kiln-ai 0.11.1__py3-none-any.whl → 0.13.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kiln-ai might be problematic. Click here for more details.

Files changed (80) hide show
  1. kiln_ai/adapters/__init__.py +4 -0
  2. kiln_ai/adapters/adapter_registry.py +163 -39
  3. kiln_ai/adapters/data_gen/data_gen_task.py +18 -0
  4. kiln_ai/adapters/eval/__init__.py +28 -0
  5. kiln_ai/adapters/eval/base_eval.py +164 -0
  6. kiln_ai/adapters/eval/eval_runner.py +270 -0
  7. kiln_ai/adapters/eval/g_eval.py +368 -0
  8. kiln_ai/adapters/eval/registry.py +16 -0
  9. kiln_ai/adapters/eval/test_base_eval.py +325 -0
  10. kiln_ai/adapters/eval/test_eval_runner.py +641 -0
  11. kiln_ai/adapters/eval/test_g_eval.py +498 -0
  12. kiln_ai/adapters/eval/test_g_eval_data.py +4 -0
  13. kiln_ai/adapters/fine_tune/base_finetune.py +16 -2
  14. kiln_ai/adapters/fine_tune/finetune_registry.py +2 -0
  15. kiln_ai/adapters/fine_tune/test_dataset_formatter.py +4 -1
  16. kiln_ai/adapters/fine_tune/test_fireworks_tinetune.py +1 -1
  17. kiln_ai/adapters/fine_tune/test_openai_finetune.py +1 -1
  18. kiln_ai/adapters/fine_tune/test_together_finetune.py +531 -0
  19. kiln_ai/adapters/fine_tune/together_finetune.py +325 -0
  20. kiln_ai/adapters/ml_model_list.py +758 -163
  21. kiln_ai/adapters/model_adapters/__init__.py +2 -4
  22. kiln_ai/adapters/model_adapters/base_adapter.py +61 -43
  23. kiln_ai/adapters/model_adapters/litellm_adapter.py +391 -0
  24. kiln_ai/adapters/model_adapters/litellm_config.py +13 -0
  25. kiln_ai/adapters/model_adapters/test_base_adapter.py +22 -13
  26. kiln_ai/adapters/model_adapters/test_litellm_adapter.py +407 -0
  27. kiln_ai/adapters/model_adapters/test_saving_adapter_results.py +41 -19
  28. kiln_ai/adapters/model_adapters/test_structured_output.py +59 -35
  29. kiln_ai/adapters/ollama_tools.py +3 -3
  30. kiln_ai/adapters/parsers/r1_parser.py +19 -14
  31. kiln_ai/adapters/parsers/test_r1_parser.py +17 -5
  32. kiln_ai/adapters/prompt_builders.py +80 -42
  33. kiln_ai/adapters/provider_tools.py +50 -58
  34. kiln_ai/adapters/repair/repair_task.py +9 -21
  35. kiln_ai/adapters/repair/test_repair_task.py +6 -6
  36. kiln_ai/adapters/run_output.py +3 -0
  37. kiln_ai/adapters/test_adapter_registry.py +26 -29
  38. kiln_ai/adapters/test_generate_docs.py +4 -4
  39. kiln_ai/adapters/test_ollama_tools.py +0 -1
  40. kiln_ai/adapters/test_prompt_adaptors.py +47 -33
  41. kiln_ai/adapters/test_prompt_builders.py +91 -31
  42. kiln_ai/adapters/test_provider_tools.py +26 -81
  43. kiln_ai/datamodel/__init__.py +50 -952
  44. kiln_ai/datamodel/basemodel.py +2 -0
  45. kiln_ai/datamodel/datamodel_enums.py +60 -0
  46. kiln_ai/datamodel/dataset_filters.py +114 -0
  47. kiln_ai/datamodel/dataset_split.py +170 -0
  48. kiln_ai/datamodel/eval.py +298 -0
  49. kiln_ai/datamodel/finetune.py +105 -0
  50. kiln_ai/datamodel/json_schema.py +7 -1
  51. kiln_ai/datamodel/project.py +23 -0
  52. kiln_ai/datamodel/prompt.py +37 -0
  53. kiln_ai/datamodel/prompt_id.py +83 -0
  54. kiln_ai/datamodel/strict_mode.py +24 -0
  55. kiln_ai/datamodel/task.py +181 -0
  56. kiln_ai/datamodel/task_output.py +328 -0
  57. kiln_ai/datamodel/task_run.py +164 -0
  58. kiln_ai/datamodel/test_basemodel.py +19 -11
  59. kiln_ai/datamodel/test_dataset_filters.py +71 -0
  60. kiln_ai/datamodel/test_dataset_split.py +32 -8
