kiln-ai 0.12.0__py3-none-any.whl → 0.13.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

Files changed (49) hide show
  1. kiln_ai/adapters/__init__.py +4 -0
  2. kiln_ai/adapters/adapter_registry.py +157 -28
  3. kiln_ai/adapters/eval/__init__.py +28 -0
  4. kiln_ai/adapters/eval/eval_runner.py +4 -1
  5. kiln_ai/adapters/eval/g_eval.py +19 -3
  6. kiln_ai/adapters/eval/test_base_eval.py +1 -0
  7. kiln_ai/adapters/eval/test_eval_runner.py +1 -0
  8. kiln_ai/adapters/eval/test_g_eval.py +13 -7
  9. kiln_ai/adapters/fine_tune/base_finetune.py +16 -2
  10. kiln_ai/adapters/fine_tune/finetune_registry.py +2 -0
  11. kiln_ai/adapters/fine_tune/fireworks_finetune.py +8 -1
  12. kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +19 -0
  13. kiln_ai/adapters/fine_tune/test_together_finetune.py +533 -0
  14. kiln_ai/adapters/fine_tune/together_finetune.py +327 -0
  15. kiln_ai/adapters/ml_model_list.py +638 -155
  16. kiln_ai/adapters/model_adapters/__init__.py +2 -4
  17. kiln_ai/adapters/model_adapters/base_adapter.py +14 -11
  18. kiln_ai/adapters/model_adapters/litellm_adapter.py +391 -0
  19. kiln_ai/adapters/model_adapters/litellm_config.py +13 -0
  20. kiln_ai/adapters/model_adapters/test_litellm_adapter.py +407 -0
  21. kiln_ai/adapters/model_adapters/test_structured_output.py +23 -5
  22. kiln_ai/adapters/ollama_tools.py +3 -2
  23. kiln_ai/adapters/parsers/r1_parser.py +19 -14
  24. kiln_ai/adapters/parsers/test_r1_parser.py +17 -5
  25. kiln_ai/adapters/provider_tools.py +52 -60
  26. kiln_ai/adapters/repair/test_repair_task.py +3 -3
  27. kiln_ai/adapters/run_output.py +1 -1
  28. kiln_ai/adapters/test_adapter_registry.py +17 -20
  29. kiln_ai/adapters/test_generate_docs.py +2 -2
  30. kiln_ai/adapters/test_prompt_adaptors.py +30 -19
  31. kiln_ai/adapters/test_provider_tools.py +27 -82
  32. kiln_ai/datamodel/basemodel.py +2 -0
  33. kiln_ai/datamodel/datamodel_enums.py +2 -0
  34. kiln_ai/datamodel/json_schema.py +1 -1
  35. kiln_ai/datamodel/task_output.py +13 -6
  36. kiln_ai/datamodel/test_basemodel.py +9 -0
  37. kiln_ai/datamodel/test_datasource.py +19 -0
  38. kiln_ai/utils/config.py +46 -0
  39. kiln_ai/utils/dataset_import.py +232 -0
  40. kiln_ai/utils/test_dataset_import.py +596 -0
  41. {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.2.dist-info}/METADATA +51 -7
  42. {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.2.dist-info}/RECORD +44 -41
  43. kiln_ai/adapters/model_adapters/langchain_adapters.py +0 -309
  44. kiln_ai/adapters/model_adapters/openai_compatible_config.py +0 -10
  45. kiln_ai/adapters/model_adapters/openai_model_adapter.py +0 -289
  46. kiln_ai/adapters/model_adapters/test_langchain_adapter.py +0 -343
  47. kiln_ai/adapters/model_adapters/test_openai_model_adapter.py +0 -216
  48. {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.2.dist-info}/WHEEL +0 -0
  49. {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.2.dist-info}/licenses/LICENSE.txt +0 -0
@@ -12,10 +12,13 @@ The prompt_builders submodule contains classes that build prompts for use with t
12
12
  The repair submodule contains an adapter for the repair task.
13
13
 
