train_count = sum(1 for run in runs if "train" in run.tags)
|
|
706
|
+
val_count = sum(1 for run in runs if "val" in run.tags)
|
|
707
|
+
test_count = sum(1 for run in runs if "test" in run.tags)
|
|
708
|
+
|
|
709
|
+
# Should have one of each
|
|
710
|
+
assert train_count in [11, 12]
|
|
711
|
+
assert val_count in [11, 12]
|
|
712
|
+
assert test_count in [11, 12]
|
|
713
|
+
assert len(runs) == train_count + val_count + test_count
|
|
714
|
+
|
|
715
|
+
|
|
716
|
+
def test_add_tag_splits_none(base_task: Task):
|
|
717
|
+
"""Test that None tag_splits is handled correctly."""
|
|
718
|
+
runs = []
|
|
719
|
+
for i in range(5):
|
|
720
|
+
run = TaskRun(
|
|
721
|
+
parent=base_task,
|
|
722
|
+
input=f"input {i}",
|
|
723
|
+
input_source=DataSource(
|
|
724
|
+
type=DataSourceType.file_import,
|
|
725
|
+
properties={"file_name": "test.csv"},
|
|
726
|
+
),
|
|
727
|
+
output=TaskOutput(
|
|
728
|
+
output=f"output {i}",
|
|
729
|
+
source=DataSource(
|
|
730
|
+
type=DataSourceType.file_import,
|
|
731
|
+
properties={"file_name": "test.csv"},
|
|
732
|
+
),
|
|
733
|
+
),
|
|
734
|
+
)
|
|
735
|
+
runs.append(run)
|
|
736
|
+
|
|
737
|
+
# Should not modify any tags
|
|
738
|
+
original_tags = [run.tags.copy() for run in runs]
|
|
739
|
+
add_tag_splits(runs, None)
|
|
740
|
+
for run, original in zip(runs, original_tags):
|
|
741
|
+
assert run.tags == original
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
def test_add_tag_splits_randomness(base_task: Task):
|
|
745
|
+
"""Test that tag assignment is random but maintains proportions."""
|
|
746
|
+
# Create 100 runs for better statistical significance
|
|
747
|
+
runs = []
|
|
748
|
+
for i in range(100):
|
|
749
|
+
run = TaskRun(
|
|
750
|
+
parent=base_task,
|
|
751
|
+
input=f"input {i}",
|
|
752
|
+
input_source=DataSource(
|
|
753
|
+
type=DataSourceType.file_import,
|
|
754
|
+
properties={"file_name": "test.csv"},
|
|
755
|
+
),
|
|
756
|
+
output=TaskOutput(
|
|
757
|
+
output=f"output {i}",
|
|
758
|
+
source=DataSource(
|
|
759
|
+
type=DataSourceType.file_import,
|
|
760
|
+
properties={"file_name": "test.csv"},
|
|
761
|
+
),
|
|
762
|
+
),
|
|
763
|
+
)
|
|
764
|
+
runs.append(run)
|
|
765
|
+
|
|
766
|
+
# Test with 60/40 split
|
|
767
|
+
tag_splits = {"train": 0.6, "test": 0.4}
|
|
768
|
+
add_tag_splits(runs, tag_splits)
|
|
769
|
+
|
|
770
|
+
# Count the tags
|
|
771
|
+
train_count = sum(1 for run in runs if "train" in run.tags)
|
|
772
|
+
test_count = sum(1 for run in runs if "test" in run.tags)
|
|
773
|
+
|
|
774
|
+
# Should have exactly 60 train and 40 test
|
|
775
|
+
assert train_count == 60
|
|
776
|
+
assert test_count == 40
|
|
777
|
+
assert len(runs) == train_count + test_count
|
|
778
|
+
|
|
779
|
+
# Check that the assignment is not just sequential
|
|
780
|
+
# by looking at the first few runs
|
|
781
|
+
first_few_runs = runs[:35]
|
|
782
|
+
train_tags = sum(1 for run in first_few_runs if "train" in run.tags)
|
|
783
|
+
test_tags = sum(1 for run in first_few_runs if "test" in run.tags)
|
|
784
|
+
|
|
785
|
+
# If assignment was sequential, we'd expect all first 35 to be train
|
|
786
|
+
# This test might occasionally fail if we get unlucky with random assignment
|
|
787
|
+
# but it's very unlikely
|
|
788
|
+
assert train_tags < 35
|
|
789
|
+
assert test_tags > 0
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
def test_validate_tag_splits():
|
|
793
|
+
"""Test that validate_tag_splits correctly validates tag split proportions."""
|
|
794
|
+
# Test valid splits
|
|
795
|
+
config = ImportConfig(
|
|
796
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
797
|
+
dataset_path="test.csv",
|
|
798
|
+
dataset_name="test.csv",
|
|
799
|
+
tag_splits={"train": 0.7, "test": 0.3},
|
|
800
|
+
)
|
|
801
|
+
config.validate_tag_splits() # Should not raise
|
|
802
|
+
|
|
803
|
+
# Test valid splits with small floating point errors
|
|
804
|
+
config = ImportConfig(
|
|
805
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
806
|
+
dataset_path="test.csv",
|
|
807
|
+
dataset_name="test.csv",
|
|
808
|
+
tag_splits={"train": 0.7, "test": 0.3000001},
|
|
809
|
+
)
|
|
810
|
+
config.validate_tag_splits() # Should not raise
|
|
811
|
+
|
|
812
|
+
# Test invalid splits that don't sum to 1
|
|
813
|
+
config = ImportConfig(
|
|
814
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
815
|
+
dataset_path="test.csv",
|
|
816
|
+
dataset_name="test.csv",
|
|
817
|
+
tag_splits={"train": 0.7, "test": 0.4},
|
|
818
|
+
)
|
|
819
|
+
with pytest.raises(ValueError) as e:
|
|
820
|
+
config.validate_tag_splits()
|
|
821
|
+
assert "Splits must sum to 1" in str(e.value)
|
|
822
|
+
|
|
823
|
+
# Test None tag_splits
|
|
824
|
+
config = ImportConfig(
|
|
825
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
826
|
+
dataset_path="test.csv",
|
|
827
|
+
dataset_name="test.csv",
|
|
828
|
+
tag_splits=None,
|
|
829
|
+
)
|
|
830
|
+
config.validate_tag_splits() # Should not raise
|
|
831
|
+
|
|
832
|
+
|
|
833
|
+
def test_dataset_file_importer_validates_tag_splits(base_task: Task, tmp_path):
|
|
834
|
+
"""Test that DatasetFileImporter validates tag splits on initialization."""
