kiln-ai 0.12.0__py3-none-any.whl → 0.13.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kiln-ai might be problematic. Click here for more details.
- kiln_ai/adapters/__init__.py +4 -0
- kiln_ai/adapters/adapter_registry.py +153 -28
- kiln_ai/adapters/eval/__init__.py +28 -0
- kiln_ai/adapters/eval/eval_runner.py +4 -1
- kiln_ai/adapters/eval/g_eval.py +2 -1
- kiln_ai/adapters/eval/test_base_eval.py +1 -0
- kiln_ai/adapters/eval/test_eval_runner.py +1 -0
- kiln_ai/adapters/eval/test_g_eval.py +1 -0
- kiln_ai/adapters/fine_tune/base_finetune.py +16 -2
- kiln_ai/adapters/fine_tune/finetune_registry.py +2 -0
- kiln_ai/adapters/fine_tune/test_together_finetune.py +531 -0
- kiln_ai/adapters/fine_tune/together_finetune.py +325 -0
- kiln_ai/adapters/ml_model_list.py +638 -155
- kiln_ai/adapters/model_adapters/__init__.py +2 -4
- kiln_ai/adapters/model_adapters/base_adapter.py +14 -11
- kiln_ai/adapters/model_adapters/litellm_adapter.py +391 -0
- kiln_ai/adapters/model_adapters/litellm_config.py +13 -0
- kiln_ai/adapters/model_adapters/test_litellm_adapter.py +407 -0
- kiln_ai/adapters/model_adapters/test_structured_output.py +23 -5
- kiln_ai/adapters/ollama_tools.py +3 -2
- kiln_ai/adapters/parsers/r1_parser.py +19 -14
- kiln_ai/adapters/parsers/test_r1_parser.py +17 -5
- kiln_ai/adapters/provider_tools.py +50 -58
- kiln_ai/adapters/repair/test_repair_task.py +3 -3
- kiln_ai/adapters/run_output.py +1 -1
- kiln_ai/adapters/test_adapter_registry.py +17 -20
- kiln_ai/adapters/test_generate_docs.py +2 -2
- kiln_ai/adapters/test_prompt_adaptors.py +30 -19
- kiln_ai/adapters/test_provider_tools.py +26 -81
- kiln_ai/datamodel/basemodel.py +2 -0
- kiln_ai/datamodel/datamodel_enums.py +2 -0
- kiln_ai/datamodel/json_schema.py +1 -1
- kiln_ai/datamodel/task_output.py +13 -6
- kiln_ai/datamodel/test_basemodel.py +9 -0
- kiln_ai/datamodel/test_datasource.py +19 -0
- kiln_ai/utils/config.py +37 -0
- kiln_ai/utils/dataset_import.py +232 -0
- kiln_ai/utils/test_dataset_import.py +596 -0
- {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.0.dist-info}/METADATA +51 -7
- {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.0.dist-info}/RECORD +42 -39
- kiln_ai/adapters/model_adapters/langchain_adapters.py +0 -309
- kiln_ai/adapters/model_adapters/openai_compatible_config.py +0 -10
- kiln_ai/adapters/model_adapters/openai_model_adapter.py +0 -289
- kiln_ai/adapters/model_adapters/test_langchain_adapter.py +0 -343
- kiln_ai/adapters/model_adapters/test_openai_model_adapter.py +0 -216
- {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.0.dist-info}/WHEEL +0 -0
- {kiln_ai-0.12.0.dist-info → kiln_ai-0.13.0.dist-info}/licenses/LICENSE.txt +0 -0
kiln_ai/adapters/__init__.py
CHANGED
|
@@ -12,10 +12,13 @@ The prompt_builders submodule contains classes that build prompts for use with t
|
|
|
12
12
|
The repair submodule contains an adapter for the repair task.
|
|
13
13
|
|
|
14
14
|
The parser submodule contains parsers for the output of the AI models.
|
|
15
|
+
|
|
16
|
+
The eval submodule contains the code for evaluating the performance of a model.
|
|
15
17
|
"""
|
|
16
18
|
|
|
17
19
|
from . import (
|
|
18
20
|
data_gen,
|
|
21
|
+
eval,
|
|
19
22
|
fine_tune,
|
|
20
23
|
ml_model_list,
|
|
21
24
|
model_adapters,
|
|
@@ -30,4 +33,5 @@ __all__ = [
|
|
|
30
33
|
"ml_model_list",
|
|
31
34
|
"prompt_builders",
|
|
32
35
|
"repair",
|
|
36
|
+
"eval",
|
|
33
37
|
]
|
|
@@ -3,12 +3,11 @@ from os import getenv
|
|
|
3
3
|
from kiln_ai import datamodel
|
|
4
4
|
from kiln_ai.adapters.ml_model_list import ModelProviderName
|
|
5
5
|
from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, BaseAdapter
|
|
6
|
-
from kiln_ai.adapters.model_adapters.
