kib-lap 0.5__cp313-cp313-win_amd64.whl → 0.7.7__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- KIB_LAP/Betonbau/TEST_Rectangular.py +21 -0
- KIB_LAP/Betonbau/beam_rectangular.py +4 -0
- KIB_LAP/FACHWERKEBEN/Elements.py +209 -0
- KIB_LAP/FACHWERKEBEN/InputData.py +118 -0
- KIB_LAP/FACHWERKEBEN/Iteration.py +967 -0
- KIB_LAP/FACHWERKEBEN/Materials.py +30 -0
- KIB_LAP/FACHWERKEBEN/Plotting.py +681 -0
- KIB_LAP/FACHWERKEBEN/__init__.py +4 -0
- KIB_LAP/FACHWERKEBEN/main.py +27 -0
- KIB_LAP/Plattentragwerke/PlateBendingKirchhoff.py +36 -29
- KIB_LAP/STABRAUM/InputData.py +13 -2
- KIB_LAP/STABRAUM/Output_Data.py +61 -0
- KIB_LAP/STABRAUM/Plotting.py +1453 -0
- KIB_LAP/STABRAUM/Programm.py +518 -1026
- KIB_LAP/STABRAUM/Steifigkeitsmatrix.py +338 -117
- KIB_LAP/STABRAUM/main.py +58 -0
- KIB_LAP/STABRAUM/results.py +37 -0
- KIB_LAP/Scheibe/Assemble_Stiffness.py +246 -0
- KIB_LAP/Scheibe/Element_Stiffness.py +362 -0
- KIB_LAP/Scheibe/Meshing.py +365 -0
- KIB_LAP/Scheibe/Output.py +34 -0
- KIB_LAP/Scheibe/Plotting.py +722 -0
- KIB_LAP/Scheibe/Shell_Calculation.py +523 -0
- KIB_LAP/Scheibe/Testing_Mesh.py +25 -0
- KIB_LAP/Scheibe/__init__.py +14 -0
- KIB_LAP/Scheibe/main.py +33 -0
- KIB_LAP/StabEbenRitz/Biegedrillknicken.py +757 -0
- KIB_LAP/StabEbenRitz/Biegedrillknicken_Trigeometry.py +328 -0
- KIB_LAP/StabEbenRitz/Querschnittswerte.py +527 -0
- KIB_LAP/StabEbenRitz/Stabberechnung_Klasse.py +868 -0
- KIB_LAP/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- {kib_lap-0.5.dist-info → kib_lap-0.7.7.dist-info}/METADATA +1 -1
- {kib_lap-0.5.dist-info → kib_lap-0.7.7.dist-info}/RECORD +37 -19
- Examples/Cross_Section_Thin.py +0 -61
- KIB_LAP/Betonbau/Bemessung_Zust_II.py +0 -648
- KIB_LAP/Betonbau/Iterative_Design.py +0 -723
- KIB_LAP/Plattentragwerke/NumInte.cpp +0 -23
- KIB_LAP/Plattentragwerke/NumericalIntegration.cpp +0 -23
- KIB_LAP/Plattentragwerke/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/main.py +0 -2
- {Examples → KIB_LAP/StabEbenRitz}/__init__.py +0 -0
- {kib_lap-0.5.dist-info → kib_lap-0.7.7.dist-info}/WHEEL +0 -0
- {kib_lap-0.5.dist-info → kib_lap-0.7.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,527 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
from tabulate import tabulate
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class CrossSectionThin:
|
|
7
|
+
def __init__(
|
|
8
|
+
self,
|
|
9
|
+
E,
|
|
10
|
+
nu,
|
|
11
|
+
node_param_csv="Querschnittseingabe/Knoten.csv",
|
|
12
|
+
element_param_csv="Querschnittseingabe/Elemente.csv",
|
|
13
|
+
Speichername=None,
|
|
14
|
+
):
|
|
15
|
+
self.x = 0
|
|
16
|
+
self.y = 0
|
|
17
|
+
self.node = 0
|
|
18
|
+
|
|
19
|
+
self.Node_Cords = 0
|
|
20
|
+
self.CrossSectionElements = 0
|
|
21
|
+
# Read the element and node input parameters
|
|
22
|
+
self.Node_Cords = pd.DataFrame(pd.read_csv(node_param_csv))
|
|
23
|
+
self.CrossSectionElements = pd.DataFrame(pd.read_csv(element_param_csv))
|
|
24
|
+
|
|
25
|
+
# Material parameters
|
|
26
|
+
self.E = E
|
|
27
|
+
self.nu = nu
|
|
28
|
+
self.G = self.E / (2 * (1 + self.nu))
|
|
29
|
+
# Initialize Elastic Cross Section Values
|