|
|
835
|
+
# Test with invalid splits
|
|
836
|
+
with pytest.raises(ValueError) as e:
|
|
837
|
+
DatasetFileImporter(
|
|
838
|
+
base_task,
|
|
839
|
+
ImportConfig(
|
|
840
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
841
|
+
dataset_path="test.csv",
|
|
842
|
+
dataset_name="test.csv",
|
|
843
|
+
tag_splits={"train": 0.7, "test": 0.4}, # Sums to 1.1
|
|
844
|
+
),
|
|
845
|
+
)
|
|
846
|
+
assert "Splits must sum to 1" in str(e.value)
|
|
847
|
+
|
|
848
|
+
# Test with valid splits
|
|
849
|
+
importer = DatasetFileImporter(
|
|
850
|
+
base_task,
|
|
851
|
+
ImportConfig(
|
|
852
|
+
dataset_type=DatasetImportFormat.CSV,
|
|
853
|
+
dataset_path="test.csv",
|
|
854
|
+
dataset_name="test.csv",
|
|
855
|
+
tag_splits={"train": 0.7, "test": 0.3},
|
|
856
|
+
),
|
|
857
|
+
)
|
|
858
|
+
assert importer.config.tag_splits == {"train": 0.7, "test": 0.3}
|
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
kiln_ai/__init__.py,sha256=Sc4z8LRVFMwJUoc_DPVUriSXTZ6PO9MaJ80PhRbKyB8,34
|
|
2
|
+
kiln_ai/adapters/__init__.py,sha256=5GTN1bnEWz1NxWrlzsI6CfUio-D1jG74_-fx_PXJkY8,1027
|
|
3
|
+
kiln_ai/adapters/adapter_registry.py,sha256=oEY6Zy6rtzs5mYLSZVhCzNWE4UJiUzIkVmmE_UYnBbE,8529
|
|
4
|
+
kiln_ai/adapters/ml_model_list.py,sha256=kXt2eJ68HCUZ2dzfl9t-9pUv_s8149yMjRjmDi3GWuA,88641
|
|
5
|
+
kiln_ai/adapters/ollama_tools.py,sha256=uObtLWfqKb9RXHN-TGGw2Y1FQlEMe0u8FgszI0zQn6U,3550
|
|
6
|
+
kiln_ai/adapters/prompt_builders.py,sha256=R5IgZ7I2Ftx7i67xQb9UwcHE5gbPxgvgys_UAs3fc6A,15165
|
|
7
|
+
kiln_ai/adapters/provider_tools.py,sha256=HIGsU38cAWKGONi8-Rh66WNOved3O0w9OYbj9tU_HU4,16794
|
|
8
|
+
kiln_ai/adapters/run_output.py,sha256=RAi2Qp6dmqJVNm3CxbNTdAuhitHfH5NiUGbf6ygUP-k,257
|
|
9
|
+
kiln_ai/adapters/test_adapter_registry.py,sha256=W4KoZ5cFTZwmW3i19cCgwzmcG802tpFC0GrUnZcD8_4,8378
|
|
10
|
+
kiln_ai/adapters/test_ml_model_list.py,sha256=L5XdRz6c2vbfSYe0rWfsNOM73lZbuGsnG1gzgVPEUA8,6726
|
|
11
|
+
kiln_ai/adapters/test_ollama_tools.py,sha256=xAUzL0IVmmXadVehJu1WjqbhpKEYGAgGt3pWx7hrubc,2514
|
|
12
|
+
kiln_ai/adapters/test_prompt_adaptors.py,sha256=nGq6H84rDMl72WUP2xqorQYW5yot0Z6sTQPXRL0mh5Y,8291
|
|
13
|
+
kiln_ai/adapters/test_prompt_builders.py,sha256=SqGkluKZd7m7SPuq64NAprG0db11RDqoYai1m-1QgeQ,22585
|
|
14
|
+
kiln_ai/adapters/test_provider_tools.py,sha256=QCknT944HN7jKLeSi9qS0cH_O5jKMMLThX7kWfAcJqg,32090
|
|
15
|
+
kiln_ai/adapters/chat/__init__.py,sha256=ELydKUGeCcTiBJogzZUT8VXqr5kDtmoB8_GoyO28qR0,192
|
|
16
|
+
kiln_ai/adapters/chat/chat_formatter.py,sha256=aBGpMUUBx0V_-g5GXkAhmhIqIyfMwd7kphFu6E8ivTM,8343
|
|
17
|
+
kiln_ai/adapters/chat/test_chat_formatter.py,sha256=MVEZTSIFBwLvplOmit-4TDdcmPXsaMZMQEwoXWmq1FI,4603
|
|
18
|
+
kiln_ai/adapters/data_gen/__init__.py,sha256=QTZWaf7kq5BorhPvexJfwDEKmjRmIbhwW9ei8LW2SIs,276
|
|
19
|
+
kiln_ai/adapters/data_gen/data_gen_prompts.py,sha256=kudjHnAz7L3q0k_NLyTlaIV7M0uRFrxXNcfcnjOE2uc,5810
|
|
20
|
+
kiln_ai/adapters/data_gen/data_gen_task.py,sha256=0PuYCcj09BtpgNj23mKj_L45mKZBdV5VreUeZ-Tj_xM,6642
|
|
21
|
+
kiln_ai/adapters/data_gen/test_data_gen_task.py,sha256=_v80CcPpTRQRBGgO9U-tj8PNg5Ixzc-7xCgSocCRai0,10706
|
|
22
|
+
kiln_ai/adapters/eval/__init__.py,sha256=0ptbK0ZxWuraxGn_WMgmE1tcaq0k5t-g-52kVohvWCg,693
|
|
23
|
+
kiln_ai/adapters/eval/base_eval.py,sha256=Ms-OPfOmp4_7jIgAxi9QbwEPQYHkkHA-F2ZW11S6MLg,7324
|
|
24
|
+
kiln_ai/adapters/eval/eval_runner.py,sha256=EjgAM88RhV51aIM1tNwmtnOU8a7uyaSM95ZYu0JZ-Pc,8791
