khoj 2.0.0b13.dev19__py3-none-any.whl → 2.0.0b14.dev7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. khoj/interface/compiled/404/index.html +2 -2
  2. khoj/interface/compiled/_next/static/chunks/{2327-fe87dd989d71d0eb.js → 2327-438aaec1657c5ada.js} +1 -1
  3. khoj/interface/compiled/_next/static/chunks/{3260-43d3019b92c315bb.js → 3260-82d2521fab032ff1.js} +1 -1
  4. khoj/interface/compiled/_next/static/chunks/7127-9273a602fbda737e.js +1 -0
  5. khoj/interface/compiled/_next/static/chunks/app/agents/layout-0114c87d7ccf6d9b.js +1 -0
  6. khoj/interface/compiled/_next/static/chunks/app/agents/{page-e291b49977f43880.js → page-f04757fab73908a4.js} +1 -1
  7. khoj/interface/compiled/_next/static/chunks/app/automations/layout-8639ff99d6c2fec6.js +1 -0
  8. khoj/interface/compiled/_next/static/chunks/app/automations/{page-198b26df6e09bbb0.js → page-fb0e9353e86acd25.js} +1 -1
  9. khoj/interface/compiled/_next/static/chunks/app/chat/layout-2ff3e18a6feae92a.js +1 -0
  10. khoj/interface/compiled/_next/static/chunks/app/chat/page-fd693f65831a2f97.js +1 -0
  11. khoj/interface/compiled/_next/static/chunks/app/{page-1567cac7b79a7c59.js → page-89f5654035b07c00.js} +1 -1
  12. khoj/interface/compiled/_next/static/chunks/app/search/layout-78dd7cdd97510485.js +1 -0
  13. khoj/interface/compiled/_next/static/chunks/app/search/{page-3639e50ec3e9acfd.js → page-6ca71d3d56fc6935.js} +1 -1
  14. khoj/interface/compiled/_next/static/chunks/app/settings/{page-6081362437c82470.js → page-a798de3944f59629.js} +1 -1
  15. khoj/interface/compiled/_next/static/chunks/app/share/chat/layout-9781b62e39ca7785.js +1 -0
  16. khoj/interface/compiled/_next/static/chunks/app/share/chat/{page-e0dcb1762f8c8f88.js → page-07d7ff92aee0bb69.js} +1 -1
  17. khoj/interface/compiled/_next/static/chunks/{webpack-d60b0c57a6c38d0f.js → webpack-8087292aa01e8e55.js} +1 -1
  18. khoj/interface/compiled/_next/static/css/{23b26df423cd8a9c.css → a0c2fd63bb396f04.css} +1 -1
  19. khoj/interface/compiled/_next/static/css/ee66643a6a5bf71c.css +1 -0
  20. khoj/interface/compiled/_next/static/css/fbacbdfd5e7f3f0e.css +1 -0
  21. khoj/interface/compiled/agents/index.html +2 -2
  22. khoj/interface/compiled/agents/index.txt +2 -2
  23. khoj/interface/compiled/automations/index.html +2 -2
  24. khoj/interface/compiled/automations/index.txt +3 -3
  25. khoj/interface/compiled/chat/index.html +2 -2
  26. khoj/interface/compiled/chat/index.txt +5 -4
  27. khoj/interface/compiled/index.html +2 -2
  28. khoj/interface/compiled/index.txt +2 -2
  29. khoj/interface/compiled/search/index.html +2 -2
  30. khoj/interface/compiled/search/index.txt +2 -2
  31. khoj/interface/compiled/settings/index.html +2 -2
  32. khoj/interface/compiled/settings/index.txt +2 -2
  33. khoj/interface/compiled/share/chat/index.html +2 -2
  34. khoj/interface/compiled/share/chat/index.txt +2 -2
  35. khoj/processor/conversation/google/utils.py +59 -12
  36. khoj/processor/conversation/openai/gpt.py +65 -28
  37. khoj/processor/conversation/openai/utils.py +356 -24
  38. khoj/processor/conversation/prompts.py +16 -9
  39. khoj/processor/conversation/utils.py +4 -1
  40. khoj/routers/api_chat.py +5 -2
  41. khoj/routers/api_content.py +1 -1
  42. khoj/routers/helpers.py +18 -4
  43. khoj/routers/research.py +7 -5