  61. kiln_ai/datamodel/test_datasource.py +22 -2
  62. kiln_ai/datamodel/test_eval_model.py +635 -0
  63. kiln_ai/datamodel/test_example_models.py +9 -13
  64. kiln_ai/datamodel/test_json_schema.py +23 -0
  65. kiln_ai/datamodel/test_models.py +2 -2
  66. kiln_ai/datamodel/test_prompt_id.py +129 -0
  67. kiln_ai/datamodel/test_task.py +159 -0
  68. kiln_ai/utils/config.py +43 -1
  69. kiln_ai/utils/dataset_import.py +232 -0
  70. kiln_ai/utils/test_dataset_import.py +596 -0
  71. {kiln_ai-0.11.1.dist-info → kiln_ai-0.13.0.dist-info}/METADATA +86 -6
  72. kiln_ai-0.13.0.dist-info/RECORD +103 -0
  73. kiln_ai/adapters/model_adapters/langchain_adapters.py +0 -302
  74. kiln_ai/adapters/model_adapters/openai_compatible_config.py +0 -11
  75. kiln_ai/adapters/model_adapters/openai_model_adapter.py +0 -246
  76. kiln_ai/adapters/model_adapters/test_langchain_adapter.py +0 -350
  77. kiln_ai/adapters/model_adapters/test_openai_model_adapter.py +0 -225
  78. kiln_ai-0.11.1.dist-info/RECORD +0 -76
  79. {kiln_ai-0.11.1.dist-info → kiln_ai-0.13.0.dist-info}/WHEEL +0 -0
  80. {kiln_ai-0.11.1.dist-info → kiln_ai-0.13.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -12,10 +12,13 @@ The prompt_builders submodule contains classes that build prompts for use with t
12
12
  The repair submodule contains an adapter for the repair task.
13
13
 
14
14
  The parser submodule contains parsers for the output of the AI models.
15
+
16
+ The eval submodule contains the code for evaluating the performance of a model.
15
17
  """
16
18
 
17
19
  from . import (
18
20
  data_gen,
21
+ eval,
19
22
  fine_tune,
20
23
  ml_model_list,
21
24
  model_adapters,
@@ -30,4 +33,5 @@ __all__ = [
30
33
  "ml_model_list",
31
34
  "prompt_builders",
32
35
  "repair",
36
+ "eval",
33
37
  ]
@@ -2,14 +2,13 @@ from os import getenv
2
2
 
3
3
  from kiln_ai import datamodel
4
4
  from kiln_ai.adapters.ml_model_list import ModelProviderName
5
- from kiln_ai.adapters.model_adapters.base_adapter import BaseAdapter
6
- from kiln_ai.adapters.model_adapters.langchain_adapters import LangchainAdapter
7
- from kiln_ai.adapters.model_adapters.openai_model_adapter import (
8
- OpenAICompatibleAdapter,
9
- OpenAICompatibleConfig,
5
+ from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig, BaseAdapter
6
+ from kiln_ai.adapters.model_adapters.litellm_adapter import (
7
+ LiteLlmAdapter,
8
+ LiteLlmConfig,
10
9
  )
11
- from kiln_ai.adapters.prompt_builders import BasePromptBuilder
12
- from kiln_ai.adapters.provider_tools import core_provider, openai_compatible_config
10
+ from kiln_ai.adapters.provider_tools import core_provider, lite_llm_config
11
+ from kiln_ai.datamodel import PromptId
13
12
  from kiln_ai.utils.config import Config
14
13
  from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
15
14
 
@@ -18,59 +17,193 @@ def adapter_for_task(
18
17
  kiln_task: datamodel.Task,
19
18
  model_name: str,
20
19
  provider: ModelProviderName,
21
- prompt_builder: BasePromptBuilder | None = None,
22
- tags: list[str] | None = None,
20
+ prompt_id: PromptId | None = None,
21
+ base_adapter_config: AdapterConfig | None = None,
23
22
  ) -> BaseAdapter:
24
23
  # Get the provider to run. For things like the fine-tune provider, we want to run the underlying provider
25
24
  core_provider_name = core_provider(model_name, provider)