|
|
25
|
+
kiln_ai/adapters/eval/g_eval.py,sha256=yDsyepDhvsi67F2gi85KZQO_0UoWKNJSpxc43ufvJOU,16098
|
|
26
|
+
kiln_ai/adapters/eval/registry.py,sha256=gZ_s0VgEx79Fswkgi1tS4yOl7lzpkvUBJZ62RldhM_w,626
|
|
27
|
+
kiln_ai/adapters/eval/test_base_eval.py,sha256=zNoIrFqImgccOazC4yNof11ZObHkvh_DVnaaBBNw_jU,15776
|
|
28
|
+
kiln_ai/adapters/eval/test_eval_runner.py,sha256=37cmZPjvZaNlNDzmstmOEUwQEFhpafD9jRhDD1UH6PE,18718
|
|
29
|
+
kiln_ai/adapters/eval/test_g_eval.py,sha256=KaVjG6aHQQzGlOd4J_7S8YKR3EmA2aFpY8VOEDdrRHY,16479
|
|
30
|
+
kiln_ai/adapters/eval/test_g_eval_data.py,sha256=8caiZfLWnXVX8alrBPrH7L7gqqSS9vO7u6PzcHurQcA,27769
|
|
31
|
+
kiln_ai/adapters/fine_tune/__init__.py,sha256=DxdTR60chwgck1aEoVYWyfWi6Ed2ZkdJj0lar-SEAj4,257
|
|
32
|
+
kiln_ai/adapters/fine_tune/base_finetune.py,sha256=CGho356kKnxQsvkHws9XfWuBYV0nmbCvEkff21D4e48,5914
|
|
33
|
+
kiln_ai/adapters/fine_tune/dataset_formatter.py,sha256=yOVefk2qXwX29Y2nKU0XWtQgf1kNNMY5M0NhzsaatZ8,12975
|
|
34
|
+
kiln_ai/adapters/fine_tune/finetune_registry.py,sha256=9RJLjviSoN3dQnKJE9Ss7df7dtdJgbuShB8IUcI-q9k,726
|
|
35
|
+
kiln_ai/adapters/fine_tune/fireworks_finetune.py,sha256=ze0QxghpHAqwO9nXOTkDEC9irmqduX5bjIhZDU0DCZQ,20101
|
|
36
|
+
kiln_ai/adapters/fine_tune/openai_finetune.py,sha256=Dz9E_0BWfrIkvv8ArZe-RKPwbIKPZ3v8rfbc3JELyTY,8571
|
|
37
|
+
kiln_ai/adapters/fine_tune/test_base_finetune.py,sha256=atZI54SC6mVili5dEIuqwv2groLCZWYKSMzDZYjbUxQ,10705
|
|
38
|
+
kiln_ai/adapters/fine_tune/test_dataset_formatter.py,sha256=7-axt5WPk1cEmsojr9xG6o1PHu7EvEn_YWIg1ZmqRK0,29907
|
|
39
|
+
kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py,sha256=dzOOFIzgRUGGNlfA7-L1URI4qwMVHg1fuUc8RBqrDNI,36765
|
|
40
|
+
kiln_ai/adapters/fine_tune/test_openai_finetune.py,sha256=NtMFo3LZjpAsNHFvIMHsFmWRrHrOKjniRvrZTx4nXhg,20001
|
|
41
|
+
kiln_ai/adapters/fine_tune/test_together_finetune.py,sha256=ZwYmT4pPkhU-45Q-5fs4WL16dQ4OyvI7KXPevsrA24E,18122
|
|
42
|
+
kiln_ai/adapters/fine_tune/test_vertex_finetune.py,sha256=W7oz6ZJktde1WludBb2lFpTXmU7VQN1FkeJpyN1dPbI,19218
|
|
43
|
+
kiln_ai/adapters/fine_tune/together_finetune.py,sha256=rsJETfwkx21UzJH1CUd_hP-v1zQNBxK5b2uJIYSTpS4,14775
|
|
44
|
+
kiln_ai/adapters/fine_tune/vertex_finetune.py,sha256=Ik6Ov711-oruJnMHpVZTPimWJY2W_JnfdKIdR2djGrc,8545
|
|
45
|
+
kiln_ai/adapters/model_adapters/__init__.py,sha256=m5GRtOHwVVvp_XDOss8c1X3NFf1wQQlC2eBgI4tXQhM,212
|
|
46
|
+
kiln_ai/adapters/model_adapters/base_adapter.py,sha256=mGF3ozrFp14_elYXghgzZiWrEKo6EGY9lSdo3aRaJ-A,13101
|
|
47
|
+
kiln_ai/adapters/model_adapters/litellm_adapter.py,sha256=G9SBxw-B6uB8I8LyKaZ6WDAq2OaUOCmvoVNYKbNdVu4,17074
|
|
48
|
+
kiln_ai/adapters/model_adapters/litellm_config.py,sha256=zOQEkYKeoQ0FIbxTkyyoaGtaQiB9eYK3IuyUgqSwzLE,485
|
|
49
|
+
kiln_ai/adapters/model_adapters/test_base_adapter.py,sha256=CWvVCr3Y_m8iQ1jU60PDG7qPpIP3gOSAXUfOUsQVAfI,16050
|
|
50
|
+
kiln_ai/adapters/model_adapters/test_litellm_adapter.py,sha256=NZ9rXUHCDjNNuvzMjOHmmT5U02HXCm7WkuyNOXYaLNU,17301
|
|
51
|
+
kiln_ai/adapters/model_adapters/test_saving_adapter_results.py,sha256=xkd_b9GS-6ybst97FsS_XrvyTXMlEufYF1Q8CGpE1V8,9697
|
|
52
|
+
kiln_ai/adapters/model_adapters/test_structured_output.py,sha256=-4NWrDTYJXC53UKoKfYzAg-uyD73I-iApqN-9FNB2qM,13463
|
|
53
|
+
kiln_ai/adapters/parsers/__init__.py,sha256=TGJS_8JhjUwg5Bnq4cDmwt5eIRo4vowmcL2A72L1Hzk,202
|
|
54
|
+
kiln_ai/adapters/parsers/base_parser.py,sha256=AE8UYCttmVXbilpICotnDdFYTFhGMiBJHrxIUgPTAWM,280