  44. khoj/utils/constants.py +6 -0
  45. khoj/utils/helpers.py +6 -6
  46. {khoj-2.0.0b13.dev19.dist-info → khoj-2.0.0b14.dev7.dist-info}/METADATA +1 -1
  47. {khoj-2.0.0b13.dev19.dist-info → khoj-2.0.0b14.dev7.dist-info}/RECORD +52 -52
  48. khoj/interface/compiled/_next/static/chunks/7127-97b83757db125ba6.js +0 -1
  49. khoj/interface/compiled/_next/static/chunks/app/agents/layout-4e2a134ec26aa606.js +0 -1
  50. khoj/interface/compiled/_next/static/chunks/app/automations/layout-63603d2cb33279f7.js +0 -1
  51. khoj/interface/compiled/_next/static/chunks/app/chat/layout-ad4d1792ab1a4108.js +0 -1
  52. khoj/interface/compiled/_next/static/chunks/app/chat/page-9a75d7369f2a7cd2.js +0 -1
  53. khoj/interface/compiled/_next/static/chunks/app/search/layout-c02531d586972d7d.js +0 -1
  54. khoj/interface/compiled/_next/static/chunks/app/share/chat/layout-e8e5db7830bf3f47.js +0 -1
  55. khoj/interface/compiled/_next/static/css/2945c4a857922f3b.css +0 -1
  56. khoj/interface/compiled/_next/static/css/37a73b87f02df402.css +0 -1
  57. /khoj/interface/compiled/_next/static/{N-GdBSXoYe-DuObnbXVRO → suayGPC1Ee3s2bFUreGaV}/_buildManifest.js +0 -0
  58. /khoj/interface/compiled/_next/static/{N-GdBSXoYe-DuObnbXVRO → suayGPC1Ee3s2bFUreGaV}/_ssgManifest.js +0 -0
  59. {khoj-2.0.0b13.dev19.dist-info → khoj-2.0.0b14.dev7.dist-info}/WHEEL +0 -0
  60. {khoj-2.0.0b13.dev19.dist-info → khoj-2.0.0b14.dev7.dist-info}/entry_points.txt +0 -0
  61. {khoj-2.0.0b13.dev19.dist-info → khoj-2.0.0b14.dev7.dist-info}/licenses/LICENSE +0 -0
@@ -9,6 +9,9 @@ from khoj.processor.conversation.openai.utils import (
9
9
  clean_response_schema,
10
10
  completion_with_backoff,
11
11
  get_structured_output_support,
12
+ is_openai_api,
13
+ responses_chat_completion_with_backoff,
14
+ responses_completion_with_backoff,
12
15
  to_openai_tools,
13
16
  )
14
17
  from khoj.processor.conversation.utils import (
@@ -43,31 +46,52 @@ def send_message_to_model(
43
46
  model_kwargs: Dict[str, Any] = {}
44
47
  json_support = get_structured_output_support(model, api_base_url)
45
48
  if tools and json_support == StructuredOutputSupport.TOOL:
46
- model_kwargs["tools"] = to_openai_tools(tools)
49
+ model_kwargs["tools"] = to_openai_tools(tools, use_responses_api=is_openai_api(api_base_url))
47
50
  elif response_schema and json_support >= StructuredOutputSupport.SCHEMA:
48
51
  # Drop unsupported fields from schema passed to OpenAI APi
49
52
  cleaned_response_schema = clean_response_schema(response_schema)
50
- model_kwargs["response_format"] = {
51
- "type": "json_schema",
52
- "json_schema": {
53
- "schema": cleaned_response_schema,
54
- "name": response_schema.__name__,
55
- "strict": True,
56
- },
57
- }
53
+ if is_openai_api(api_base_url):
54
+ model_kwargs["text"] = {
55
+ "format": {
56
+ "type": "json_schema",
57
+ "strict": True,
58
+ "name": response_schema.__name__,
59
+ "schema": cleaned_response_schema,
60
+ }
61
+ }
62
+ else:
63
+ model_kwargs["response_format"] = {
64
+ "type": "json_schema",
65
+ "json_schema": {
66
+ "schema": cleaned_response_schema,
67
+ "name": response_schema.__name__,
68
+ "strict": True,
69
+ },
70
+ }
58
71
  elif response_type == "json_object" and json_support == StructuredOutputSupport.OBJECT:
59
72
  model_kwargs["response_format"] = {"type": response_type}
60
73
 