|
30
|
+
|
|
31
|
+
self.Speichername = Speichername
|
|
32
|
+
|
|
33
|
+
def read_node_input(self):
|
|
34
|
+
self.CrossSectionElements["ya"] = 0
|
|
35
|
+
self.CrossSectionElements["ye"] = 0
|
|
36
|
+
self.CrossSectionElements["ymi"] = 0
|
|
37
|
+
self.CrossSectionElements["za"] = 0
|
|
38
|
+
self.CrossSectionElements["ze"] = 0
|
|
39
|
+
self.CrossSectionElements["zmi"] = 0
|
|
40
|
+
self.CrossSectionElements["l_i"] = 0 # Längenspalte
|
|
41
|
+
self.CrossSectionElements["sin_bet_i"] = 0
|
|
42
|
+
self.CrossSectionElements["cos_bet_i"] = 0
|
|
43
|
+
self.CrossSectionElements["A_i"] = 0
|
|
44
|
+
self.CrossSectionElements["A_z_i"] = 0
|
|
45
|
+
self.CrossSectionElements["A_y_i"] = 0
|
|
46
|
+
|
|
47
|
+
self.CrossSectionElements["I_yy_ET"] = 0
|
|
48
|
+
self.CrossSectionElements["I_zz_ET"] = 0
|
|
49
|
+
self.CrossSectionElements["I_yz_ET"] = 0
|
|
50
|
+
|
|
51
|
+
self.CrossSectionElements["zM0"] = 0 # Schätzung für den Schubmittelpunkt
|
|
52
|
+
self.CrossSectionElements["yM0"] = 0
|
|
53
|
+
self.CrossSectionElements["rT0"] = 0
|
|
54
|
+
|
|
55
|
+
for i in range(0, len(self.CrossSectionElements["nr"]), 1):
|
|
56
|
+
nr_a = self.CrossSectionElements["npa"][i]
|
|
57
|
+
nr_e = self.CrossSectionElements["npe"][i]
|
|
58
|
+
# Nodal properties
|
|
59
|
+
ya = float(self.Node_Cords["y"][self.Node_Cords["Nr."] == nr_a])
|
|
60
|
+
ye = float(self.Node_Cords["y"][self.Node_Cords["Nr."] == nr_e])
|
|
61
|
+
za = float(self.Node_Cords["z"][self.Node_Cords["Nr."] == nr_a])
|
|
62
|
+
ze = float(self.Node_Cords["z"][self.Node_Cords["Nr."] == nr_e])
|
|
63
|
+
t = float(self.CrossSectionElements["t [m]"][i])
|
|
64
|
+
# Geometric properties
|
|
65
|
+
l = np.sqrt((ye - ya) ** 2 + (ze - za) ** 2)
|
|
66
|
+
sin_beta = (ze - za) / l
|
|
67
|
+
cos_beta = (ye - ya) / l
|
|
68
|
+
A = l * float(t)
|
|
69
|
+
# Insert in Dataframe / Dictionary
|
|
70
|
+
self.CrossSectionElements["A_i"][i] = A
|
|
71
|
+
self.CrossSectionElements["sin_bet_i"][i] = sin_beta
|
|
72
|
+
self.CrossSectionElements["cos_bet_i"][i] = cos_beta
|
|
73
|
+
self.CrossSectionElements["l_i"][i] = l
|
|
74
|
+
|
|
75
|
+
self.CrossSectionElements["ya"][i] = ya
|
|
76
|
+
self.CrossSectionElements["ye"][i] = ye
|
|
77
|
+
self.CrossSectionElements["ymi"][i] = 0.5 * (ya + ye)
|
|
78
|
+
self.CrossSectionElements["za"][i] = za
|
|
79
|
+
self.CrossSectionElements["ze"][i] = ze
|
|
80
|
+
self.CrossSectionElements["zmi"][i] = 0.5 * (za + ze)
|
|
81
|
+
|
|
82
|
+
self.CrossSectionElements["A_z_i"][i] = A * 0.5 * (za + ze)
|
|
83
|
+
self.CrossSectionElements["A_y_i"][i] = A * 0.5 * (ya + ye)
|
|
84
|
+
|
|
85
|
+
if sin_beta != 0:
|
|
86
|
+
self.CrossSectionElements["I_yy_ET"][i] = A / 12 * (ze - za) ** 2
|
|
87
|
+
else:
|
|
88
|
+
self.CrossSectionElements["I_yy_ET"][i] = A * t**2 / 12
|
|
89
|
+
|
|
90
|
+
if cos_beta != 0:
|
|
91
|
+
self.CrossSectionElements["I_zz_ET"][i] = A / 12 * (ye - ya) ** 2
|
|
92
|
+
else:
|
|
93
|
+
self.CrossSectionElements["I_zz_ET"][i] = A * t**2 / 12
|
|
94
|
+
|
|
95
|
+
self.CrossSectionElements["rT0"][i] = (
|
|
96