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
OpenAICompatibleConfig,
|
|
6
|
+
from kiln_ai.adapters.model_adapters.litellm_adapter import (
|
|
7
|
+
LiteLlmAdapter,
|
|
8
|
+
LiteLlmConfig,
|
|
10
9
|
)
|
|
11
|
-
from kiln_ai.adapters.provider_tools import core_provider,
|
|
10
|
+
from kiln_ai.adapters.provider_tools import core_provider, lite_llm_config
|
|
12
11
|
from kiln_ai.datamodel import PromptId
|
|
13
12
|
from kiln_ai.utils.config import Config
|
|
14
13
|
from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
|
|
@@ -26,50 +25,185 @@ def adapter_for_task(
|
|
|
26
25
|
|
|
27
26
|
match core_provider_name:
|
|
28
27
|
case ModelProviderName.openrouter:
|
|
29
|
-
return
|
|
28
|
+
return LiteLlmAdapter(
|
|
30
29
|
kiln_task=kiln_task,
|
|
31
|
-
config=
|
|
30
|
+
config=LiteLlmConfig(
|
|
31
|
+
model_name=model_name,
|
|
32
32
|
base_url=getenv("OPENROUTER_BASE_URL")
|
|
33
33
|
or "https://openrouter.ai/api/v1",
|
|
34
|
-
api_key=Config.shared().open_router_api_key,
|
|
35
|
-
model_name=model_name,
|
|
36
34
|
provider_name=provider,
|
|
37
35
|
default_headers={
|
|
38
36
|
"HTTP-Referer": "https://getkiln.ai/openrouter",
|
|
39
37
|
"X-Title": "KilnAI",
|
|
40
38
|
},
|
|
39
|
+
additional_body_options={
|
|
40
|
+
"api_key": Config.shared().open_router_api_key,
|
|
41
|
+
},
|
|
41
42
|
),
|
|
42
43
|
prompt_id=prompt_id,
|
|
43
44
|
base_adapter_config=base_adapter_config,
|
|
44
45
|
)
|
|
45
46
|
case ModelProviderName.openai:
|
|
46
|
-
return
|
|
47
|
+
return LiteLlmAdapter(
|
|
47
48
|
kiln_task=kiln_task,
|
|
48
|
-
config=
|
|
49
|
-
api_key=Config.shared().open_ai_api_key,
|
|
49
|
+
config=LiteLlmConfig(
|
|
50
50
|
model_name=model_name,
|
|
51
51
|
provider_name=provider,
|
|
52
|
+
additional_body_options={
|
|
53
|
+
"api_key": Config.shared().open_ai_api_key,
|
|
54
|
+
},
|
|
52
55
|
),
|
|
53
56
|
prompt_id=prompt_id,
|
|
54
57
|
base_adapter_config=base_adapter_config,
|
|
55
58
|
)
|
|
56
59
|
case ModelProviderName.openai_compatible:
|
|
57
|
-
config =
|
|
58
|
-
return
|
|
60
|
+
config = lite_llm_config(model_name)
|
|
61
|
+
return LiteLlmAdapter(
|
|
59
62
|
kiln_task=kiln_task,
|
|
60
63
|
config=config,
|
|
61
64
|
prompt_id=prompt_id,
|
|
62
65
|
base_adapter_config=base_adapter_config,
|
|
63
66
|
)
|
|
64
|
-
# Use LangchainAdapter for the rest
|
|
65
67
|
case ModelProviderName.groq:
|
|
66
|
-
|
|
68
|
+
return LiteLlmAdapter(
|
|
69
|
+
kiln_task=kiln_task,
|
|
70
|
+
prompt_id=prompt_id,
|
|
71
|
+
base_adapter_config=base_adapter_config,
|
|
72
|
+
config=LiteLlmConfig(
|
|
73
|
+
model_name=model_name,
|
|
74
|
+
provider_name=provider,
|
|
75
|
+
additional_body_options={
|
|
76
|
+
"api_key": Config.shared().groq_api_key,
|
|
77
|
+
},
|
|
78
|
+
),
|
|
79
|
+
)
|
|
67
80
|
case ModelProviderName.amazon_bedrock:
|
|
68
|
-
|
|
81
|
+
return LiteLlmAdapter(
|
|
82
|
+
kiln_task=kiln_task,
|
|
83
|
+