61
74
  # Get Response from GPT
62
- return completion_with_backoff(
63
- messages=messages,
64
- model_name=model,
65
- openai_api_key=api_key,
66
- api_base_url=api_base_url,
67
- deepthought=deepthought,
68
- model_kwargs=model_kwargs,
69
- tracer=tracer,
70
- )
75
+ if is_openai_api(api_base_url):
76
+ return responses_completion_with_backoff(
77
+ messages=messages,
78
+ model_name=model,
79
+ openai_api_key=api_key,
80
+ api_base_url=api_base_url,
81
+ deepthought=deepthought,
82
+ model_kwargs=model_kwargs,
83
+ tracer=tracer,
84
+ )
85
+ else:
86
+ return completion_with_backoff(
87
+ messages=messages,
88
+ model_name=model,
89
+ openai_api_key=api_key,
90
+ api_base_url=api_base_url,
91
+ deepthought=deepthought,
92
+ model_kwargs=model_kwargs,
93
+ tracer=tracer,
94
+ )
71
95
 
72
96
 
73
97
  async def converse_openai(
@@ -163,13 +187,26 @@ async def converse_openai(
163
187
  logger.debug(f"Conversation Context for GPT: {messages_to_print(messages)}")
164
188
 
165
189
  # Get Response from GPT
166
- async for chunk in chat_completion_with_backoff(
167
- messages=messages,
168
- model_name=model,
169
- temperature=temperature,
170
- openai_api_key=api_key,
171
- api_base_url=api_base_url,
172
- deepthought=deepthought,
173
- tracer=tracer,
174
- ):
175
- yield chunk
190
+ if is_openai_api(api_base_url):
191
+ async for chunk in responses_chat_completion_with_backoff(
192
+ messages=messages,
193
+ model_name=model,
194
+ temperature=temperature,
195
+ openai_api_key=api_key,
196
+ api_base_url=api_base_url,
197
+ deepthought=deepthought,
198
+ tracer=tracer,
199
+ ):
200
+ yield chunk
201
+ else:
202
+ # For non-OpenAI APIs, use the chat completion method
203
+ async for chunk in chat_completion_with_backoff(
204
+ messages=messages,
205
+ model_name=model,
206
+ temperature=temperature,
207
+ openai_api_key=api_key,
208
+ api_base_url=api_base_url,
209
+ deepthought=deepthought,
210
+ tracer=tracer,
211
+ ):
212
+ yield chunk
@@ -21,6 +21,8 @@ from openai.types.chat.chat_completion_chunk import (
21
21
  Choice,
22
22
  ChoiceDelta,
23
23
  )
24
+ from openai.types.responses import Response as OpenAIResponse
25
+ from openai.types.responses import ResponseFunctionToolCall, ResponseReasoningItem
24
26
  from pydantic import BaseModel
25
27
  from tenacity import (
26
28
  before_sleep_log,
@@ -53,13 +55,31 @@ openai_clients: Dict[str, openai.OpenAI] = {}
53
55
  openai_async_clients: Dict[str, openai.AsyncOpenAI] = {}
54
56
 
55
57
 
58
+ def _extract_text_for_instructions(content: Union[str, List, Dict, None]) -> str:
59
+ """Extract plain text from a message content suitable for Responses API instructions."""
60
+ if content is None:
61
+ return ""
62
+ if isinstance(content, str):
63
+ return content
64
+ if isinstance(content, list):
65
+ texts: List[str] = []
66
+ for part in content:
67
+ if isinstance(part, dict) and part.get("type") == "input_text" and part.get("text"):
68
+ texts.append(str(part.get("text")))
69
+ return "\n\n".join(texts)
70
+ if isinstance(content, dict):
71
+ # If a single part dict was passed
72
+ if content.get("type") == "input_text" and content.get("text"):
73
+ return str(content.get("text"))
74
+ # Fallback to string conversion
75
+ return str(content)
76
+
77
+
56
78
  @retry(
57
79
  retry=(
58
80
  retry_if_exception_type(openai._exceptions.APITimeoutError)
59
- | retry_if_exception_type(openai._exceptions.APIError)
60
- | retry_if_exception_type(openai._exceptions.APIConnectionError)
61
81
  | retry_if_exception_type(openai._exceptions.RateLimitError)
62
- | retry_if_exception_type(openai._exceptions.APIStatusError)
82
+ | retry_if_exception_type(openai._exceptions.InternalServerError)
63
83
  | retry_if_exception_type(ValueError)
64
84
  ),
65
85
  wait=wait_random_exponential(min=1, max=10),
@@ -227,10 +247,8 @@ def completion_with_backoff(
227
247
  @retry(
228
248
  retry=(
229
249
  retry_if_exception_type(openai._exceptions.APITimeoutError)
230
- | retry_if_exception_type(openai._exceptions.APIError)
231
- | retry_if_exception_type(openai._exceptions.APIConnectionError)
232
250
  | retry_if_exception_type(openai._exceptions.RateLimitError)
233
- | retry_if_exception_type(openai._exceptions.APIStatusError)
251
+ | retry_if_exception_type(openai._exceptions.InternalServerError)
234
252
  | retry_if_exception_type(ValueError)
235
253
  ),
236
254
  wait=wait_exponential(multiplier=1, min=4, max=10),
@@ -390,6 +408,283 @@ async def chat_completion_with_backoff(
390
408
  commit_conversation_trace(messages, aggregated_response, tracer)
391
409
 