14
14
  The parser submodule contains parsers for the output of the AI models.
15
+
16
+ The eval submodule contains the code for evaluating the performance of a model.
15
17
  """
16
18
 
17
19
  from . import (
18
20
  data_gen,
21
+ eval,
19
22
  fine_tune,
20
23
  ml_model_list,
21
24
  model_adapters,
@@ -30,4 +33,5 @@ __all__ = [
30
33
  "ml_model_list",
31
34
  "prompt_builders",
32
35
  "repair",
36
+ "eval",
33
37
  ]
@@ -3,12 +3,11 @@ from os import getenv
3
3
  from kiln_ai import datamodel
4
4
  from kiln_ai.adapters.ml_model_list import ModelProviderName
5
5
  from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, BaseAdapter
6
- from kiln_ai.adapters.model_adapters.langchain_adapters import LangchainAdapter
7
- from kiln_ai.adapters.model_adapters.openai_model_adapter import (
8
- OpenAICompatibleAdapter,
9
- OpenAICompatibleConfig,
6
+ from kiln_ai.adapters.model_adapters.litellm_adapter import (
7
+ LiteLlmAdapter,
8
+ LiteLlmConfig,
10
9
  )
11
- from kiln_ai.adapters.provider_tools import core_provider, openai_compatible_config
10
+ from kiln_ai.adapters.provider_tools import core_provider, lite_llm_config
12
11
  from kiln_ai.datamodel import PromptId
13
12
  from kiln_ai.utils.config import Config
14
13
  from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
@@ -26,50 +25,189 @@ def adapter_for_task(
26
25
 