|
+
self.CrossSectionElements["ymi"][i]
|
|
97
|
+
- self.CrossSectionElements["yM0"][i]
|
|
98
|
+
) * sin_beta - (
|
|
99
|
+
self.CrossSectionElements["zmi"][i]
|
|
100
|
+
- self.CrossSectionElements["zM0"][i]
|
|
101
|
+
) * cos_beta
|
|
102
|
+
|
|
103
|
+
self.A_ges = self.CrossSectionElements["A_i"].sum()
|
|
104
|
+
A_z_i = self.CrossSectionElements["A_z_i"].sum()
|
|
105
|
+
A_y_i = self.CrossSectionElements["A_y_i"].sum()
|
|
106
|
+
|
|
107
|
+
self.ym = A_y_i / self.A_ges
|
|
108
|
+
self.y_re = (
|
|
109
|
+
max(self.CrossSectionElements["ye"].max(),self.CrossSectionElements["ya"].max())
|
|
110
|
+
- self.ym
|
|
111
|
+
)
|
|
112
|
+
self.y_li = (
|
|
113
|
+
min(self.CrossSectionElements["ye"].min(),self.CrossSectionElements["ya"].min())
|
|
114
|
+
- self.ym
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
self.zm = A_z_i / self.A_ges
|
|
118
|
+
self.z_so = (
|
|
119
|
+
min(self.CrossSectionElements["ze"].min(),self.CrossSectionElements["za"].min())
|
|
120
|
+
- self.zm
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
self.z_su = (
|
|
125
|
+
max(self.CrossSectionElements["ze"].max(),self.CrossSectionElements["za"].max())
|
|
126
|
+
-self.zm
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
self.I_yy = 0
|
|
130
|
+
self.I_zz = 0
|
|
131
|
+
self.I_yz = 0
|
|
132
|
+
|
|
133
|
+
for i in range(0, len(self.CrossSectionElements["nr"]), 1):
|
|
134
|
+
# I_yy
|
|
135
|
+
self.I_yy += self.CrossSectionElements["I_yy_ET"][i]
|
|
136
|
+
self.I_yy += (
|
|
137
|
+
self.zm - self.CrossSectionElements["zmi"][i]
|
|
138
|
+
) ** 2 * self.CrossSectionElements["A_i"][i]
|
|
139
|
+
# I_zz
|
|
140
|
+
self.I_zz += self.CrossSectionElements["I_zz_ET"][i]
|
|
141
|
+
self.I_zz += (
|
|
142
|
+
self.ym - self.CrossSectionElements["ymi"][i]
|
|
143
|
+
) ** 2 * self.CrossSectionElements["A_i"][i]
|
|
144
|
+
# I_yz
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def CalculateElementStiffness(self):
|
|
148
|
+
K_e = np.zeros((2, 2))
|
|
149
|
+
f_th_e = np.zeros(2)
|
|
150
|
+
# Storage matrix for ther element stifness matrices
|
|
151
|
+
self.K_e_ges = np.zeros((len(self.CrossSectionElements["nr"]), 2, 2))
|
|
152
|
+
self.f_th_ges = np.zeros((len(self.CrossSectionElements["nr"]), 2, 1))
|
|
153
|
+
self.f_e_ges = np.zeros((len(self.CrossSectionElements["nr"]), 2, 1))
|
|
154
|
+
|
|
155
|
+
for i in range(0, len(self.CrossSectionElements["nr"]), 1):
|
|
156
|
+
t_el = self.CrossSectionElements["t [m]"][i]
|
|
157
|
+
l_el = self.CrossSectionElements["l_i"][i]
|
|
158
|
+
|
|
159
|
+
K_e[0][0] = 1 * self.G * t_el / l_el
|
|
160
|
+
K_e[1][1] = K_e[0][0]
|
|
161
|
+
K_e[1][0] = -1 * self.G * t_el / l_el
|
|
162
|
+
K_e[0][1] = K_e[1][0]
|
|
163
|
+
|
|
164
|
+
self.K_e_ges[i] = K_e
|
|
165
|
+
|
|
166
|
+
# Lastvektor für die Wölbordinate
|
|
167
|
+
r_t_el = self.CrossSectionElements["rT0"][i]
|
|
168
|
+
self.f_th_ges[i][0] = self.G * t_el * r_t_el * (-1)
|
|
169
|
+
self.f_th_ges[i][1] = self.G * t_el * r_t_el * (1)
|
|
170
|
+
|
|
171
|
+
def Calculate_GesMat(self):
|
|
172
|
+
no_nodes = len(self.Node_Cords["Nr."])