prompt_id=prompt_id,
|
|
84
|
+
base_adapter_config=base_adapter_config,
|
|
85
|
+
config=LiteLlmConfig(
|
|
86
|
+
model_name=model_name,
|
|
87
|
+
provider_name=provider,
|
|
88
|
+
additional_body_options={
|
|
89
|
+
"aws_access_key_id": Config.shared().bedrock_access_key,
|
|
90
|
+
"aws_secret_access_key": Config.shared().bedrock_secret_key,
|
|
91
|
+
# The only region that's widely supported for bedrock
|
|
92
|
+
"aws_region_name": "us-west-2",
|
|
93
|
+
},
|
|
94
|
+
),
|
|
95
|
+
)
|
|
69
96
|
case ModelProviderName.ollama:
|
|
70
|
-
|
|
97
|
+
ollama_base_url = (
|
|
98
|
+
Config.shared().ollama_base_url or "http://localhost:11434"
|
|
99
|
+
)
|
|
100
|
+
return LiteLlmAdapter(
|
|
101
|
+
kiln_task=kiln_task,
|
|
102
|
+
prompt_id=prompt_id,
|
|
103
|
+
base_adapter_config=base_adapter_config,
|
|
104
|
+
config=LiteLlmConfig(
|
|
105
|
+
model_name=model_name,
|
|
106
|
+
provider_name=provider,
|
|
107
|
+
# Set the Ollama base URL for 2 reasons:
|
|
108
|
+
# 1. To use the correct base URL
|
|
109
|
+
# 2. We use Ollama's OpenAI compatible API (/v1), and don't just let litellm use the Ollama API. We use more advanced features like json_schema.
|
|
110
|
+
base_url=ollama_base_url + "/v1",
|
|
111
|
+
),
|
|
112
|
+
)
|
|
71
113
|
case ModelProviderName.fireworks_ai:
|
|
72
|
-
|
|
114
|
+
return LiteLlmAdapter(
|
|
115
|
+
kiln_task=kiln_task,
|
|
116
|
+
prompt_id=prompt_id,
|
|
117
|
+
base_adapter_config=base_adapter_config,
|
|
118
|
+
config=LiteLlmConfig(
|
|
119
|
+
model_name=model_name,
|
|
120
|
+
provider_name=provider,
|
|
121
|
+
additional_body_options={
|
|
122
|
+
"api_key": Config.shared().fireworks_api_key,
|
|
123
|
+
},
|
|
124
|
+
),
|
|
125
|
+
)
|
|
126
|
+
case ModelProviderName.anthropic:
|
|
127
|
+
return LiteLlmAdapter(
|
|
128
|
+
kiln_task=kiln_task,
|
|
129
|
+
prompt_id=prompt_id,
|
|
130
|
+
base_adapter_config=base_adapter_config,
|
|
131
|
+
config=LiteLlmConfig(
|
|
132
|
+
model_name=model_name,
|
|
133
|
+
provider_name=provider,
|
|
134
|
+
additional_body_options={
|
|
135
|
+
"api_key": Config.shared().anthropic_api_key,
|
|
136
|
+
},
|
|
137
|
+
),
|
|
138
|
+
)
|
|
139
|
+
case ModelProviderName.gemini_api:
|
|
140
|
+
return LiteLlmAdapter(
|
|
141
|
+
kiln_task=kiln_task,
|
|
142
|
+
prompt_id=prompt_id,
|
|
143
|
+
base_adapter_config=base_adapter_config,
|
|
144
|
+
config=LiteLlmConfig(
|
|
145
|
+
model_name=model_name,
|
|
146
|
+
provider_name=provider,
|
|
147
|
+
additional_body_options={
|
|
148
|
+
"api_key": Config.shared().gemini_api_key,
|
|
149
|
+
},
|
|
150
|
+
),
|
|
151
|
+
)
|
|
152
|
+
case ModelProviderName.vertex:
|
|
153
|
+
return LiteLlmAdapter(
|
|
154
|
+
kiln_task=kiln_task,
|
|
155
|
+
prompt_id=prompt_id,
|
|
156
|
+
base_adapter_config=base_adapter_config,
|
|
157
|
+
config=LiteLlmConfig(
|
|
158
|
+
model_name=model_name,
|
|
159
|
+
provider_name=provider,
|
|
160
|
+