27
26
  match core_provider_name:
28
27
  case ModelProviderName.openrouter:
29
- return OpenAICompatibleAdapter(
28
+ return LiteLlmAdapter(
30
29
  kiln_task=kiln_task,
31
- config=OpenAICompatibleConfig(
30
+ config=LiteLlmConfig(
31
+ model_name=model_name,
32
32
  base_url=getenv("OPENROUTER_BASE_URL")
33
33
  or "https://openrouter.ai/api/v1",
34
- api_key=Config.shared().open_router_api_key,
35
- model_name=model_name,
36
34
  provider_name=provider,
37
35
  default_headers={
38
36
  "HTTP-Referer": "https://getkiln.ai/openrouter",
39
37
  "X-Title": "KilnAI",
40
38
  },
39
+ additional_body_options={
40
+ "api_key": Config.shared().open_router_api_key,
41
+ },
41
42
  ),
42
43
  prompt_id=prompt_id,
43
44
  base_adapter_config=base_adapter_config,
44
45
  )
45
46
  case ModelProviderName.openai:
46
- return OpenAICompatibleAdapter(
47
+ return LiteLlmAdapter(
47
48
  kiln_task=kiln_task,
48
- config=OpenAICompatibleConfig(
49
- api_key=Config.shared().open_ai_api_key,
49
+ config=LiteLlmConfig(
50
50
  model_name=model_name,
51
51
  provider_name=provider,
52
+ additional_body_options={
53
+ "api_key": Config.shared().open_ai_api_key,
54
+ },
52
55
  ),
53
56
  prompt_id=prompt_id,
54
57
  base_adapter_config=base_adapter_config,
55
58
  )
56
59
  case ModelProviderName.openai_compatible:
57
- config = openai_compatible_config(model_name)
58
- return OpenAICompatibleAdapter(
60
+ config = lite_llm_config(model_name)
61
+ return LiteLlmAdapter(
59
62
  kiln_task=kiln_task,
60
63
  config=config,
61
64
  prompt_id=prompt_id,
62
65
  base_adapter_config=base_adapter_config,
63
66
  )
64
- # Use LangchainAdapter for the rest
65
67
  case ModelProviderName.groq:
66
- pass
68
+ return LiteLlmAdapter(
69
+ kiln_task=kiln_task,
70
+ prompt_id=prompt_id,
71
+ base_adapter_config=base_adapter_config,
72
+ config=LiteLlmConfig(
73
+ model_name=model_name,
74
+ provider_name=provider,
75
+ additional_body_options={
76
+ "api_key": Config.shared().groq_api_key,
77
+ },
78
+ ),
79
+ )
67
80
  case ModelProviderName.amazon_bedrock:
68
- pass
81
+ return LiteLlmAdapter(
82
+ kiln_task=kiln_task,
83
+ prompt_id=prompt_id,
84
+ base_adapter_config=base_adapter_config,
85
+ config=LiteLlmConfig(
86
+ model_name=model_name,
87
+ provider_name=provider,
88
+ additional_body_options={
89
+ "aws_access_key_id": Config.shared().bedrock_access_key,
90
+ "aws_secret_access_key": Config.shared().bedrock_secret_key,
91
+ # The only region that's widely supported for bedrock
92
+ "aws_region_name": "us-west-2",
93
+ },
94
+ ),
95
+ )
69
96
  case ModelProviderName.ollama:
70
- pass
97
+ ollama_base_url = (
98
+ Config.shared().ollama_base_url or "http://localhost:11434"
99
+ )
100
+ return LiteLlmAdapter(
101
+ kiln_task=kiln_task,
102
+ prompt_id=prompt_id,
103
+ base_adapter_config=base_adapter_config,
104
+ config=LiteLlmConfig(
105
+ model_name=model_name,
106
+ provider_name=provider,
107
+ # Set the Ollama base URL for 2 reasons:
108
+ # 1. To use the correct base URL
109
+ # 2. We use Ollama's OpenAI compatible API (/v1), and don't just let litellm use the Ollama API. We use more advanced features like json_schema.
110
+ base_url=ollama_base_url + "/v1",
111
+ additional_body_options={
112
+ # LiteLLM errors without an api_key, even though Ollama doesn't support one.
113
+ "api_key": "NA",
114
+ },
115
+ ),
116
+ )
71
117
  case ModelProviderName.fireworks_ai:
72
- pass
118
+ return LiteLlmAdapter(
119
+ kiln_task=kiln_task,
120
+ prompt_id=prompt_id,
121
+ base_adapter_config=base_adapter_config,
122
+ config=LiteLlmConfig(
123
+ model_name=model_name,
124
+ provider_name=provider,
125
+ additional_body_options={
126
+ "api_key": Config.shared().fireworks_api_key,
127
+ },
128
+ ),
129
+ )
130
+ case ModelProviderName.anthropic:
131
+ return LiteLlmAdapter(
132
+ kiln_task=kiln_task,
133
+ prompt_id=prompt_id,
134
+ base_adapter_config=base_adapter_config,
135
+ config=LiteLlmConfig(
136
+ model_name=model_name,
137
+ provider_name=provider,
138
+ additional_body_options={