|
|
173
|
+
|
|
174
|
+
self.Gesmat = np.zeros((no_nodes, no_nodes))
|
|
175
|
+
self.GesLoadVec = np.zeros(no_nodes)
|
|
176
|
+
|
|
177
|
+
for k in range(0, len(self.CrossSectionElements["nr"]), 1):
|
|
178
|
+
i = int(self.CrossSectionElements["npa"][k] - 1)
|
|
179
|
+
j = int(self.CrossSectionElements["npe"][k] - 1)
|
|
180
|
+
|
|
181
|
+
# Stiffness matrix
|
|
182
|
+
self.Gesmat[i][i] += self.K_e_ges[k][0][0]
|
|
183
|
+
self.Gesmat[i][j] += self.K_e_ges[k][0][1]
|
|
184
|
+
self.Gesmat[j][i] += self.K_e_ges[k][1][0]
|
|
185
|
+
self.Gesmat[j][j] += self.K_e_ges[k][1][1]
|
|
186
|
+
# Load vector f_th
|
|
187
|
+
self.GesLoadVec[i] += self.f_th_ges[k][0]
|
|
188
|
+
self.GesLoadVec[j] += self.f_th_ges[k][1]
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
def SolverTorsion(self):
|
|
193
|
+
self.Gesmat[0][0:] = 0
|
|
194
|
+
self.Gesmat[1][0] = 0
|
|
195
|
+
self.Gesmat[0][
|
|
196
|
+
0
|
|
197
|
+
] = 1e30 # Einen FHG auf 1e9 setzen -> Analog zum Streichen der Zeile
|
|
198
|
+
|
|
199
|
+
self.omega_start = np.linalg.solve(self.Gesmat, self.GesLoadVec)
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
def CalculateAyzw(self):
|
|
203
|
+
num_elem = len(self.CrossSectionElements["nr"])
|
|
204
|
+
self.A_omega = 0
|
|
205
|
+
self.A_zomega = 0
|
|
206
|
+
self.A_yomega = 0
|
|
207
|
+
|
|
208
|
+
for k in range(0, num_elem, 1):
|
|
209
|
+
i = int(self.CrossSectionElements["npa"][k] - 1)
|
|
210
|
+
j = int(self.CrossSectionElements["npe"][k] - 1)
|
|
211
|
+
A_e = self.CrossSectionElements["A_i"][k]
|
|
212
|
+
# Omega Values
|
|
213
|
+
omega_a = self.omega_start[i]
|
|
214
|
+
omega_b = self.omega_start[j]
|
|
215
|
+
# y-Value Ayomega
|
|
216
|
+
z_a = self.CrossSectionElements["za"][k]
|
|
217
|
+
z_b = self.CrossSectionElements["ze"][k]
|
|
218
|
+
# z-Values
|
|
219
|
+
y_a = self.CrossSectionElements["ya"][k]
|
|
220
|
+
y_b = self.CrossSectionElements["ye"][k]
|
|
221
|
+
# Summation
|
|
222
|
+
self.A_omega += 0.5 * (omega_a + omega_b) * A_e
|
|
223
|
+
self.A_zomega += (
|
|
224
|
+
1 / 6 * ((2 * z_a + z_b) * omega_a + (z_a + 2 * z_b) * omega_b) * A_e
|
|
225
|
+
)
|
|
226
|
+
self.A_yomega += (
|
|
227
|
+
1 / 6 * ((2 * y_a + y_b) * omega_a + (y_a + 2 * y_b) * omega_b) * A_e
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
self.omega_k = self.A_omega / self.A_ges
|
|
231
|
+
self.Delta_ZM = self.A_yomega / self.I_zz * (-1) # Vorzeichen beachten!