additional_body_options={
|
|
161
|
+
"vertex_project": Config.shared().vertex_project_id,
|
|
162
|
+
"vertex_location": Config.shared().vertex_location,
|
|
163
|
+
},
|
|
164
|
+
),
|
|
165
|
+
)
|
|
166
|
+
case ModelProviderName.together_ai:
|
|
167
|
+
return LiteLlmAdapter(
|
|
168
|
+
kiln_task=kiln_task,
|
|
169
|
+
prompt_id=prompt_id,
|
|
170
|
+
base_adapter_config=base_adapter_config,
|
|
171
|
+
config=LiteLlmConfig(
|
|
172
|
+
model_name=model_name,
|
|
173
|
+
provider_name=provider,
|
|
174
|
+
additional_body_options={
|
|
175
|
+
"api_key": Config.shared().together_api_key,
|
|
176
|
+
},
|
|
177
|
+
),
|
|
178
|
+
)
|
|
179
|
+
case ModelProviderName.azure_openai:
|
|
180
|
+
return LiteLlmAdapter(
|
|
181
|
+
kiln_task=kiln_task,
|
|
182
|
+
prompt_id=prompt_id,
|
|
183
|
+
base_adapter_config=base_adapter_config,
|
|
184
|
+
config=LiteLlmConfig(
|
|
185
|
+
base_url=Config.shared().azure_openai_endpoint,
|
|
186
|
+
model_name=model_name,
|
|
187
|
+
provider_name=provider,
|
|
188
|
+
additional_body_options={
|
|
189
|
+
"api_key": Config.shared().azure_openai_api_key,
|
|
190
|
+
"api_version": "2025-02-01-preview",
|
|
191
|
+
},
|
|
192
|
+
),
|
|
193
|
+
)
|
|
194
|
+
case ModelProviderName.huggingface:
|
|
195
|
+
return LiteLlmAdapter(
|
|
196
|
+
kiln_task=kiln_task,
|
|
197
|
+
prompt_id=prompt_id,
|
|
198
|
+
base_adapter_config=base_adapter_config,
|
|
199
|
+
config=LiteLlmConfig(
|
|
200
|
+
model_name=model_name,
|
|
201
|
+
provider_name=provider,
|
|
202
|
+
additional_body_options={
|
|
203
|
+
"api_key": Config.shared().huggingface_api_key,
|
|
204
|
+
},
|
|
205
|
+
),
|
|
206
|
+
)
|
|
73
207
|
# These are virtual providers that should have mapped to an actual provider in core_provider
|
|
74
208
|
case ModelProviderName.kiln_fine_tune:
|
|
75
209
|
raise ValueError(
|
|
@@ -81,12 +215,3 @@ def adapter_for_task(
|
|
|
81
215
|
)
|
|
82
216
|
case _:
|
|
83
217
|
raise_exhaustive_enum_error(core_provider_name)
|
|
84
|
-
|
|
85
|
-
# We use langchain for all others right now, but moving off it as we touch anything.
|
|
86
|
-
return LangchainAdapter(
|
|
87
|
-
kiln_task,
|
|
88
|
-
model_name=model_name,
|
|
89
|
-
provider=provider,
|
|
90
|
-
prompt_id=prompt_id,
|
|
91
|
-
base_adapter_config=base_adapter_config,
|
|
92
|
-
)
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
"""
|
|
2
|
+
# Evals
|
|
3
|
+
|
|
4
|
+
This module contains the code for evaluating the performance of a model.
|
|
5
|
+
|
|
6
|
+
The submodules contain:
|
|
7
|
+
|
|
8
|
+
- BaseEval: each eval technique implements this interface.
|
|
9
|
+
- G-Eval: an eval implementation, that implements G-Eval and LLM as Judge.
|
|
10
|
+
- EvalRunner: a class that runs an full evaluation (many smaller evals jobs). Includes async parallel processing, and the ability to restart where it left off.
|
|
11
|
+
- EvalRegistry: a registry for all eval implementations.