392
410
 
411
+ @retry(
412
+ retry=(
413
+ retry_if_exception_type(openai._exceptions.APITimeoutError)
414
+ | retry_if_exception_type(openai._exceptions.RateLimitError)
415
+ | retry_if_exception_type(openai._exceptions.InternalServerError)
416
+ | retry_if_exception_type(ValueError)
417
+ ),
418
+ wait=wait_random_exponential(min=1, max=10),
419
+ stop=stop_after_attempt(3),
420
+ before_sleep=before_sleep_log(logger, logging.DEBUG),
421
+ reraise=True,
422
+ )
423
+ def responses_completion_with_backoff(
424
+ messages: List[ChatMessage],
425
+ model_name: str,
426
+ temperature=0.6,
427
+ openai_api_key=None,
428
+ api_base_url=None,
429
+ deepthought: bool = False,
430
+ model_kwargs: dict = {},
431
+ tracer: dict = {},
432
+ ) -> ResponseWithThought:
433
+ """
434
+ Synchronous helper using the OpenAI Responses API in streaming mode under the hood.
435
+ Aggregates streamed deltas and returns a ResponseWithThought.
436
+ """
437
+ client_key = f"{openai_api_key}--{api_base_url}"
438
+ client = openai_clients.get(client_key)
439
+ if not client:
440
+ client = get_openai_client(openai_api_key, api_base_url)
441
+ openai_clients[client_key] = client
442
+
443
+ formatted_messages = format_message_for_api(messages, api_base_url)
444
+ # Move the first system message to Responses API instructions
445
+ instructions: Optional[str] = None
446
+ if formatted_messages and formatted_messages[0].get("role") == "system":
447
+ instructions = _extract_text_for_instructions(formatted_messages[0].get("content")) or None
448
+ formatted_messages = formatted_messages[1:]
449
+
450
+ model_kwargs = deepcopy(model_kwargs)
451
+ model_kwargs["top_p"] = model_kwargs.get("top_p", 0.95)
452
+ # Configure thinking for openai reasoning models
453
+ if is_openai_reasoning_model(model_name, api_base_url):
454
+ temperature = 1
455
+ reasoning_effort = "medium" if deepthought else "low"
456
+ model_kwargs["reasoning"] = {"effort": reasoning_effort, "summary": "auto"}
457
+ # Remove unsupported params for reasoning models
458
+ model_kwargs.pop("top_p", None)
459
+ model_kwargs.pop("stop", None)
460
+
461
+ read_timeout = 300 if is_local_api(api_base_url) else 60
462
+
463
+ # Stream and aggregate
464
+ model_response: OpenAIResponse = client.responses.create(
465
+ input=formatted_messages,
466
+ instructions=instructions,
467
+ model=model_name,
468
+ temperature=temperature,
469
+ timeout=httpx.Timeout(30, read=read_timeout), # type: ignore
470
+ store=False,
471
+ include=["reasoning.encrypted_content"],
472
+ **model_kwargs,
473
+ )
474
+ if not model_response or not isinstance(model_response, OpenAIResponse) or not model_response.output:
475
+ raise ValueError(f"Empty response returned by {model_name}.")
476
+
477
+ raw_content = [item.model_dump() for item in model_response.output]
478
+ aggregated_text = model_response.output_text
479
+ thoughts = ""
480
+ tool_calls: List[ToolCall] = []
481
+ for item in model_response.output:
482
+ if isinstance(item, ResponseFunctionToolCall):
483
+ tool_calls.append(ToolCall(name=item.name, args=json.loads(item.arguments), id=item.call_id))
484
+ elif isinstance(item, ResponseReasoningItem):
485
+ thoughts = "\n\n".join([summary.text for summary in item.summary])
486
+
487
+ if tool_calls:
488
+ if thoughts and aggregated_text:
489
+ # If there are tool calls, aggregate thoughts and responses into thoughts
490
+ thoughts = "\n".join([f"*{line.strip()}*" for line in thoughts.splitlines() if line.strip()])
491
+ thoughts = f"{thoughts}\n\n{aggregated_text}"
492
+ else:
493
+ thoughts = thoughts or aggregated_text
494
+ # Json dump tool calls into aggregated response
495
+ aggregated_text = json.dumps([tool_call.__dict__ for tool_call in tool_calls])
496
+
497