|
|
232
|
+
self.Delta_YM = self.A_zomega / self.I_yy
|
|
233
|
+
|
|
234
|
+
def Update_SMP(self):
|
|
235
|
+
self.CrossSectionElements["zM0"] += self.Delta_ZM
|
|
236
|
+
self.CrossSectionElements["yM0"] += self.Delta_YM
|
|
237
|
+
self.CrossSectionElements["rT"] = 0
|
|
238
|
+
self.CrossSectionElements["omeg_a"] = 0
|
|
239
|
+
self.CrossSectionElements["omeg_b"] = 0
|
|
240
|
+
|
|
241
|
+
for i in range(0, len(self.CrossSectionElements["nr"]), 1):
|
|
242
|
+
nr_a = self.CrossSectionElements["npa"][i]
|
|
243
|
+
nr_e = self.CrossSectionElements["npe"][i]
|
|
244
|
+
# Nodal properties
|
|
245
|
+
ya = float(self.Node_Cords["y"][self.Node_Cords["Nr."] == nr_a])
|
|
246
|
+
ye = float(self.Node_Cords["y"][self.Node_Cords["Nr."] == nr_e])
|
|
247
|
+
za = float(self.Node_Cords["z"][self.Node_Cords["Nr."] == nr_a])
|
|
248
|
+
ze = float(self.Node_Cords["z"][self.Node_Cords["Nr."] == nr_e])
|
|
249
|
+
t = float(self.CrossSectionElements["t [m]"][i])
|
|
250
|
+
# Geometric properties
|
|
251
|
+
l = np.sqrt((ye - ya) ** 2 + (ze - za) ** 2)
|
|
252
|
+
sin_beta = (ze - za) / l
|
|
253
|
+
cos_beta = (ye - ya) / l
|
|
254
|
+
A = l * float(t)
|
|
255
|
+
self.CrossSectionElements["rT"][i] = (
|
|
256
|
+
self.CrossSectionElements["ymi"][i]
|
|
257
|
+
- self.CrossSectionElements["yM0"][i]
|
|
258
|
+
) * sin_beta - (
|
|
259
|
+
self.CrossSectionElements["zmi"][i]
|
|
260
|
+
- self.CrossSectionElements["zM0"][i]
|
|
261
|
+
) * cos_beta
|
|
262
|
+
|
|
263
|
+
def Calculate_IwIt(self):
|
|
264
|
+
ne = len(self.CrossSectionElements["nr"])
|
|
265
|
+
self.I_w = 0
|
|
266
|
+
self.I_T_OFFEN = 0
|
|
267
|
+
self.I_T_GESCHLOSSEN = 0
|
|
268
|
+
for k in range(0, ne, 1):
|
|
269
|
+
i = int(self.CrossSectionElements["npa"][k] - 1)
|
|
270
|
+
j = int(self.CrossSectionElements["npe"][k] - 1)
|
|
271
|
+
t = self.CrossSectionElements["t [m]"][k]
|
|
272
|
+
# Omega Values
|
|
273
|
+
y_a = self.CrossSectionElements["ya"][k]
|
|
274
|
+
y_e = self.CrossSectionElements["ye"][k]
|
|
275
|
+
z_a = self.CrossSectionElements["za"][k]
|
|
276
|
+
z_e = self.CrossSectionElements["ze"][k]
|
|
277
|
+
omega_a = (
|
|
278
|
+
self.omega_start[i]
|
|
279
|
+
- self.omega_k
|
|
280
|
+
+ self.Delta_ZM * y_a
|
|
281
|
+
- self.Delta_YM * z_a
|
|
282
|
+
)
|
|
283
|
+
omega_b = (
|
|
284
|
+
self.omega_start[j]
|
|
285
|
+
- self.omega_k
|
|
286
|
+
+ self.Delta_ZM * y_e
|
|
287
|
+
- self.Delta_YM * z_e
|
|
288
|
+
)
|
|
289
|
+
self.CrossSectionElements["omeg_a"][k] = omega_a
|
|
290
|
+
self.CrossSectionElements["omeg_b"][k] = omega_b
|
|
291
|
+
# I_w-Values
|
|
292
|
+
self.I_w += (
|
|
293
|
+
self.CrossSectionElements["l_i"][k]
|
|
294
|
+
* t
|
|
295
|
+
/ 3
|
|
296
|
+
* (omega_a**2 + omega_a * omega_b + omega_b**2)
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
# Berechnung von IT_OFFEN
|
|
300
|
+
l = self.CrossSectionElements["l_i"][k]
|
|
301
|
+
t = self.CrossSectionElements["t [m]"][k]
|
|
302
|
+
self.I_T_OFFEN += 1 / 3 * l * t**3
|
|
303
|
+
# Berechnung IT_GESCHLOSSEN
|
|
304
|
+
l_z = z_e - z_a
|
|
305
|
+
l_y = y_e - y_a
|
|
306
|
+
yM = self.CrossSectionElements["yM0"][k]
|
|
307
|
+
zM = self.CrossSectionElements["zM0"][k]
|
|
308
|
+
r_tj = (y_a - yM) * l_z / l - (z_a - zM) * l_y / l
|
|
309
|
+
|
|
310
|
+
self.I_T_GESCHLOSSEN += r_tj * t * (r_tj * l + omega_a - omega_b)
|
|
311
|
+
self.I_T_GESAMT = self.I_T_GESCHLOSSEN + self.I_T_OFFEN
|
|
312
|
+
|
|
313
|
+
def Calculate_WoWu(self):
|
|
314
|
+
self.W_o = self.I_yy / self.z_so
|
|
315
|
+
self.W_u = self.I_yy / self.z_su
|
|
316
|
+
self.W_li = self.I_zz / self.y_li
|
|
317
|
+
self.W_re = self.I_zz / self.y_re
|
|
318
|
+
|
|
319
|
+
def Calculate_ShearStress_Vz(self):
|
|
320
|
+
# Load Vector for the Vz-Component
|
|
321
|
+
f_e_vz = np.zeros(2)
|
|
322
|
+
num_nodes = len(self.Node_Cords["Nr."])