26
25
 
27
26
  match core_provider_name:
28
27
  case ModelProviderName.openrouter:
29
- return OpenAICompatibleAdapter(
28
+ return LiteLlmAdapter(
30
29
  kiln_task=kiln_task,
31
- config=OpenAICompatibleConfig(
30
+ config=LiteLlmConfig(
31
+ model_name=model_name,
32
32
  base_url=getenv("OPENROUTER_BASE_URL")
33
33
  or "https://openrouter.ai/api/v1",
34
- api_key=Config.shared().open_router_api_key,
35
- model_name=model_name,
36
34
  provider_name=provider,
37
- openrouter_style_reasoning=True,
38
35
  default_headers={
39
36
  "HTTP-Referer": "https://getkiln.ai/openrouter",
40
37
  "X-Title": "KilnAI",
41
38
  },
39
+ additional_body_options={
40
+ "api_key": Config.shared().open_router_api_key,
41
+ },
42
42
  ),
43
- prompt_builder=prompt_builder,
44
- tags=tags,
43
+ prompt_id=prompt_id,
44
+ base_adapter_config=base_adapter_config,
45
45
  )
46
46
  case ModelProviderName.openai:
47
- return OpenAICompatibleAdapter(
47
+ return LiteLlmAdapter(
48
48
  kiln_task=kiln_task,
49
- config=OpenAICompatibleConfig(
50
- api_key=Config.shared().open_ai_api_key,
49
+ config=LiteLlmConfig(
51
50
  model_name=model_name,
52
51
  provider_name=provider,
52
+ additional_body_options={
53
+ "api_key": Config.shared().open_ai_api_key,
54
+ },
53
55
  ),
54
- prompt_builder=prompt_builder,
55
- tags=tags,
56
+ prompt_id=prompt_id,
57
+ base_adapter_config=base_adapter_config,
56
58
  )
57
59
  case ModelProviderName.openai_compatible:
58
- config = openai_compatible_config(model_name)
59
- return OpenAICompatibleAdapter(
60
+ config = lite_llm_config(model_name)
61
+ return LiteLlmAdapter(
60
62
  kiln_task=kiln_task,
61
63
  config=config,
62
- prompt_builder=prompt_builder,
63
- tags=tags,
64
+ prompt_id=prompt_id,
65
+ base_adapter_config=base_adapter_config,
64
66
  )
65
- # Use LangchainAdapter for the rest
66
67
  case ModelProviderName.groq:
67
- pass
68
+ return LiteLlmAdapter(
69
+ kiln_task=kiln_task,
70
+ prompt_id=prompt_id,
71
+ base_adapter_config=base_adapter_config,
72
+ config=LiteLlmConfig(
73
+ model_name=model_name,
74
+ provider_name=provider,
75
+ additional_body_options={
76
+ "api_key": Config.shared().groq_api_key,
77
+ },
78
+ ),
79
+ )
68
80
  case ModelProviderName.amazon_bedrock:
69
- pass
81
+ return LiteLlmAdapter(
82
+ kiln_task=kiln_task,
83
+ prompt_id=prompt_id,
84
+ base_adapter_config=base_adapter_config,
85
+ config=LiteLlmConfig(
86
+ model_name=model_name,
87
+ provider_name=provider,
88
+ additional_body_options={
89
+ "aws_access_key_id": Config.shared().bedrock_access_key,
90
+ "aws_secret_access_key": Config.shared().bedrock_secret_key,
91
+ # The only region that's widely supported for bedrock
92
+ "aws_region_name": "us-west-2",
93
+ },
94
+ ),
95
+ )
70
96
  case ModelProviderName.ollama:
71
- pass
97
+ ollama_base_url = (
98
+ Config.shared().ollama_base_url or "http://localhost:11434"
99
+ )
100
+ return LiteLlmAdapter(
101
+ kiln_task=kiln_task,
102
+ prompt_id=prompt_id,
103
+ base_adapter_config=base_adapter_config,
104
+ config=LiteLlmConfig(
105
+ model_name=model_name,
106
+ provider_name=provider,
107
+ # Set the Ollama base URL for 2 reasons:
108
+ # 1. To use the correct base URL
109
+ # 2. We use Ollama's OpenAI compatible API (/v1), and don't just let litellm use the Ollama API. We use more advanced features like json_schema.