|
|
55
|
+
kiln_ai/adapters/parsers/json_parser.py,sha256=IszrBrhIFrrVr76UZsuejkBdqpZG27mU72264HVgVzE,1274
|
|
56
|
+
kiln_ai/adapters/parsers/parser_registry.py,sha256=Lna-uYHBigKeq9e-mUbNQKcsZM1M7cDvxu7Gv4ECjLI,735
|
|
57
|
+
kiln_ai/adapters/parsers/r1_parser.py,sha256=ucDRHPoFrmr1eOSNFEG0won6TPxkCKfGJQNNJng5qHA,3626
|
|
58
|
+
kiln_ai/adapters/parsers/request_formatters.py,sha256=NdZO8zcZy9tkea8JaD5c_OeoeVjoYYTG0GjwF812STw,1124
|
|
59
|
+
kiln_ai/adapters/parsers/test_json_parser.py,sha256=9kdWe_vRC5wjP8A1Ym6Zu6enDIz4ARCNiRpcZr7_3ak,1971
|
|
60
|
+
kiln_ai/adapters/parsers/test_parser_registry.py,sha256=FFJQgaKVu67yK4W7w_b26tuEYPPYGppfttJ0y5ctWUo,1041
|
|
61
|
+
kiln_ai/adapters/parsers/test_r1_parser.py,sha256=XbB0saThkcgOvoYNq3TxDgILUu5Me38yeKoQonqaN-g,6296
|
|
62
|
+
kiln_ai/adapters/parsers/test_request_formatters.py,sha256=t3FlKT_Tte2u8zXJTMl8VaE8IrSzumuBysahbGesrbU,2090
|
|
63
|
+
kiln_ai/adapters/repair/__init__.py,sha256=dOO9MEpEhjiwzDVFg3MNfA2bKMPlax9iekDatpTkX8E,217
|
|
64
|
+
kiln_ai/adapters/repair/repair_task.py,sha256=iW0bHWQq6Tir6ULTATWFS0zpwNji8Tbwhm2lZu52RsM,3342
|
|
65
|
+
kiln_ai/adapters/repair/test_repair_task.py,sha256=fMlad29edA2tTt4t7cv6cXVWhuWOJ9x1Mpb3wJFTD1I,8603
|
|
66
|
+
kiln_ai/datamodel/__init__.py,sha256=eHDUB9ltKmnsx0TAX310o5OMLnZbSznMJLFRnNk6HlA,1927
|
|
67
|
+
kiln_ai/datamodel/basemodel.py,sha256=Qsr3Kxq5B5rfPZxQFrfOMTGwInnfYy5srd8nK0nwOs0,22204
|
|
68
|
+
kiln_ai/datamodel/datamodel_enums.py,sha256=7BpyiXEtNsz43el7zTAeaaozDVUZUJCFKHsoaXoTomQ,3796
|
|
69
|
+
kiln_ai/datamodel/dataset_filters.py,sha256=zXS5QeCqWa1vAxs3Pyy5FJtySx9yYJzxsCMANd23-3c,5502
|
|
70
|
+
kiln_ai/datamodel/dataset_split.py,sha256=GDF3Pj3NLG42X8kjR606R_aN14rpqx8Ig56FG8NCn9k,5790
|
|
71
|
+
kiln_ai/datamodel/eval.py,sha256=larT3emjpLVYOSB2ga5GHTS4O7l9mJwtIO4EqCyYF7g,14214
|
|
72
|
+
kiln_ai/datamodel/finetune.py,sha256=mOTM0KEbRNZ5fvzgpUtLRugaGkhWQKFwdsQWggIzMls,4813
|
|
73
|
+
kiln_ai/datamodel/json_schema.py,sha256=o50wSp8frRXjT-NZjml4-Is7LNoF7DQP4g3AaaYzBfI,3379
|
|
74
|
+
kiln_ai/datamodel/model_cache.py,sha256=9X4aAigbkFdytckgw8InCMh86uBna0ME_1HJSeMPEn0,4495
|
|
75
|
+
kiln_ai/datamodel/project.py,sha256=uVH2_3TDFtsG_tpts81A-zbd9uPDFxAwMCKZt_km3IE,727
|
|
76
|
+
kiln_ai/datamodel/prompt.py,sha256=70JPYHfgyX18cHW_DXoMzIOA28Jbaz6gyabElmpycyc,1161
|
|
77
|
+
kiln_ai/datamodel/prompt_id.py,sha256=S4Wcrt05USN-JrO8BeDlNYGrcoTOVocR3iUxBbgoq1c,2566
|
|
78
|
+
kiln_ai/datamodel/registry.py,sha256=XwGFXJFKZtOpR1Z9ven6SftggfADdZRm8TFxCEVtfUQ,957
|
|
79
|
+
kiln_ai/datamodel/strict_mode.py,sha256=sm4Xka8mnJHCShtbh6MMU5dDQv-cLj8lHgHkmFKpsl0,849
|
|
80
|
+
kiln_ai/datamodel/task.py,sha256=ZjTfOxk4Op83CAVp1KFsuHeaeqBNAvdVS-QQCKCNIug,9253
|
|
81
|
+
kiln_ai/datamodel/task_output.py,sha256=P7bRI-Qn2n7f8XpR7hwgSTKhx3gzvsZ1aJOQMl-YW4s,13245
|
|
82
|
+
kiln_ai/datamodel/task_run.py,sha256=0Lwc7zQoeWzuvHYv00lUGfsNQp8gCKmCVKAq3FDrruY,8806
|
|
83
|
+
kiln_ai/datamodel/test_basemodel.py,sha256=1__3dVyxCVMQH7jhBYYEYgaCgtc08faSIlVOLfPdMZ0,18021
|
|
84
|
+
kiln_ai/datamodel/test_dataset_filters.py,sha256=TFHQZLB0rJxnxsFjD546eXVFxZNAJi0sPZ8j24wYd1w,5322
|
|
85
|
+
kiln_ai/datamodel/test_dataset_split.py,sha256=mXB8udml_6U4BXR0xAGHsFINnhdcTDB1qhuZbQemk-w,11055
|
|
86
|
+
kiln_ai/datamodel/test_datasource.py,sha256=H4Kc-Im9eM7WnADWZXdoiOIrOl05RtkyuhTCKiRimyU,3905
|
|
87
|
+
kiln_ai/datamodel/test_eval_model.py,sha256=J7MqwWBgPpeXGqh3IacVUUHdZFJSZ2MgTsUNu-hNOJw,19528