|
|
323
|
+
self.f_e_vz = np.zeros(num_nodes)
|
|
324
|
+
|
|
325
|
+
num_elem = len(self.CrossSectionElements["nr"])
|
|
326
|
+
self.CrossSectionElements["ua_vz"] = 0
|
|
327
|
+
self.CrossSectionElements["ue_vz"] = 0
|
|
328
|
+
self.CrossSectionElements["F_a_elem"] = 0
|
|
329
|
+
self.CrossSectionElements["F_e_elem"] = 0
|
|
330
|
+
|
|
331
|
+
self.CrossSectionElements["tau_a_vz"] = 0
|
|
332
|
+
self.CrossSectionElements["tau_e_vz"] = 0
|
|
333
|
+
|
|
334
|
+
for k in range(0, num_elem, 1):
|
|
335
|
+
i = int(
|
|
336
|
+
self.CrossSectionElements["npa"][k] - 1
|
|
337
|
+
) # Indices for the global load vector
|
|
338
|
+
j = int(self.CrossSectionElements["npe"][k] - 1)
|
|
339
|
+
|
|
340
|
+
l = self.CrossSectionElements["l_i"][k]
|
|
341
|
+
t = self.CrossSectionElements["t [m]"][k]
|
|
342
|
+
|
|
343
|
+
z_a = self.CrossSectionElements["za"][k] - self.zm
|
|
344
|
+
z_b = self.CrossSectionElements["ze"][k] - self.zm
|
|
345
|
+
|
|
346
|
+
self.f_e_vz[i] += (
|
|
347
|
+
(1 / 3 * z_a / self.I_yy + 1 / 6 * z_b / self.I_yy) * t * l
|
|
348
|
+
)
|
|
349
|
+
self.f_e_vz[j] += (
|
|
350
|
+
(1 / 6 * z_a / self.I_yy + 1 / 3 * z_b / self.I_yy) * t * l
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
self.CrossSectionElements.loc[k, "F_a_elem"] = z_a / self.I_yy
|
|
354
|
+
self.CrossSectionElements.loc[k, "F_e_elem"] = z_b / self.I_yy
|
|
355
|
+
|
|
356
|
+
# Solving for u_a / u_a for the vz-Component
|
|
357
|
+
|
|
358
|
+
self.u_sol = np.linalg.solve(self.Gesmat, self.f_e_vz)
|
|
359
|
+
|
|
360
|
+
# Entferne die erste Zeile und die erste Spalte der Matrix
|
|
361
|
+
reduced_matrix = self.Gesmat[1:, 1:]
|
|
362
|
+
|
|
363
|
+
# Entferne das erste Element des Vektors
|
|
364
|
+
reduced_vector = self.f_e_vz[1:]
|
|
365
|
+
|
|
366
|
+
# Löse das reduzierte Gleichungssystem
|
|
367
|
+
self.u_sol_red = np.linalg.solve(reduced_matrix, reduced_vector)
|
|
368
|
+
|
|
369
|
+
# Update of the nodal shear stress under a "1" load Vz
|
|
370
|
+
for k in range(0, num_elem, 1):
|
|
371
|
+
l = self.CrossSectionElements["l_i"][k]
|
|
372
|
+
i = int(
|
|
373
|
+
self.CrossSectionElements["npa"][k] - 1
|
|
374
|
+
) # Indices for the global node deformation vector
|
|
375
|
+
j = int(self.CrossSectionElements["npe"][k] - 1)
|
|
376
|
+
|
|
377
|
+
u_a = self.u_sol[i]
|
|
378
|
+
u_b = self.u_sol[j]
|
|
379
|
+
|
|
380
|
+
F_a = self.CrossSectionElements["F_a_elem"][k]
|
|
381
|
+
F_b = self.CrossSectionElements["F_e_elem"][k]
|
|
382
|
+
|
|
383
|
+
self.CrossSectionElements["tau_a_vz"][k] = self.G / l * (
|
|
384
|
+
u_b - u_a
|
|
385
|
+
) + l / 6 * (F_a * 2 + F_b * 1)
|
|
386
|
+
self.CrossSectionElements["tau_e_vz"][k] = self.G / l * (
|
|
387
|
+
u_b - u_a
|
|
388
|
+
) - l / 6 * (F_a * 1 + F_b * 2)