110
+ base_url=ollama_base_url + "/v1",
111
+ ),
112
+ )
72
113
  case ModelProviderName.fireworks_ai:
73
- pass
114
+ return LiteLlmAdapter(
115
+ kiln_task=kiln_task,
116
+ prompt_id=prompt_id,
117
+ base_adapter_config=base_adapter_config,
118
+ config=LiteLlmConfig(
119
+ model_name=model_name,
120
+ provider_name=provider,
121
+ additional_body_options={
122
+ "api_key": Config.shared().fireworks_api_key,
123
+ },
124
+ ),
125
+ )
126
+ case ModelProviderName.anthropic:
127
+ return LiteLlmAdapter(
128
+ kiln_task=kiln_task,
129
+ prompt_id=prompt_id,
130
+ base_adapter_config=base_adapter_config,
131
+ config=LiteLlmConfig(
132
+ model_name=model_name,
133
+ provider_name=provider,
134
+ additional_body_options={
135
+ "api_key": Config.shared().anthropic_api_key,
136
+ },
137
+ ),
138
+ )
139
+ case ModelProviderName.gemini_api:
140
+ return LiteLlmAdapter(
141
+ kiln_task=kiln_task,
142
+ prompt_id=prompt_id,
143
+ base_adapter_config=base_adapter_config,
144
+ config=LiteLlmConfig(
145
+ model_name=model_name,
146
+ provider_name=provider,
147
+ additional_body_options={
148
+ "api_key": Config.shared().gemini_api_key,
149
+ },
150
+ ),
151
+ )
152
+ case ModelProviderName.vertex:
153
+ return LiteLlmAdapter(
154
+ kiln_task=kiln_task,
155
+ prompt_id=prompt_id,
156
+ base_adapter_config=base_adapter_config,
157
+ config=LiteLlmConfig(
158
+ model_name=model_name,
159
+ provider_name=provider,
160
+ additional_body_options={
161
+ "vertex_project": Config.shared().vertex_project_id,
162
+ "vertex_location": Config.shared().vertex_location,
163
+ },
164
+ ),
165
+ )
166
+ case ModelProviderName.together_ai:
167
+ return LiteLlmAdapter(
168
+ kiln_task=kiln_task,
169
+ prompt_id=prompt_id,
170
+ base_adapter_config=base_adapter_config,
171
+ config=LiteLlmConfig(
172
+ model_name=model_name,
173
+ provider_name=provider,
174
+ additional_body_options={
175
+ "api_key": Config.shared().together_api_key,
176
+ },
177
+ ),
178
+ )
179
+ case ModelProviderName.azure_openai:
180
+ return LiteLlmAdapter(
181
+ kiln_task=kiln_task,
182
+ prompt_id=prompt_id,
183
+ base_adapter_config=base_adapter_config,
184
+ config=LiteLlmConfig(
185
+ base_url=Config.shared().azure_openai_endpoint,
186
+ model_name=model_name,
187
+ provider_name=provider,
188
+ additional_body_options={
189
+ "api_key": Config.shared().azure_openai_api_key,
190
+ "api_version": "2025-02-01-preview",
191
+ },
192
+ ),
193
+ )
194
+ case ModelProviderName.huggingface:
195
+ return LiteLlmAdapter(
196
+ kiln_task=kiln_task,
197
+ prompt_id=prompt_id,
198
+ base_adapter_config=base_adapter_config,
199
+ config=LiteLlmConfig(
200
+ model_name=model_name,
201
+ provider_name=provider,
202
+ additional_body_options={
203
+ "api_key": Config.shared().huggingface_api_key,
204
+ },
205
+ ),
206
+ )
74
207
  # These are virtual providers that should have mapped to an actual provider in core_provider
75
208
  case ModelProviderName.kiln_fine_tune:
76
209
  raise ValueError(
@@ -82,12 +215,3 @@ def adapter_for_task(
82
215
  )
83
216
  case _:
84
217
  raise_exhaustive_enum_error(core_provider_name)
85
-
86
- # We use langchain for all others right now, but moving off it as we touch anything.
87
- return LangchainAdapter(
88
- kiln_task,
89
- model_name=model_name,
90
- provider=provider,
91
- prompt_builder=prompt_builder,
92
- tags=tags,
93
- )
@@ -183,3 +183,21 @@ class DataGenSampleTask(Task, parent_of={}):
183
183
  input_json_schema=json.dumps(DataGenSampleTaskInput.model_json_schema()),
184
184
  output_json_schema=list_json_schema_for_task(target_task),
185
185
  )
186
+
187
+
188
+ def wrap_task_with_guidance(original_instruction: str, guidance: str) -> str:
189
+ """Wrap the original instruction with human guidance.