139
+ "api_key": Config.shared().anthropic_api_key,
140
+ },
141
+ ),
142
+ )
143
+ case ModelProviderName.gemini_api:
144
+ return LiteLlmAdapter(
145
+ kiln_task=kiln_task,
146
+ prompt_id=prompt_id,
147
+ base_adapter_config=base_adapter_config,
148
+ config=LiteLlmConfig(
149
+ model_name=model_name,
150
+ provider_name=provider,
151
+ additional_body_options={
152
+ "api_key": Config.shared().gemini_api_key,
153
+ },
154
+ ),
155
+ )
156
+ case ModelProviderName.vertex:
157
+ return LiteLlmAdapter(
158
+ kiln_task=kiln_task,
159
+ prompt_id=prompt_id,
160
+ base_adapter_config=base_adapter_config,
161
+ config=LiteLlmConfig(
162
+ model_name=model_name,
163
+ provider_name=provider,
164
+ additional_body_options={
165
+ "vertex_project": Config.shared().vertex_project_id,
166
+ "vertex_location": Config.shared().vertex_location,
167
+ },
168
+ ),
169
+ )
170
+ case ModelProviderName.together_ai:
171
+ return LiteLlmAdapter(
172
+ kiln_task=kiln_task,
173
+ prompt_id=prompt_id,
174
+ base_adapter_config=base_adapter_config,
175
+ config=LiteLlmConfig(
176
+ model_name=model_name,
177
+ provider_name=provider,
178
+ additional_body_options={
179
+ "api_key": Config.shared().together_api_key,
180
+ },
181
+ ),
182
+ )
183
+ case ModelProviderName.azure_openai:
184
+ return LiteLlmAdapter(
185
+ kiln_task=kiln_task,
186
+ prompt_id=prompt_id,
187
+ base_adapter_config=base_adapter_config,
188
+ config=LiteLlmConfig(
189
+ base_url=Config.shared().azure_openai_endpoint,
190
+ model_name=model_name,
191
+ provider_name=provider,
192
+ additional_body_options={
193
+ "api_key": Config.shared().azure_openai_api_key,
194
+ "api_version": "2025-02-01-preview",
195
+ },
196
+ ),
197
+ )
198
+ case ModelProviderName.huggingface:
199
+ return LiteLlmAdapter(
200
+ kiln_task=kiln_task,
201
+ prompt_id=prompt_id,
202
+ base_adapter_config=base_adapter_config,
203
+ config=LiteLlmConfig(
204
+ model_name=model_name,
205
+ provider_name=provider,
206
+ additional_body_options={
207
+ "api_key": Config.shared().huggingface_api_key,
208
+ },
209
+ ),
210
+ )
73
211
  # These are virtual providers that should have mapped to an actual provider in core_provider
74
212
  case ModelProviderName.kiln_fine_tune:
75
213
  raise ValueError(
@@ -81,12 +219,3 @@ def adapter_for_task(
81
219
  )
82
220
  case _:
83
221
  raise_exhaustive_enum_error(core_provider_name)
84
-
85
- # We use langchain for all others right now, but moving off it as we touch anything.
86
- return LangchainAdapter(
87
- kiln_task,
88
- model_name=model_name,
89
- provider=provider,
90
- prompt_id=prompt_id,
91
- base_adapter_config=base_adapter_config,
92
- )
@@ -0,0 +1,28 @@
1
+ """
2
+ # Evals
3
+
4
+ This module contains the code for evaluating the performance of a model.
5
+
6
+ The submodules contain:
7
+
8
+ - BaseEval: each eval technique implements this interface.
9
+ - G-Eval: an eval implementation, that implements G-Eval and LLM as Judge.
10
+ - EvalRunner: a class that runs an full evaluation (many smaller evals jobs). Includes async parallel processing, and the ability to restart where it left off.
11
+ - EvalRegistry: a registry for all eval implementations.
12
+
13
+ The datamodel for Evals is in the `kiln_ai.datamodel.eval` module.
14
+ """
15
+
16
+ from . import (
17
+ base_eval,
18
+ eval_runner,
19
+ g_eval,
20
+ registry,
21
+ )
22
+
23
+ __all__ = [
24
+ "base_eval",
25
+ "eval_runner",
26
+ "g_eval",
27
+ "registry",
28
+ ]
@@ -139,7 +139,10 @@ class EvalRunner:
139
139
  for run_config in self.run_configs or []:
140
140
  already_run[eval_config.id][run_config.id] = set()
141
141
  for run in eval_config.runs(readonly=True):
142
- if run.task_run_config_id is not None:
142
+ if (
143
+ run.task_run_config_id is not None
144
+ and run.task_run_config_id in already_run[eval_config.id]
145
+ ):
143
146
  already_run[eval_config.id][run.task_run_config_id].add(
144
147
  run.dataset_id
145
148
  )
@@ -1,6 +1,8 @@
1
1
  import math
2
2
  from typing import Dict, List, Tuple
3
3
 