|
|
389
|
+
|
|
390
|
+
def Calculate_imryrzrw(self):
|
|
391
|
+
"""
|
|
392
|
+
Function to calculate the geometric lengths for \n
|
|
393
|
+
the calculation of geometric nonlinear problems (TH.II.Order) \n
|
|
394
|
+
im =
|
|
395
|
+
ry =
|
|
396
|
+
rz =
|
|
397
|
+
rw =
|
|
398
|
+
For the values im,ry,rz the different lengths are calculated relative to the elastic centrum \n
|
|
399
|
+
For the rw-values the length is taken from the previous calculation, which is based on the \n
|
|
400
|
+
shear centre. \n
|
|
401
|
+
"""
|
|
402
|
+
self.CrossSectionElements["im"] = 0
|
|
403
|
+
self.CrossSectionElements["ry"] = 0
|
|
404
|
+
self.CrossSectionElements["rz"] = 0
|
|
405
|
+
self.CrossSectionElements["rw"] = 0
|
|
406
|
+
self.CrossSectionElements["Ayyy"] = 0
|
|
407
|
+
self.CrossSectionElements["Ayzz"] = 0
|
|
408
|
+
self.CrossSectionElements["Azzz"] = 0
|
|
409
|
+
self.CrossSectionElements["Azyy"] = 0
|
|
410
|
+
|
|
411
|
+
for k in range(0, len(self.CrossSectionElements["nr"])):
|
|
412
|
+
ym_t = (
|
|
413
|
+
self.CrossSectionElements["ymi"][k] - self.ym
|
|
414
|
+
) # Transformierte Querschnittsordinaten
|
|
415
|
+
zm_t = self.CrossSectionElements["zmi"][k] - self.zm
|
|
416
|
+
dy = self.CrossSectionElements["ye"][k] - self.CrossSectionElements["ya"][k]
|
|
417
|
+
dz = self.CrossSectionElements["ze"][k] - self.CrossSectionElements["za"][k]
|
|
418
|
+
omega_m = (
|
|
419
|
+
self.CrossSectionElements["omeg_a"][k]
|
|
420
|
+
+ self.CrossSectionElements["omeg_b"][k]
|
|
421
|
+
) * 0.5
|
|
422
|
+
domega = (
|
|
423
|
+
self.CrossSectionElements["omeg_b"][k]
|
|
424
|
+
- self.CrossSectionElements["omeg_a"][k]
|
|
425
|
+
)
|
|
426
|
+
|
|
427
|
+
A = self.CrossSectionElements["A_i"][k]
|
|
428
|
+
# A_XXX Params
|
|
429
|
+
A_yyy = ym_t**3 * A + ym_t * dy**2 * A / 4
|
|
430
|
+
A_yzz = (
|
|
431
|
+
ym_t * zm_t**2 * A + (ym_t * dz**2 + 2 * zm_t * dy * dz) * A / 12
|
|
432
|
+
)
|
|
433
|
+
A_zzz = zm_t**3 * A + zm_t * dz**2 * A / 4
|
|
434
|
+
A_zyy = (
|
|
435
|
+
zm_t * ym_t**2 * A + (zm_t * dy**2 + 2 * ym_t * dz * dy) * A / 12
|
|
436
|
+
)
|
|
437
|
+
A_yyom = (
|
|
438
|
+
ym_t**2 * omega_m * A
|
|
439
|
+
+ (omega_m * dy**2 + 2 * ym_t * dy * domega) * A / 12
|
|
440
|
+
)
|
|
441
|
+
A_zzom = (
|
|
442
|
+
zm_t**2 * omega_m * A
|
|
443
|
+
+ (omega_m * dz**2 + 2 * zm_t * dz * domega) * A / 12
|
|
444
|
+
)
|
|
445
|
+
|
|
446
|
+
self.CrossSectionElements["Ayyy"][k] = A_yyy
|
|
447
|
+
self.CrossSectionElements["Azzz"][k] = A_zzz
|
|
448
|
+
self.CrossSectionElements["Ayzz"][k] = A_yzz
|
|
449
|
+
self.CrossSectionElements["Azyy"][k] = A_zyy
|
|
450
|
+
|
|
451
|
+
self.CrossSectionElements["ry"][k] = (A_yyy + A_yzz) * 1 / self.I_zz
|
|
452
|
+