190
+
191
+ Args:
192
+ original_instruction: The original instruction to wrap
193
+ guidance: The human guidance to wrap the instruction with
194
+ """
195
+ return f"""{original_instruction}
196
+
197
+ # Special Instructions
198
+
199
+ The above instructions are the original instructions for this task. For this execution, we've been given additional instructions. Follow both, but prioritize the additional instructions when they conflict. The additional instructions are:
200
+ <additional_instructions>
201
+ {guidance}
202
+ </additional_instructions>
203
+ """
@@ -0,0 +1,28 @@
1
+ """
2
+ # Evals
3
+
4
+ This module contains the code for evaluating the performance of a model.
5
+
6
+ The submodules contain:
7
+
8
+ - BaseEval: each eval technique implements this interface.
9
+ - G-Eval: an eval implementation, that implements G-Eval and LLM as Judge.
10
+ - EvalRunner: a class that runs an full evaluation (many smaller evals jobs). Includes async parallel processing, and the ability to restart where it left off.
11
+ - EvalRegistry: a registry for all eval implementations.
12
+
13
+ The datamodel for Evals is in the `kiln_ai.datamodel.eval` module.
14
+ """
15
+
16
+ from . import (
17
+ base_eval,
18
+ eval_runner,
19
+ g_eval,
20
+ registry,
21
+ )
22
+
23
+ __all__ = [
24
+ "base_eval",
25
+ "eval_runner",
26
+ "g_eval",
27
+ "registry",
28
+ ]
@@ -0,0 +1,164 @@
1
+ import json
2
+ from abc import abstractmethod
3
+ from typing import Dict
4
+
5
+ from kiln_ai.adapters.adapter_registry import adapter_for_task
6
+ from kiln_ai.adapters.ml_model_list import ModelProviderName
7
+ from kiln_ai.adapters.model_adapters.base_adapter import AdapterConfig
8
+ from kiln_ai.datamodel.eval import Eval, EvalConfig, EvalScores
9
+ from kiln_ai.datamodel.json_schema import validate_schema
10
+ from kiln_ai.datamodel.task import RunConfig, TaskOutputRatingType, TaskRun
11
+ from kiln_ai.utils.exhaustive_error import raise_exhaustive_enum_error
12
+
13
+
14
+ class BaseEval:
15
+ """
16
+ Base class for all evals/evaluators.
17
+
18
+ Should be subclassed, and the run_eval method implemented.
19
+ """
20
+
21
+ def __init__(self, eval_config: EvalConfig, run_config: RunConfig | None):
22
+ self.eval_config = eval_config
23
+ eval = eval_config.parent_eval()
24
+ if not eval:
25
+ raise ValueError("Eval config must have a parent eval")
26
+ self.eval = eval
27
+ task = self.eval.parent_task()
28
+ if not task:
29
+ raise ValueError("Eval must have a parent task")
30
+ self.target_task = task
31
+ self.score_schema = BaseEval.build_score_schema(eval, allow_float_scores=True)
32
+ self.run_config = run_config
33
+
34
+ def model_and_provider(self) -> tuple[str, ModelProviderName]:
35
+ model_name = self.eval_config.model_name
36
+ provider = self.eval_config.model_provider
37
+ if (
38
+ not model_name
39
+ or not provider
40
+ or not isinstance(model_name, str)
41
+ or not isinstance(provider, str)
42
+ or provider not in ModelProviderName.__members__
43
+ ):
44
+ raise ValueError(
45
+ "Model name and provider must be set in the eval config model properties"
46
+ )
47
+
48
+ return model_name, ModelProviderName(provider)
49
+
50
+ async def run_task_and_eval(
51
+ self, input: str
52
+ ) -> tuple[TaskRun, EvalScores, Dict[str, str] | None]:
53
+ """
54
+ Runs the task on the provided run_config to generate fresh output, then runs the eval on that output.