4
+ from litellm.types.utils import ChatCompletionTokenLogprob
5
+
4
6
  from kiln_ai.adapters.adapter_registry import adapter_for_task
5
7
  from kiln_ai.adapters.eval.base_eval import BaseEval
6
8
  from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, RunOutput
@@ -8,7 +10,6 @@ from kiln_ai.adapters.prompt_builders import PromptGenerators
8
10
  from kiln_ai.datamodel import Project, Task, TaskRun
9
11
  from kiln_ai.datamodel.eval import EvalConfig, EvalConfigType, EvalScores
10
12
  from kiln_ai.datamodel.task import RunConfig
11
- from openai.types.chat import ChatCompletionTokenLogprob
12
13
 
13
14
  # all the tokens we score for, and their float scores.
14
15
  TOKEN_TO_SCORE_MAP: Dict[str, float] = {
@@ -296,9 +297,12 @@ The model produced the following output for the task:
296
297
 
297
298
  total_score = 0.0
298
299
  total_probability = 0.0
300
+ top_logprobs_contains_primary_token = False
299
301
 
300
- # Process all valid scoring tokens
302
+ # Process all valid scoring tokens from alternatives
301
303
  for top_logprob in token_logprob.top_logprobs:
304
+ if top_logprob.token == token_logprob.token:
305
+ top_logprobs_contains_primary_token = True
302
306
  token_score = self.score_from_token_string(top_logprob.token)
303
307
  if token_score is not None:
304
308
  # Convert logprob to probability
@@ -306,9 +310,21 @@ The model produced the following output for the task:
306
310
  total_score += token_score * probability
307
311
  total_probability += probability
308
312
 
313
+ # Weird OpenAI 4o bug - sometimes the primary token is included in the top logprobs, sometimes not.
314
+ # Add the primary token back in if excluded
315
+ if not top_logprobs_contains_primary_token:
316
+ if token_logprob.logprob == -9999.0:
317
+ # Another "bug" - sometimes the logprob is -9999.0. This seems to happen when the rest of the logprobs are tiny probability.
318
+ total_score += primary_token_score * 1.0
319
+ total_probability += 1.0
320
+ else:
321
+ probability = math.exp(token_logprob.logprob)
322
+ total_score += primary_token_score * probability
323
+ total_probability += probability
324
+
309
325
  if total_probability <= 0.0:
310
326
  raise RuntimeError(
311
- f"No valid scoring tokens found for {token_logprob.token}. This should never happen. Please file a bug if you see this."
327
+ f"No valid scoring tokens found for {token_logprob.token}. This should never happen as the token has a valid score (so it must be excluded from top logprobs). Please file a bug if you see this."
312
328
  )
313
329
 
314
330
  # Normalize by total probability of valid tokens (LLM may have wanted to generate other non-rating tokens, these shouldn't lower score of rating tokens)
@@ -1,6 +1,7 @@
1
1
  import json
2
2
 
3
3
  import pytest
4
+
4
5
  from kiln_ai.adapters.eval.base_eval import BaseEval
5
6
  from kiln_ai.datamodel import BasePrompt, DataSource, DataSourceType
6
7
  from kiln_ai.datamodel.eval import Eval, EvalConfig, EvalOutputScore
@@ -2,6 +2,7 @@ from typing import Dict
2
2
  from unittest.mock import AsyncMock, patch
3
3
 
4
4
  import pytest
5
+
5
6
  from kiln_ai.adapters.eval.base_eval import BaseEval
6
7
  from kiln_ai.adapters.eval.eval_runner import EvalJob, EvalRunner
7
8
  from kiln_ai.datamodel import (
@@ -2,6 +2,7 @@ import math
2
2
  import pickle
3
3
 