+ # Usage/cost tracking
498
+ input_tokens = model_response.usage.input_tokens if model_response and model_response.usage else 0
499
+ output_tokens = model_response.usage.output_tokens if model_response and model_response.usage else 0
500
+ cost = 0
501
+ cache_read_tokens = 0
502
+ if model_response and model_response.usage and model_response.usage.input_tokens_details:
503
+ cache_read_tokens = model_response.usage.input_tokens_details.cached_tokens
504
+ input_tokens -= cache_read_tokens
505
+ tracer["usage"] = get_chat_usage_metrics(
506
+ model_name, input_tokens, output_tokens, cache_read_tokens, usage=tracer.get("usage"), cost=cost
507
+ )
508
+
509
+ # Validate final aggregated text (either message or tool-calls JSON)
510
+ if is_none_or_empty(aggregated_text):
511
+ logger.warning(f"No response by {model_name}\nLast Message by {messages[-1].role}: {messages[-1].content}.")
512
+ raise ValueError(f"Empty or no response by {model_name} over Responses API. Retry if needed.")
513
+
514
+ # Trace
515
+ tracer["chat_model"] = model_name
516
+ tracer["temperature"] = temperature
517
+ if is_promptrace_enabled():
518
+ commit_conversation_trace(messages, aggregated_text, tracer)
519
+
520
+ return ResponseWithThought(text=aggregated_text, thought=thoughts, raw_content=raw_content)
521
+
522
+
523
+ @retry(
524
+ retry=(
525
+ retry_if_exception_type(openai._exceptions.APITimeoutError)
526
+ | retry_if_exception_type(openai._exceptions.RateLimitError)
527
+ | retry_if_exception_type(openai._exceptions.InternalServerError)
528
+ | retry_if_exception_type(ValueError)
529
+ ),
530
+ wait=wait_exponential(multiplier=1, min=4, max=10),
531
+ stop=stop_after_attempt(3),
532
+ before_sleep=before_sleep_log(logger, logging.WARNING),
533
+ reraise=False,
534
+ )
535
+ async def responses_chat_completion_with_backoff(
536
+ messages: list[ChatMessage],
537
+ model_name: str,
538
+ temperature,
539
+ openai_api_key=None,
540
+ api_base_url=None,
541
+ deepthought=False, # Unused; parity with legacy signature
542
+ tracer: dict = {},
543
+ ) -> AsyncGenerator[ResponseWithThought, None]:
544
+ """
545
+ Async streaming helper using the OpenAI Responses API.
546
+ Yields ResponseWithThought chunks as text/think deltas arrive.
547
+ """
548
+ client_key = f"{openai_api_key}--{api_base_url}"
549
+ client = openai_async_clients.get(client_key)
550
+ if not client:
551
+ client = get_openai_async_client(openai_api_key, api_base_url)
552
+ openai_async_clients[client_key] = client
553
+
554
+ formatted_messages = format_message_for_api(messages, api_base_url)
555
+ # Move the first system message to Responses API instructions
556
+ instructions: Optional[str] = None
557
+ if formatted_messages and formatted_messages[0].get("role") == "system":
558
+ instructions = _extract_text_for_instructions(formatted_messages[0].get("content")) or None
559
+ formatted_messages = formatted_messages[1:]
560
+
561
+ model_kwargs: dict = {}
562
+ model_kwargs["top_p"] = model_kwargs.get("top_p", 0.95)
563
+ # Configure thinking for openai reasoning models
564
+ if is_openai_reasoning_model(model_name, api_base_url):
565
+ temperature = 1
566
+ reasoning_effort = "medium" if deepthought else "low"
567
+ model_kwargs["reasoning"] = {"effort": reasoning_effort, "summary": "auto"}
568
+ # Remove unsupported params for reasoning models
569
+ model_kwargs.pop("top_p", None)
570
+ model_kwargs.pop("stop", None)
571
+
572
+ read_timeout = 300 if is_local_api(api_base_url) else 60
573
+
574
+ aggregated_text = ""
575
+ last_final: Optional[OpenAIResponse] = None
576
+ # Tool call assembly buffers
577
+ tool_calls_args: Dict[str, str] = {}
578
+ tool_calls_name: Dict[str, str] = {}
579
+ tool_call_order: List[str] = []
580
+
581