55
+ """
56
+ if self.run_config is None:
57
+ raise ValueError("Run config is required for run_task_and_eval")
58
+
59
+ run_adapter = adapter_for_task(
60
+ self.target_task,
61
+ self.run_config.model_name,
62
+ ModelProviderName(self.run_config.model_provider_name),
63
+ base_adapter_config=AdapterConfig(allow_saving=False),
64
+ )
65
+
66
+ # Parse structured input if needed
67
+ parsed_input = input
68
+ if self.target_task.output_json_schema is not None:
69
+ parsed_input = json.loads(input)
70
+
71
+ # we don't save by default here. We'll save manually after validating the output
72
+ run_output = await run_adapter.invoke(parsed_input)
73
+
74
+ eval_output, intermediate_outputs = await self.run_eval(run_output)
75
+ validate_schema(eval_output, self.score_schema)
76
+
77
+ return run_output, eval_output, intermediate_outputs
78
+
79
+ @abstractmethod
80
+ async def run_eval(
81
+ self, task_run: TaskRun
82
+ ) -> tuple[EvalScores, Dict[str, str] | None]:
83
+ """
84
+ Runs the eval on the given task run.
85
+
86
+ Returns a dictionary of scores which should conform to the score schema, and a dictionary of intermediate outputs (eval thinking).
87
+ """
88
+ pass
89
+
90
+ @classmethod
91
+ def build_score_schema(cls, eval: Eval, allow_float_scores: bool = False) -> str:
92
+ """
93
+ Build a JSON schema for the scoring output of the task requirements
94
+
95
+ We allow 2 modes: allow_float_scores=True and allow_float_scores=False.
96
+
97
+ allow_float_scores=False is used for the call to the model, and forces the model into selecting into discrete rating options (int 1-5, pass-fail, etc).
98
+ allow_float_scores=True is used for final score output (for example, after we take a g-eval weighting of the model's logprobs). A pass/fail rating might return 0.75 for likely pass (as opposed to 0.99 for near certain pass), or a 1-5 score might return 3.75.
99
+ """
100
+
101
+ # Note: python maintains order, which is good as we want the user defined order, and overall last
102
+ properties = {}
103
+ for output_score in eval.output_scores:
104
+ output_score_json_key = output_score.json_key()
105
+
106
+ if len(output_score_json_key) == 0:
107
+ raise ValueError(
108
+ f"Invalid output score name: {output_score.name}. Can not be used as JSON schema key."
109
+ )
110
+ property: dict[str, str | int | float | list[str] | list[int]] = {
111
+ "title": output_score.name,
112
+ }
113
+ match output_score.type:
114
+ case TaskOutputRatingType.five_star:
115
+ if allow_float_scores:
116
+ property["type"] = "number"
117
+ property["minimum"] = 1
118
+ property["maximum"] = 5
119
+ else:
120
+ property["enum"] = [1, 2, 3, 4, 5]
121
+
122
+ property["description"] = (
123
+ f"{output_score.instruction}\n\nThe rating should be between 1 and 5, with 1 being the worst and 5 being the best."
124
+ )
125
+ case TaskOutputRatingType.pass_fail:
126
+ if allow_float_scores:
127
+ property["type"] = "number"
128
+ property["minimum"] = 0
129
+ property["maximum"] = 1
130
+ property["description"] = (
131
+ f"{output_score.instruction}\n\nThe rating should be between 0 and 1, with 0 being a failure and 1 being a pass."
132
+ )
133
+ else:
134
+ property["enum"] = ["pass", "fail"]
135
+ property["description"] = (
136
+ f"{output_score.instruction}\n\nThe rating should be either 'pass' or 'fail'."
137
+ )
138
+ case TaskOutputRatingType.pass_fail_critical:
139
+ if allow_float_scores:
140
+ property["type"] = "number"
141
+ property["minimum"] = -1
142
+ property["maximum"] = 1
143
+ property["description"] = (
144
+ f"{output_score.instruction}\n\nThe rating should be between -1 and 1, with 1 being a pass, 0 being a failure, and -1 being a critical failure (very severe failure)."
145
+ )
146
+ else:
147
+ property["enum"] = ["pass", "fail", "critical"]
148
+ property["description"] = (
149
+ f"{output_score.instruction}\n\nThe rating should be either 'pass', 'fail', or 'critical' where critical a very severe failure."
150
+ )
151
+ case TaskOutputRatingType.custom:
152
+ # Skip custom rating types in evals
153
+ continue
154
+ case _:
155
+ raise_exhaustive_enum_error(output_score.type)
156
+
157
+ properties[output_score_json_key] = property
158
+
159
+ schema = {
160
+ "type": "object",
161
+ "properties": properties,
162
+ "required": list(properties.keys()),
163
+ }
164
+ return json.dumps(schema, ensure_ascii=False)