self.CrossSectionElements["rz"][k] = (A_zzz + A_zyy) * 1 / self.I_yy
|
|
453
|
+
self.CrossSectionElements["rw"][k] = (A_yyom + A_zzom) * 1 / self.I_w
|
|
454
|
+
|
|
455
|
+
YM = self.CrossSectionElements["yM0"][k] - self.ym
|
|
456
|
+
ZM = self.CrossSectionElements["zM0"][k] - self.zm
|
|
457
|
+
self.y_M = YM
|
|
458
|
+
self.z_M = ZM
|
|
459
|
+
|
|
460
|
+
self.rz = self.CrossSectionElements["rz"].sum() - 2 * ZM
|
|
461
|
+
self.ry = self.CrossSectionElements["ry"].sum() - 2 * YM
|
|
462
|
+
self.rw = self.CrossSectionElements["rw"].sum()
|
|
463
|
+
|
|
464
|
+
|
|
465
|
+
def Export_Controll_Data(self):
|
|
466
|
+
# nr,npa,npe,t [m],ya,ye,ymi,za,ze,zmi
|
|
467
|
+
df_0 = pd.DataFrame(
|
|
468
|
+
{
|
|
469
|
+
"nr": self.CrossSectionElements["nr"],
|
|
470
|
+
"npa": self.CrossSectionElements["npa"],
|
|
471
|
+
"ya": self.CrossSectionElements["ya"],
|
|
472
|
+
"ye": self.CrossSectionElements["ye"],
|
|
473
|
+
}
|
|
474
|
+
)
|
|
475
|
+
|
|
476
|
+
def Export_Cross_Section_Data(self, _unit="cm"):
|
|
477
|
+
unit = _unit
|
|
478
|
+
if unit == "cm":
|
|
479
|
+
df_Data_1 = pd.DataFrame(
|
|
480
|
+
{
|
|
481
|
+
"A": [f"{self.A_ges * 100**2:.2f}"],
|
|
482
|
+
"Iyy": [f"{self.I_yy * 100**4:.2f}"],
|
|
483
|
+
"Izz": [f"{self.I_zz * 100**4:.2f}"],
|
|
484
|
+
"zM": [f"{self.z_M * 100:.2f}"],
|
|
485
|
+
"yM": [f"{self.y_M * 100:.2f}"],
|
|
486
|
+
}
|
|
487
|
+
)
|
|
488
|
+
df_Data_1.to_csv(
|
|
489
|
+
f"Checks/Data/CrossSectionProperties_1_{self.Speichername}.txt",
|
|
490
|
+
index=False,
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
df_Data_2 = pd.DataFrame(
|
|
494
|
+
{
|
|
495
|
+
"IT": [f"{self.I_T_GESAMT * 100**4:.2f}", 230.4],
|
|
496
|
+
"Iw": [f"{self.I_w * 100**6:.2f}", 960000],
|
|
497
|
+
"rz": [f"{self.rz*100:.2f}", 28.40],
|
|
498
|
+
},
|
|
499
|
+
index=["Berechnet", "Erwartet"],
|
|
500
|
+
)
|
|
501
|
+
|
|
502
|
+
df_Data_2.to_csv(
|
|
503
|
+
f"Checks/Data/CrossSectionProperties_2_{self.Speichername}.txt",
|
|
504
|
+
index=False,
|
|
505
|
+
)
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
# Class = CrossSectionThin(
|
|
509
|
+
# 2.1e5,
|
|
510
|
+
# 0.3,
|
|
511
|
+
# "Querschnittseingabe/Knoten_3.csv",
|
|
512
|
+
# "Querschnittseingabe/Elemente_3.csv",
|
|
513
|
+
# "Lit_Ex_1",
|
|
514
|
+
# )
|
|
515
|
+
# Class.read_node_input()
|
|
516
|
+
# Class.CalculateElementStiffness()
|
|
517
|
+
# Class.Calculate_GesMat()
|
|
518
|
+
# Class.SolverTorsion()
|
|
519
|
+
# Class.CalculateAyzw()
|
|
520
|
+
# Class.Update_SMP()
|
|
521
|
+
# Class.Calculate_IwIt()
|
|
522
|
+
# Class.Calculate_WoWu()
|
|
523
|
+
# Class.Calculate_ShearStress_Vz()
|
|
524
|
+
# Class.Calculate_imryrzrw()
|
|
525
|
+
# Class.Export_Controll_Data()
|
|
526
|
+
# Class.Export_Cross_Section_Data()
|
|
527
|
+
|