|
|
88
|
+
kiln_ai/datamodel/test_example_models.py,sha256=dwLAAOXLvdKupE5Q1m6VNcHtfdhpi2qWtoEbC0nfJg8,26156
|
|
89
|
+
kiln_ai/datamodel/test_json_schema.py,sha256=R0Cfc9WbieMslgvYsj2HFx8RHIq2fF9NcT5jH-kEqh4,4793
|
|
90
|
+
kiln_ai/datamodel/test_model_cache.py,sha256=Fy-ucYNzS5JEG-8SFY4nVHA8iRbXXxai20f8_oGl97o,8184
|
|
91
|
+
kiln_ai/datamodel/test_model_perf.py,sha256=9_76f__5XtZSHSjuaoiHRj2t-z3OWn-sSA4S9kH1jpY,3306
|
|
92
|
+
kiln_ai/datamodel/test_models.py,sha256=wENuBiZ2Y-N_puFkitNZ1T-lBpVgQWotfhGug6k4AMY,21674
|
|
93
|
+
kiln_ai/datamodel/test_nested_save.py,sha256=xciCddqvPyKyoyjC5Lx_3Kh1t4LJv1xYRAPazR3SRcs,5588
|
|
94
|
+
kiln_ai/datamodel/test_output_rating.py,sha256=zvPIp2shAgCs2RQBgwYoL09fRA3krHvgAqUa91RlWR0,15125
|
|
95
|
+
kiln_ai/datamodel/test_prompt_id.py,sha256=ihyXVPQi0dSLGnBM7rTXRnVaiWXhh7HJmSy4nZZKmso,4225
|
|
96
|
+
kiln_ai/datamodel/test_registry.py,sha256=PhS4anLi5Bf_023obuTlO5DALhtPB8WIc_bX12Yg6Po,2705
|
|
97
|
+
kiln_ai/datamodel/test_task.py,sha256=X85YgGt7Y9kuv6-jE9kl5b8mPz3cgrEFqiZAZFWfpO0,11890
|
|
98
|
+
kiln_ai/utils/__init__.py,sha256=PTD0MwBCKAMIOGsTAwsFaJOusTJJoRFTfOGqRvCaU-E,142
|
|
99
|
+
kiln_ai/utils/async_job_runner.py,sha256=1gjoEq5yc2MOVjDo05O1wztguEuMC6l3haDZsltlvuw,3457
|
|
100
|
+
kiln_ai/utils/config.py,sha256=Pk9w7C985jinE9_SDJzgkG1CkPtIaitLZqia_dtjhwQ,8520
|
|
101
|
+
kiln_ai/utils/dataset_import.py,sha256=EqBBBopCEUy1JH4-EAsBETwGp4MFjzZGfUUBZ6FLfGY,9011
|
|
102
|
+
kiln_ai/utils/exhaustive_error.py,sha256=TkkRixIAR3CPEKHeAJzyv0mtxp6BxUBKMvobA3vzQug,262
|
|
103
|
+
kiln_ai/utils/formatting.py,sha256=VtB9oag0lOGv17dwT7OPX_3HzBfaU9GsLH-iLete0yM,97
|
|
104
|
+
kiln_ai/utils/logging.py,sha256=LY7EnxZIsSuVxKP53JMLp-TdFomOMkxN793trN_kAws,6729
|
|
105
|
+
kiln_ai/utils/name_generator.py,sha256=v26TgpCwQbhQFcZvzgjZvURinjrOyyFhxpsI6NQrHKc,1914
|
|
106
|
+
kiln_ai/utils/test_async_job_runner.py,sha256=8AwPfOlR09qzfhVm-djpkmuoyHxJJ19QEzs0WV5KFSQ,6813
|
|
107
|
+
kiln_ai/utils/test_config.py,sha256=8goGdVLOO1OiSPnuDLUHbEJWJ8hAjaAIDg0myhR2A00,9687
|
|
108
|
+
kiln_ai/utils/test_dataset_import.py,sha256=BEl38D95HQYpc7_jeB1N-ocOnKM1DLutp669cNrVOuE,25765
|
|
109
|
+
kiln_ai/utils/test_name_geneator.py,sha256=9-hSTBshyakqlPbFnNcggwLrL7lcPTitauBYHg9jFWI,1513
|
|
110
|
+
kiln_ai-0.17.0.dist-info/METADATA,sha256=W9UIYyQGlhO3fcDr9IBaxUTST_lF_-DHKGm3cCUPcH0,12263
|
|
111
|
+
kiln_ai-0.17.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
112
|
+
kiln_ai-0.17.0.dist-info/licenses/LICENSE.txt,sha256=_NA5pnTYgRRr4qH6lE3X-TuZJ8iRcMUi5ASoGr-lEx8,1209
|
|
113
|
+
kiln_ai-0.17.0.dist-info/RECORD,,
|
kiln_ai-0.15.0.dist-info/RECORD
DELETED
|
@@ -1,104 +0,0 @@
|
|
|
1
|
-
kiln_ai/__init__.py,sha256=Sc4z8LRVFMwJUoc_DPVUriSXTZ6PO9MaJ80PhRbKyB8,34
|
|
2
|
-
kiln_ai/adapters/__init__.py,sha256=XjGmWagEyOEVwVIAxjN5rYNsQWIEACT5DB7MMTxdPss,1005
|
|
3
|
-
kiln_ai/adapters/adapter_registry.py,sha256=KmMHYQ3mxpjVLE6D-hMNWCGt6Cw9JvnFn6nMb48GE8Y,9166
|
|
4
|
-
kiln_ai/adapters/ml_model_list.py,sha256=RyRvPStx2TNGDjmRKSE02bOZjSWSWuJ030Ythu4Fgh4,68593
|
|
5
|
-
kiln_ai/adapters/ollama_tools.py,sha256=uObtLWfqKb9RXHN-TGGw2Y1FQlEMe0u8FgszI0zQn6U,3550
|
|
6
|
-
kiln_ai/adapters/prompt_builders.py,sha256=LYHTIaisQMBFtWDRIGo1QJgOsmQ-NBpQ8fI4eImHxaQ,15269
|
|
7
|
-
kiln_ai/adapters/provider_tools.py,sha256=ciFQfGJuTuHDj3FARY-sUqbSb-7oAT9lMGJGCBJoF4I,15309
|
|
8
|
-
kiln_ai/adapters/run_output.py,sha256=RAi2Qp6dmqJVNm3CxbNTdAuhitHfH5NiUGbf6ygUP-k,257