+ async with client.responses.stream(
582
+ input=formatted_messages,
583
+ instructions=instructions,
584
+ model=model_name,
585
+ temperature=temperature,
586
+ timeout=httpx.Timeout(30, read=read_timeout),
587
+ **model_kwargs,
588
+ ) as stream: # type: ignore
589
+ async for event in stream: # type: ignore
590
+ et = getattr(event, "type", "")
591
+ if et == "response.output_text.delta":
592
+ delta = getattr(event, "delta", "") or getattr(event, "output_text", "")
593
+ if delta:
594
+ aggregated_text += delta
595
+ yield ResponseWithThought(text=delta)
596
+ elif et == "response.reasoning.delta":
597
+ delta = getattr(event, "delta", "")
598
+ if delta:
599
+ yield ResponseWithThought(thought=delta)
600
+ elif et == "response.tool_call.created":
601
+ item = getattr(event, "item", None)
602
+ tool_id = (
603
+ getattr(event, "id", None)
604
+ or getattr(event, "tool_call_id", None)
605
+ or (getattr(item, "id", None) if item is not None else None)
606
+ )
607
+ name = (
608
+ getattr(event, "name", None)
609
+ or (getattr(item, "name", None) if item is not None else None)
610
+ or getattr(event, "tool_name", None)
611
+ )
612
+ if tool_id:
613
+ if tool_id not in tool_calls_args:
614
+ tool_calls_args[tool_id] = ""
615
+ tool_call_order.append(tool_id)
616
+ if name:
617
+ tool_calls_name[tool_id] = name
618
+ elif et == "response.tool_call.delta":
619
+ tool_id = getattr(event, "id", None) or getattr(event, "tool_call_id", None)
620
+ delta = getattr(event, "delta", None)
621
+ if hasattr(delta, "arguments"):
622
+ arg_delta = getattr(delta, "arguments", "")
623
+ else:
624
+ arg_delta = delta if isinstance(delta, str) else getattr(event, "arguments", "")
625
+ if tool_id and arg_delta:
626
+ tool_calls_args[tool_id] = tool_calls_args.get(tool_id, "") + arg_delta
627
+ if tool_id not in tool_call_order:
628
+ tool_call_order.append(tool_id)
629
+ elif et == "response.tool_call.completed":
630
+ item = getattr(event, "item", None)
631
+ tool_id = (
632
+ getattr(event, "id", None)
633
+ or getattr(event, "tool_call_id", None)
634
+ or (getattr(item, "id", None) if item is not None else None)
635
+ )
636
+ args_final = None
637
+ if item is not None:
638
+ args_final = getattr(item, "arguments", None) or getattr(item, "args", None)
639
+ if tool_id and args_final:
640
+ tool_calls_args[tool_id] = args_final if isinstance(args_final, str) else json.dumps(args_final)
641
+ if tool_id not in tool_call_order:
642
+ tool_call_order.append(tool_id)
643
+ # ignore other events for now
644
+ last_final = await stream.get_final_response()
645
+
646
+ # Usage/cost tracking after stream ends
647
+ input_tokens = last_final.usage.input_tokens if last_final and last_final.usage else 0
648
+ output_tokens = last_final.usage.output_tokens if last_final and last_final.usage else 0
649
+ cost = 0
650
+ tracer["usage"] = get_chat_usage_metrics(
651
+ model_name, input_tokens, output_tokens, usage=tracer.get("usage"), cost=cost
652
+ )
653
+
654
+ # If there are tool calls, package them into aggregated text for tracing parity
655
+ if tool_call_order:
656
+ packaged_tool_calls: List[ToolCall] = []
657
+ for tool_id in tool_call_order:
658
+ name = tool_calls_name.get(tool_id) or ""
659
+ args_str = tool_calls_args.get(tool_id, "")
660
+ try:
661
+ args = json.loads(args_str) if isinstance(args_str, str) else args_str
662
+ except Exception:
663
+ logger.warning(f"Failed to parse tool call arguments for {tool_id}: {args_str}")
664
+ args = {}
665
+ packaged_tool_calls.append(ToolCall(name=name, args=args, id=tool_id))
666
+ # Move any text into trace thought
667
+ tracer_text = aggregated_text
668
+ aggregated_text = json.dumps([tc.__dict__ for tc in packaged_tool_calls])
669
+ # Save for trace below
670
+ if tracer_text:
671
+ tracer.setdefault("_responses_stream_text", tracer_text)
672
+
673
+ if is_none_or_empty(aggregated_text):
674
+ logger.warning(f"No response by {model_name}\nLast Message by {messages[-1].role}: {messages[-1].content}.")
675
+ raise ValueError(f"Empty or no response by {model_name} over Responses API. Retry if needed.")
676
+
677
+ tracer["chat_model"] = model_name
678
+ tracer["temperature"] = temperature
679
+ if is_promptrace_enabled():
680
+ # If tool-calls were present, include any streamed text in the trace thought
681
+ trace_payload = aggregated_text
682
+ if tracer.get("_responses_stream_text"):
683
+ thoughts = tracer.pop("_responses_stream_text")
684
+ trace_payload = thoughts
685
+ commit_conversation_trace(messages, trace_payload, tracer)
686
+
687
+
393
688
  def get_structured_output_support(model_name: str, api_base_url: str = None) -> StructuredOutputSupport:
394
689
  if model_name.startswith("deepseek-reasoner"):
395
690
  return StructuredOutputSupport.NONE
@@ -412,6 +707,12 @@ def format_message_for_api(raw_messages: List[ChatMessage], api_base_url: str) -
412
707
  # Handle tool call and tool result message types
413
708
  message_type = message.additional_kwargs.get("message_type")
414
709
  if message_type == "tool_call":
710
+ if is_openai_api(api_base_url):
711
+ for part in message.content:
712
+ if "status" in part:
713
+ part.pop("status") # Drop unsupported tool call status field
714
+ formatted_messages.extend(message.content)
715
+ continue
415
716
  # Convert tool_call to OpenAI function call format
416
717
  content = []
417
718
  for part in message.content:
@@ -450,14 +751,23 @@ def format_message_for_api(raw_messages: List[ChatMessage], api_base_url: str) -
450
751
  if not tool_call_id:
451
752
  logger.warning(f"Dropping tool result without valid tool_call_id: {part.get('name')}")
452
753
  continue
453
- formatted_messages.append(
454
- {
455
- "role": "tool",
456
- "tool_call_id": tool_call_id,
457
- "name": part.get("name"),
458
- "content": part.get("content"),
459
- }
460
- )
754
+ if is_openai_api(api_base_url):
755
+ formatted_messages.append(
756
+ {
757
+ "type": "function_call_output",
758
+ "call_id": tool_call_id,
759
+ "output": part.get("content") or "No output",
760
+ }
761
+ )
762
+ else:
763
+ formatted_messages.append(
764
+ {
765
+ "role": "tool",
766
+ "tool_call_id": tool_call_id,
767
+ "name": part.get("name"),
768
+ "content": part.get("content") or "No output",
769
+ }
770
+ )
461
771
  continue
462
772
  if isinstance(message.content, list) and not is_openai_api(api_base_url):
463
773
  assistant_texts = []
@@ -489,6 +799,11 @@ def format_message_for_api(raw_messages: List[ChatMessage], api_base_url: str) -
489
799
  message.content.remove(part)
490
800
  elif part["type"] == "image_url" and not part.get("image_url"):
491
801
  message.content.remove(part)
802
+ # OpenAI models use the Responses API which uses slightly different content types
803
+ if part["type"] == "text":
804
+ part["type"] = "output_text" if message.role == "assistant" else "input_text"
805
+ if part["type"] == "image":
806
+ part["type"] = "output_image" if message.role == "assistant" else "input_image"
492
807
  # If no valid content parts left, remove the message
493
808
  if is_none_or_empty(message.content):
494
809
  messages.remove(message)
@@ -513,7 +828,9 @@ def is_openai_reasoning_model(model_name: str, api_base_url: str = None) -> bool
513
828
  """
514
829
  Check if the model is an OpenAI reasoning model
515
830
  """
516
- return model_name.lower().startswith("o") and is_openai_api(api_base_url)
831
+ return is_openai_api(api_base_url) and (
832
+ model_name.lower().startswith("o") or model_name.lower().startswith("gpt-5")
833
+ )
517
834
 