|
|
12
|
+
|
|
13
|
+
The datamodel for Evals is in the `kiln_ai.datamodel.eval` module.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
from . import (
|
|
17
|
+
base_eval,
|
|
18
|
+
eval_runner,
|
|
19
|
+
g_eval,
|
|
20
|
+
registry,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
__all__ = [
|
|
24
|
+
"base_eval",
|
|
25
|
+
"eval_runner",
|
|
26
|
+
"g_eval",
|
|
27
|
+
"registry",
|
|
28
|
+
]
|
|
@@ -139,7 +139,10 @@ class EvalRunner:
|
|
|
139
139
|
for run_config in self.run_configs or []:
|
|
140
140
|
already_run[eval_config.id][run_config.id] = set()
|
|
141
141
|
for run in eval_config.runs(readonly=True):
|
|
142
|
-
if
|
|
142
|
+
if (
|
|
143
|
+
run.task_run_config_id is not None
|
|
144
|
+
and run.task_run_config_id in already_run[eval_config.id]
|
|
145
|
+
):
|
|
143
146
|
already_run[eval_config.id][run.task_run_config_id].add(
|
|
144
147
|
run.dataset_id
|
|
145
148
|
)
|
kiln_ai/adapters/eval/g_eval.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
1
1
|
import math
|
|
2
2
|
from typing import Dict, List, Tuple
|
|
3
3
|
|
|
4
|
+
from litellm.types.utils import ChatCompletionTokenLogprob
|
|
5
|
+
|
|
4
6
|
from kiln_ai.adapters.adapter_registry import adapter_for_task
|
|
5
7
|
from kiln_ai.adapters.eval.base_eval import BaseEval
|
|
6
8
|
from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, RunOutput
|
|
@@ -8,7 +10,6 @@ from kiln_ai.adapters.prompt_builders import PromptGenerators
|
|
|
8
10
|
from kiln_ai.datamodel import Project, Task, TaskRun
|
|
9
11
|
from kiln_ai.datamodel.eval import EvalConfig, EvalConfigType, EvalScores
|
|
10
12
|
from kiln_ai.datamodel.task import RunConfig
|
|
11
|
-
from openai.types.chat import ChatCompletionTokenLogprob
|
|
12
13
|
|
|
13
14
|
# all the tokens we score for, and their float scores.
|
|
14
15
|
TOKEN_TO_SCORE_MAP: Dict[str, float] = {
|
|
@@ -4,7 +4,12 @@ from typing import Literal
|
|
|
4
4
|
from pydantic import BaseModel
|
|
5
5
|
|
|
6
6
|
from kiln_ai.adapters.ml_model_list import built_in_models
|
|
7
|
-
from kiln_ai.datamodel import
|
|
7
|
+
from kiln_ai.datamodel import (
|
|
8
|
+
DatasetSplit,
|
|
9
|
+
FinetuneDataStrategy,
|
|
10
|
+
FineTuneStatusType,
|
|
11
|
+
Task,
|
|
12
|
+
)
|
|
8
13
|
from kiln_ai.datamodel import Finetune as FinetuneModel
|
|
9
14
|
from kiln_ai.utils.name_generator import generate_memorable_name
|
|
10
15
|
|
|
@@ -101,7 +106,7 @@ class BaseFinetuneAdapter(ABC):
|
|
|
101
106
|
train_split_name=train_split_name,
|
|
102
107
|
validation_split_name=validation_split_name,
|
|
103
108
|
parameters=parameters,
|
|
104
|
-
system_message=system_message,
|
|
109
|
+
system_message=cls.augment_system_message(system_message, parent_task),
|
|
105
110
|
thinking_instructions=thinking_instructions,
|
|
106
111
|
parent=parent_task,
|
|
107
112
|
data_strategy=data_strategy,
|
|
@@ -114,6 +119,15 @@ class BaseFinetuneAdapter(ABC):
|
|
|
114
119
|
|
|
115
120
|
return adapter, datamodel
|
|
116
121
|
|
|
122
|
+
@classmethod
|
|
123
|
+
def augment_system_message(cls, system_message: str, task: Task) -> str:
|
|
124
|
+
"""
|
|
125
|
+
Augment the system message with additional instructions, such as JSON instructions.
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
# Base implementation does nothing, can be overridden by subclasses
|
|
129
|
+
return system_message
|
|
130
|
+
|
|
117
131
|
@abstractmethod
|
|
118
132
|
async def _start(self, dataset: DatasetSplit) -> None:
|
|
119
133
|
"""
|
|
@@ -3,9 +3,11 @@ from typing import Type
|
|
|
3
3
|
from kiln_ai.adapters.fine_tune.base_finetune import BaseFinetuneAdapter
|
|
4
4
|
from kiln_ai.adapters.fine_tune.fireworks_finetune import FireworksFinetune
|
|
5
5
|
from kiln_ai.adapters.fine_tune.openai_finetune import OpenAIFinetune
|
|
6
|
+
from kiln_ai.adapters.fine_tune.together_finetune import TogetherFinetune
|
|
6
7
|
from kiln_ai.adapters.ml_model_list import ModelProviderName
|
|
7
8
|
|
|
8
9
|
finetune_registry: dict[ModelProviderName, Type[BaseFinetuneAdapter]] = {
|
|
9
10
|
ModelProviderName.openai: OpenAIFinetune,
|
|
10
11
|
ModelProviderName.fireworks_ai: FireworksFinetune,
|
|
12
|
+
ModelProviderName.together_ai: TogetherFinetune,
|
|
11
13
|
}
|