4
4
  import pytest
5
+
5
6
  from kiln_ai.adapters.eval.g_eval import TOKEN_TO_SCORE_MAP, GEval, GEvalTask
6
7
  from kiln_ai.adapters.eval.test_g_eval_data import serialized_run_output
7
8
  from kiln_ai.adapters.ml_model_list import built_in_models
@@ -392,12 +393,13 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
392
393
  self.logprob = logprob
393
394
 
394
395
  class MockTokenLogprob:
395
- def __init__(self, token, top_logprobs):
396
+ def __init__(self, token, top_logprobs, logprob):
396
397
  self.token = token
397
398
  self.top_logprobs = [MockTopLogprob(t, lp) for t, lp in top_logprobs]
399
+ self.logprob = logprob
398
400
 
399
401
  # Test single token case
400
- token_logprob = MockTokenLogprob("5", [("5", 0.0)]) # log(1) = 0
402
+ token_logprob = MockTokenLogprob("5", [("5", 0.0)], logprob=1e-8) # log(1) = 0
401
403
  score = g_eval.rating_token_to_score(token_logprob)
402
404
  assert score == 5.0
403
405
 
@@ -408,18 +410,22 @@ def test_rating_token_to_score(test_eval_config, test_run_config):
408
410
  ("4", math.log(0.6)), # 60% probability
409
411
  ("5", math.log(0.4)), # 40% probability
410
412
  ],
413
+ logprob=math.log(0.6),
411
414
  )
412
415
  score = g_eval.rating_token_to_score(token_logprob)
413
416
  assert pytest.approx(score) == 4.4 # (4 * 0.6 + 5 * 0.4)
414
417
 
415
418
  # Test invalid token
416
- token_logprob = MockTokenLogprob(":", [(":", 0.0)])
419
+ token_logprob = MockTokenLogprob(":", [(":", 0.0)], logprob=1e-8)
417
420
  assert g_eval.rating_token_to_score(token_logprob) is None
418
421
 
419
- # Test no valid scoring tokens
420
- token_logprob = MockTokenLogprob("5", [])
421
- with pytest.raises(RuntimeError, match="No valid scoring tokens found"):
422
- g_eval.rating_token_to_score(token_logprob)
422
+ # Test missing from top logprobs
423
+ token_logprob = MockTokenLogprob("5", [], logprob=1e-8)
424
+ assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
425
+
426
+ # Test missing from top logprobs, with special case logprob
427
+ token_logprob = MockTokenLogprob("5", [], logprob=-9999)
428
+ assert pytest.approx(g_eval.rating_token_to_score(token_logprob)) == 5.0
423
429
 
424
430
 
425
431
  def test_g_eval_system_instruction():
@@ -4,7 +4,12 @@ from typing import Literal
4
4
  from pydantic import BaseModel
5
5
 
6
6
  from kiln_ai.adapters.ml_model_list import built_in_models
7
- from kiln_ai.datamodel import DatasetSplit, FinetuneDataStrategy, FineTuneStatusType
7
+ from kiln_ai.datamodel import (
8
+ DatasetSplit,
9
+ FinetuneDataStrategy,
10
+ FineTuneStatusType,
11
+ Task,
12
+ )
8
13
  from kiln_ai.datamodel import Finetune as FinetuneModel
9
14
  from kiln_ai.utils.name_generator import generate_memorable_name
10
15
 
@@ -101,7 +106,7 @@ class BaseFinetuneAdapter(ABC):
101
106
  train_split_name=train_split_name,
102
107
  validation_split_name=validation_split_name,
103
108
  parameters=parameters,
104
- system_message=system_message,
109
+ system_message=cls.augment_system_message(system_message, parent_task),
105
110
  thinking_instructions=thinking_instructions,
106
111
  parent=parent_task,
107
112
  data_strategy=data_strategy,
@@ -114,6 +119,15 @@ class BaseFinetuneAdapter(ABC):
114
119
 