|
|
9
|
-
kiln_ai/adapters/test_adapter_registry.py,sha256=eDLHqv9mwgdde221pa47bTV87vCXwkUyjqsas-iFUrY,6123
|
|
10
|
-
kiln_ai/adapters/test_ollama_tools.py,sha256=xAUzL0IVmmXadVehJu1WjqbhpKEYGAgGt3pWx7hrubc,2514
|
|
11
|
-
kiln_ai/adapters/test_prompt_adaptors.py,sha256=J1ZGZ8GG7SxP3_J3Zw0e6XmZY4NyPmUGX3IPgjh2LD8,7767
|
|
12
|
-
kiln_ai/adapters/test_prompt_builders.py,sha256=5Xvfr-oQg_LLrle6UqfpRHWcPUYa8ywG3aL1rM7q1Jw,22054
|
|
13
|
-
kiln_ai/adapters/test_provider_tools.py,sha256=7s-njUBm_TJCTeNOh4TrP7R-Q6TXILAxbv-GK0p3YPU,27446
|
|
14
|
-
kiln_ai/adapters/data_gen/__init__.py,sha256=QTZWaf7kq5BorhPvexJfwDEKmjRmIbhwW9ei8LW2SIs,276
|
|
15
|
-
kiln_ai/adapters/data_gen/data_gen_prompts.py,sha256=kudjHnAz7L3q0k_NLyTlaIV7M0uRFrxXNcfcnjOE2uc,5810
|
|
16
|
-
kiln_ai/adapters/data_gen/data_gen_task.py,sha256=0PuYCcj09BtpgNj23mKj_L45mKZBdV5VreUeZ-Tj_xM,6642
|
|
17
|
-
kiln_ai/adapters/data_gen/test_data_gen_task.py,sha256=cRKUKMvC0uVompbmPTKwbnQ_N3c0cQDm4J_9H4Y5U18,10129
|
|
18
|
-
kiln_ai/adapters/eval/__init__.py,sha256=0ptbK0ZxWuraxGn_WMgmE1tcaq0k5t-g-52kVohvWCg,693
|
|
19
|
-
kiln_ai/adapters/eval/base_eval.py,sha256=IF4kYGt93bqJqSfj8UUaTng38fwPmi3cFKRSKUZhXJs,7381
|
|
20
|
-
kiln_ai/adapters/eval/eval_runner.py,sha256=h3DvRFM5J5LDJqaLzNJ-q9i5LRycv2J9Ev5nw1mUDUQ,10806
|
|
21
|
-
kiln_ai/adapters/eval/g_eval.py,sha256=d3UcBsZWeDt7cWp4uvDcfG7qdGLsGaZEBsIEqkpiWh4,15253
|
|
22
|
-
kiln_ai/adapters/eval/registry.py,sha256=gZ_s0VgEx79Fswkgi1tS4yOl7lzpkvUBJZ62RldhM_w,626
|
|
23
|
-
kiln_ai/adapters/eval/test_base_eval.py,sha256=_1CiOUOiBt1R_gGYMcRblrPkHf-H4uIlvfcHj5-Wh7o,10724
|
|
24
|
-
kiln_ai/adapters/eval/test_eval_runner.py,sha256=82WPE_frNRTSQ2lylqT0inkqcDgM72nWt8GEuoDkJ7w,18568
|
|
25
|
-
kiln_ai/adapters/eval/test_g_eval.py,sha256=-Stx7E0D-WAH1HWrRSp48CiGsf-no1SHeFF9IqVXeMI,16433
|
|
26
|
-
kiln_ai/adapters/eval/test_g_eval_data.py,sha256=8caiZfLWnXVX8alrBPrH7L7gqqSS9vO7u6PzcHurQcA,27769
|
|
27
|
-
kiln_ai/adapters/fine_tune/__init__.py,sha256=DxdTR60chwgck1aEoVYWyfWi6Ed2ZkdJj0lar-SEAj4,257
|
|
28
|
-
kiln_ai/adapters/fine_tune/base_finetune.py,sha256=g-lWuZMkOj2djcczuHke_Ai7Z7RPg41AFSgoxHgsw3U,5889
|
|
29
|
-
kiln_ai/adapters/fine_tune/dataset_formatter.py,sha256=ky48er7lMIS3Kv5WflaLpUDvWiVGYgl8QlI0M_wy6Vo,14409
|
|
30
|
-
kiln_ai/adapters/fine_tune/finetune_registry.py,sha256=9RJLjviSoN3dQnKJE9Ss7df7dtdJgbuShB8IUcI-q9k,726
|
|
31
|
-
kiln_ai/adapters/fine_tune/fireworks_finetune.py,sha256=ze0QxghpHAqwO9nXOTkDEC9irmqduX5bjIhZDU0DCZQ,20101
|
|
32
|
-
kiln_ai/adapters/fine_tune/openai_finetune.py,sha256=Dz9E_0BWfrIkvv8ArZe-RKPwbIKPZ3v8rfbc3JELyTY,8571
|
|
33
|
-
kiln_ai/adapters/fine_tune/test_base_finetune.py,sha256=Tq0Klw7ou5_6H_bouTbI3PxYw7H30K32wlgWJE_luYk,10751
|
|
34
|
-
kiln_ai/adapters/fine_tune/test_dataset_formatter.py,sha256=kUGn2kv2jwosuabuhYgA3oXJXAdqK1AAaJI496ScOGY,24015
|
|
35
|
-
kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py,sha256=NCl2U6ZqqJ8dnysGGmfir9RGcV-StPtoi5cetRjW6Zc,36754
|
|
36
|
-
kiln_ai/adapters/fine_tune/test_openai_finetune.py,sha256=H63Xk2PNHbt5Ev5IQpdR9JZ4uz-Huo2gfuC4mHHqe0w,20011
|
|
37
|
-
kiln_ai/adapters/fine_tune/test_together_finetune.py,sha256=BUJFsyq_g77gU0JN3hg6FMBvqb0DIyTeAek-wxomKIg,18090
|
|
38
|
-
kiln_ai/adapters/fine_tune/test_vertex_finetune.py,sha256=rAmcQJNPXqRacxg6RzjEQ8FNLKCp9qZRHToH7fm-7W0,19214
|
|
39
|
-
kiln_ai/adapters/fine_tune/together_finetune.py,sha256=EbMPsTyKMubfwOalkFLiNFlMFIRKxLibzMTyLeUkle4,14010
|
|
40
|
-
kiln_ai/adapters/fine_tune/vertex_finetune.py,sha256=Ik6Ov711-oruJnMHpVZTPimWJY2W_JnfdKIdR2djGrc,8545
|
|
41
|
-
kiln_ai/adapters/model_adapters/__init__.py,sha256=m5GRtOHwVVvp_XDOss8c1X3NFf1wQQlC2eBgI4tXQhM,212
|
|
42
|
-
kiln_ai/adapters/model_adapters/base_adapter.py,sha256=ishm_oVTNxSDC0GPrydHnyOPqp_U4XiTOx0-iI2fEiU,10433
|
|
43
|
-
kiln_ai/adapters/model_adapters/litellm_adapter.py,sha256=pbXFfJckyvptp577-YXGMG2hltYMFQrUT97PsSWa2KQ,16437
|
|
44
|
-
kiln_ai/adapters/model_adapters/litellm_config.py,sha256=7-tIh5cuVu23Uy2Sd6q7UCT_4VgevBsAzVhQMj6Svgw,425
|
|
45
|
-
kiln_ai/adapters/model_adapters/test_base_adapter.py,sha256=uQyKrHLN3Jha6R-6SWkEME6brQecVFdPTSXogo-xpt0,6556
|
|
46
|
-
kiln_ai/adapters/model_adapters/test_litellm_adapter.py,sha256=QpnzuReNeBzvvRYnNj_5c8l1PS7NyrDDUQx_o21IIH4,13731
|
|
47
|
-
kiln_ai/adapters/model_adapters/test_saving_adapter_results.py,sha256=1XFQQxdSIbqSoQEdxHOYJcY0cMb59qpTDPOmL9bW4B8,7870
|
|
48
|
-
kiln_ai/adapters/model_adapters/test_structured_output.py,sha256=lHZSuPyvr--WCCEIik5OFqfvufmooPBbbUlSMUVvqmE,12516
|
|
49
|
-
kiln_ai/adapters/parsers/__init__.py,sha256=TGJS_8JhjUwg5Bnq4cDmwt5eIRo4vowmcL2A72L1Hzk,202
|
|
50
|
-
kiln_ai/adapters/parsers/base_parser.py,sha256=DaoZVEOOuFTMZd5ZTpl_as6-xc9NPWGP2fAmP12J58M,389
|
|
51
|
-
kiln_ai/adapters/parsers/json_parser.py,sha256=IszrBrhIFrrVr76UZsuejkBdqpZG27mU72264HVgVzE,1274
|
|
52
|
-
kiln_ai/adapters/parsers/parser_registry.py,sha256=G9bAZrnWrR0a82JAQHsSqA2o7-CjrZUBANZljY_6ZxE,623
|
|
53
|
-
kiln_ai/adapters/parsers/r1_parser.py,sha256=XHc_dKxiQjj8wG1w__rTmJVqa4fIg5L1g-igbv5Rl_g,2965
|
|
54
|
-
kiln_ai/adapters/parsers/test_json_parser.py,sha256=9kdWe_vRC5wjP8A1Ym6Zu6enDIz4ARCNiRpcZr7_3ak,1971
|
|
55
|
-
kiln_ai/adapters/parsers/test_parser_registry.py,sha256=S4MdX7cnhCbmeKq8tZwMwRdGWr-019Z-fw5zey9Wm08,1043
|
|
56
|
-
kiln_ai/adapters/parsers/test_r1_parser.py,sha256=VvCT_qCAfIbutFsxnpEzyZg-m5XLg7hI-Sorh2PplYw,4898
|
|
57
|
-
kiln_ai/adapters/repair/__init__.py,sha256=dOO9MEpEhjiwzDVFg3MNfA2bKMPlax9iekDatpTkX8E,217
|
|
58
|
-
kiln_ai/adapters/repair/repair_task.py,sha256=iW0bHWQq6Tir6ULTATWFS0zpwNji8Tbwhm2lZu52RsM,3342
|
|
59
|
-
kiln_ai/adapters/repair/test_repair_task.py,sha256=2jO0_aDPzbmZHC0skZBcKp3t9K4gISko3iSGCFHhQRs,7945
|
|
60
|
-
kiln_ai/datamodel/__init__.py,sha256=GbRfDrdSq9d_-HxzmFIicTmLO3qz-O3XGvSwDPh3XCk,1957
|
|
61
|
-
kiln_ai/datamodel/basemodel.py,sha256=Qsr3Kxq5B5rfPZxQFrfOMTGwInnfYy5srd8nK0nwOs0,22204
|
|
62
|
-
kiln_ai/datamodel/datamodel_enums.py,sha256=HUnGI_ZGQqyOicqEFFutZRWSANlQRQwfBu3XhVQFQSc,2270
|
|
63
|
-
kiln_ai/datamodel/dataset_filters.py,sha256=hWKxGJ-mSl4y0igyNcpmRoRYCiGrf0_uN4MMU9Fe_ng,3180
|
|
64
|
-
kiln_ai/datamodel/dataset_split.py,sha256=q4l4SlUvjLV547bzk7Z-fbmj_o26GDcYOZ2rA5RPh3c,5612
|
|
65
|
-
kiln_ai/datamodel/eval.py,sha256=kio2LqQ87MsP75DJTiIVdVfopTZXH4xjGN9g11V1mUU,13826
|
|
66
|
-
kiln_ai/datamodel/finetune.py,sha256=TYoNVRAfbjqvrY-1YmHwG6xSoDljiJWuuVcTbvQAJL4,4569
|
|
67
|
-
kiln_ai/datamodel/json_schema.py,sha256=o50wSp8frRXjT-NZjml4-Is7LNoF7DQP4g3AaaYzBfI,3379
|
|
68
|
-
kiln_ai/datamodel/model_cache.py,sha256=9X4aAigbkFdytckgw8InCMh86uBna0ME_1HJSeMPEn0,4495
|
|
69
|
-
kiln_ai/datamodel/project.py,sha256=uVH2_3TDFtsG_tpts81A-zbd9uPDFxAwMCKZt_km3IE,727
|
|
70
|
-
kiln_ai/datamodel/prompt.py,sha256=70JPYHfgyX18cHW_DXoMzIOA28Jbaz6gyabElmpycyc,1161