115
120
  return adapter, datamodel
116
121
 
122
+ @classmethod
123
+ def augment_system_message(cls, system_message: str, task: Task) -> str:
124
+ """
125
+ Augment the system message with additional instructions, such as JSON instructions.
126
+ """
127
+
128
+ # Base implementation does nothing, can be overridden by subclasses
129
+ return system_message
130
+
117
131
  @abstractmethod
118
132
  async def _start(self, dataset: DatasetSplit) -> None:
119
133
  """
@@ -3,9 +3,11 @@ from typing import Type
3
3
  from kiln_ai.adapters.fine_tune.base_finetune import BaseFinetuneAdapter
4
4
  from kiln_ai.adapters.fine_tune.fireworks_finetune import FireworksFinetune
5
5
  from kiln_ai.adapters.fine_tune.openai_finetune import OpenAIFinetune
6
+ from kiln_ai.adapters.fine_tune.together_finetune import TogetherFinetune
6
7
  from kiln_ai.adapters.ml_model_list import ModelProviderName
7
8
 
8
9
  finetune_registry: dict[ModelProviderName, Type[BaseFinetuneAdapter]] = {
9
10
  ModelProviderName.openai: OpenAIFinetune,
10
11
  ModelProviderName.fireworks_ai: FireworksFinetune,
12
+ ModelProviderName.together_ai: TogetherFinetune,
11
13
  }
@@ -132,11 +132,18 @@ class FireworksFinetune(BaseFinetuneAdapter):
132
132
  :60
133
133
  ]
134
134
  )
135
- payload = {
135
+ payload: dict[str, str | dict[str, str | bool]] = {
136
136
  "dataset": f"accounts/{account_id}/datasets/{train_file_id}",
137
137
  "displayName": display_name,
138
138
  "baseModel": self.datamodel.base_model_id,
139
139
  }
140
+ # Add W&B config if API key is set
141
+ if Config.shared().wandb_api_key:
142
+ payload["wandbConfig"] = {
143
+ "enabled": True,
144
+ "project": "Kiln_AI",
145
+ "apiKey": Config.shared().wandb_api_key,
146
+ }
140
147
  hyperparameters = self.create_payload_parameters(self.datamodel.parameters)
141
148
  payload.update(hyperparameters)
142
149
  headers = {
@@ -340,6 +340,7 @@ async def test_start_success(
340
340
  expected_mode,
341
341
  expected_format,
342
342
  ):
343
+ Config.shared().wandb_api_key = "test-api-key"
343
344
  mock_task.output_json_schema = output_schema
344
345
 
345
346
  fireworks_finetune.datamodel.parent = mock_task
@@ -378,6 +379,24 @@ async def test_start_success(
378
379
  assert fireworks_finetune.datamodel.structured_output_mode == expected_mode
379
380
  assert fireworks_finetune.datamodel.properties["endpoint_version"] == "v2"
380
381
 
382
+ # check mockclent.post call values
383
+ assert mock_client.post.call_count == 1
384
+ submit_call_values = mock_client.post.call_args[1]
385
+ assert submit_call_values["json"]["wandbConfig"] == {
386
+ "enabled": True,
387
+ "project": "Kiln_AI",
388
+ "apiKey": "test-api-key",
389
+ }
390
+ assert submit_call_values["json"]["baseModel"] == "llama-v2-7b"
391
+ assert (
392
+ submit_call_values["json"]["dataset"]
393
+ == f"accounts/{Config.shared().fireworks_account_id}/datasets/{mock_dataset_id}"
394
+ )
395
+ assert (
396
+ submit_call_values["json"]["displayName"]
397
+ == f"Kiln AI fine-tuning [ID:{fireworks_finetune.datamodel.id}][name:{fireworks_finetune.datamodel.name}]"
398
+ )
399
+
381
400
 
382
401
  async def test_start_api_error(
383
402
  fireworks_finetune, mock_dataset, mock_task, mock_api_key