|
|
71
|
-
kiln_ai/datamodel/prompt_id.py,sha256=eU2TV0RZapn-BgnZ4sOSNOOVEQ3aPaLzW4YSYCd3OBo,2531
|
|
72
|
-
kiln_ai/datamodel/registry.py,sha256=XwGFXJFKZtOpR1Z9ven6SftggfADdZRm8TFxCEVtfUQ,957
|
|
73
|
-
kiln_ai/datamodel/strict_mode.py,sha256=sm4Xka8mnJHCShtbh6MMU5dDQv-cLj8lHgHkmFKpsl0,849
|
|
74
|
-
kiln_ai/datamodel/task.py,sha256=r-_zgrQCIiIkN8gvBISdU449Z9oKp7E1XL0lkik_rVI,7036
|
|
75
|
-
kiln_ai/datamodel/task_output.py,sha256=PqI7Lyeox5lh9mItMOtpqP9Rk_K9dyMltKYu1c2p7A4,13125
|
|
76
|
-
kiln_ai/datamodel/task_run.py,sha256=mVKmHn90iPmwXGja7TNgDA3iFzXBlamJ_6KndRPkhRA,7745
|
|
77
|
-
kiln_ai/datamodel/test_basemodel.py,sha256=sJ8wXGef2WxzbrbMTYgrOwmkd5J6sHkly-cQBO2IZh4,18126
|
|
78
|
-
kiln_ai/datamodel/test_dataset_filters.py,sha256=v88QPkIsq4diUmoUF3-qj5KAW2rLRp0KDAm_pexbFy4,1894
|
|
79
|
-
kiln_ai/datamodel/test_dataset_split.py,sha256=5CHO1Lq4xQBB72tV2SPER7OZODJNvj15qxi_cYBV2Rs,11157
|
|
80
|
-
kiln_ai/datamodel/test_datasource.py,sha256=H4Kc-Im9eM7WnADWZXdoiOIrOl05RtkyuhTCKiRimyU,3905
|
|
81
|
-
kiln_ai/datamodel/test_eval_model.py,sha256=J7MqwWBgPpeXGqh3IacVUUHdZFJSZ2MgTsUNu-hNOJw,19528
|
|
82
|
-
kiln_ai/datamodel/test_example_models.py,sha256=nrr13ZseFn-OVGa9bjCwoVHTVqydy0O0yJah4QiqqbU,24326
|
|
83
|
-
kiln_ai/datamodel/test_json_schema.py,sha256=R0Cfc9WbieMslgvYsj2HFx8RHIq2fF9NcT5jH-kEqh4,4793
|
|
84
|
-
kiln_ai/datamodel/test_model_cache.py,sha256=Fy-ucYNzS5JEG-8SFY4nVHA8iRbXXxai20f8_oGl97o,8184
|
|
85
|
-
kiln_ai/datamodel/test_model_perf.py,sha256=9_76f__5XtZSHSjuaoiHRj2t-z3OWn-sSA4S9kH1jpY,3306
|
|
86
|
-
kiln_ai/datamodel/test_models.py,sha256=hmV7sTbOamWJCwOY96w-g4PQRv4Uai-XaHtg0QKH-ak,19295
|
|
87
|
-
kiln_ai/datamodel/test_nested_save.py,sha256=xciCddqvPyKyoyjC5Lx_3Kh1t4LJv1xYRAPazR3SRcs,5588
|
|
88
|
-
kiln_ai/datamodel/test_output_rating.py,sha256=zvPIp2shAgCs2RQBgwYoL09fRA3krHvgAqUa91RlWR0,15125
|
|
89
|
-
kiln_ai/datamodel/test_prompt_id.py,sha256=ihyXVPQi0dSLGnBM7rTXRnVaiWXhh7HJmSy4nZZKmso,4225
|
|
90
|
-
kiln_ai/datamodel/test_registry.py,sha256=PhS4anLi5Bf_023obuTlO5DALhtPB8WIc_bX12Yg6Po,2705
|
|
91
|
-
kiln_ai/datamodel/test_task.py,sha256=FYyoEqJXQIy8rcBsLTdki4-1z9COnZQk1-aoS3ZoNuU,5307
|
|
92
|
-
kiln_ai/utils/__init__.py,sha256=PTD0MwBCKAMIOGsTAwsFaJOusTJJoRFTfOGqRvCaU-E,142
|
|
93
|
-
kiln_ai/utils/config.py,sha256=kAgb_4nSnb-IWbLVS4FBygYmnHypJADjDEk_Fh-eLeg,8479
|
|
94
|
-
kiln_ai/utils/dataset_import.py,sha256=HvTCdK9OO8WE3Runn8_Vsks5KpCTckGIzAA7JKe-cWI,6956
|
|
95
|
-
kiln_ai/utils/exhaustive_error.py,sha256=TkkRixIAR3CPEKHeAJzyv0mtxp6BxUBKMvobA3vzQug,262
|
|
96
|
-
kiln_ai/utils/formatting.py,sha256=VtB9oag0lOGv17dwT7OPX_3HzBfaU9GsLH-iLete0yM,97
|
|
97
|
-
kiln_ai/utils/name_generator.py,sha256=v26TgpCwQbhQFcZvzgjZvURinjrOyyFhxpsI6NQrHKc,1914
|
|
98
|
-
kiln_ai/utils/test_config.py,sha256=Jw3nMFeIgZUsZDRJJY2HpB-2EkR2NoZ-rDe_o9oA7ws,9174
|
|
99
|
-
kiln_ai/utils/test_dataset_import.py,sha256=ZZOt7zqtaEIlMMx0VNXyRegDvnVqbWY2bcz-iMY_Oag,17427
|
|
100
|
-
kiln_ai/utils/test_name_geneator.py,sha256=9-hSTBshyakqlPbFnNcggwLrL7lcPTitauBYHg9jFWI,1513
|
|
101
|
-
kiln_ai-0.15.0.dist-info/METADATA,sha256=80EooOjbu5b-7YgyfnOY9uYjFk8bo5czNWm3QgWaFys,12263
|
|
102
|
-
kiln_ai-0.15.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
103
|
-
kiln_ai-0.15.0.dist-info/licenses/LICENSE.txt,sha256=_NA5pnTYgRRr4qH6lE3X-TuZJ8iRcMUi5ASoGr-lEx8,1209
|
|
104
|
-
kiln_ai-0.15.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|