518
835
 
519
836
  def is_non_streaming_model(model_name: str, api_base_url: str = None) -> bool:
@@ -609,6 +926,9 @@ async def astream_thought_processor(
609
926
  if not chunk_data.get("object") or chunk_data.get("object") != "chat.completion.chunk":
610
927
  logger.warning(f"Skipping invalid chunk with object field: {chunk_data.get('object', 'missing')}")
611
928
  continue
929
+ # Handle unsupported service tiers like "on_demand" by Groq
930
+ if chunk.service_tier and chunk.service_tier == "on_demand":
931
+ chunk_data["service_tier"] = "auto"
612
932
 
613
933
  tchunk = ChatCompletionWithThoughtsChunk.model_validate(chunk_data)
614
934
 
@@ -850,20 +1170,32 @@ def add_qwen_no_think_tag(formatted_messages: List[dict]) -> None:
850
1170
  break
851
1171
 
852
1172
 
853
- def to_openai_tools(tools: List[ToolDefinition]) -> List[Dict] | None:
1173
+ def to_openai_tools(tools: List[ToolDefinition], use_responses_api: bool) -> List[Dict] | None:
854
1174
  "Transform tool definitions from standard format to OpenAI format."
855
- openai_tools = [
856
- {
857
- "type": "function",
858
- "function": {
1175
+ if use_responses_api:
1176
+ openai_tools = [
1177
+ {
1178
+ "type": "function",
859
1179
  "name": tool.name,
860
1180
  "description": tool.description,
861
1181
  "parameters": clean_response_schema(tool.schema),
862
1182
  "strict": True,
863
- },
864
- }
865
- for tool in tools
866
- ]
1183
+ }
1184
+ for tool in tools
1185
+ ]
1186
+ else:
1187
+ openai_tools = [
1188
+ {
1189
+ "type": "function",
1190
+ "function": {
1191
+ "name": tool.name,
1192
+ "description": tool.description,
1193
+ "parameters": clean_response_schema(tool.schema),
1194
+ "strict": True,
1195
+ },
1196
+ }
1197
+ for tool in tools
1198
+ ]
867
1199
 
868
1200
  return openai_tools or None
869
1201
 
@@ -519,12 +519,13 @@ Q: {query}
519
519
 
520
520
  extract_questions_system_prompt = PromptTemplate.from_template(
521
521
  """
522
- You are Khoj, an extremely smart and helpful document search assistant with only the ability to retrieve information from the user's notes.
523
- Construct search queries to retrieve relevant information to answer the user's question.
522
+ You are Khoj, an extremely smart and helpful document search assistant with only the ability to use natural language semantic search to retrieve information from the user's notes.
523
+ Construct upto {max_queries} search queries to retrieve relevant information to answer the user's question.
524
524
  - You will be provided past questions(User), search queries(Assistant) and answers(A) for context.
525
- - Add as much context from the previous questions and answers as required into your search queries.
526
- - Break your search down into multiple search queries from a diverse set of lenses to retrieve all related documents.
527
- - Add date filters to your search queries from questions and answers when required to retrieve the relevant information.
525
+ - You can use context from previous questions and answers to improve your search queries.
526
+ - Break down your search into multiple search queries from a diverse set of lenses to retrieve all related documents. E.g who, what, where, when, why, how.
527
+ - Add date filters to your search queries when required to retrieve the relevant information. This is the only structured query filter you can use.
528
+ - Output 1 concept per query. Do not use boolean operators (OR/AND) to combine queries. They do not work and degrade search quality.
528
529
  - When asked a meta, vague or random questions, search for a variety of broad topics to answer the user's question.
529
530
  {personality_context}
530
531
  What searches will you perform to answer the users question? Respond with a JSON object with the key "queries" mapping to a list of searches you would perform on the user's knowledge base. Just return the queries and nothing else.
@@ -535,22 +536,27 @@ User's Location: {location}
535
536
 
536
537
  Here are some examples of how you can construct search queries to answer the user's question:
537
538
 
539
+ Illustrate - Using diverse perspectives to retrieve all relevant documents
538
540
  User: How was my trip to Cambodia?
539
541
  Assistant: {{"queries": ["How was my trip to Cambodia?", "Angkor Wat temple visit", "Flight to Phnom Penh", "Expenses in Cambodia", "Stay in Cambodia"]}}
540
542
  A: The trip was amazing. You went to the Angkor Wat temple and it was beautiful.
541
543
 
544
+ Illustrate - Combining date filters with natural language queries to retrieve documents in relevant date range
542
545
  User: What national parks did I go to last year?
543
546
  Assistant: {{"queries": ["National park I visited in {last_new_year} dt>='{last_new_year_date}' dt<'{current_new_year_date}'"]}}
544
547
  A: You visited the Grand Canyon and Yellowstone National Park in {last_new_year}.
545
548
 
549
+ Illustrate - Using broad topics to answer meta or vague questions
546
550
  User: How can you help me?
547
551
  Assistant: {{"queries": ["Social relationships", "Physical and mental health", "Education and career", "Personal life goals and habits"]}}
548
552
  A: I can help you live healthier and happier across work and personal life
549
553
 
554
+ Illustrate - Combining location and date in natural language queries with date filters to retrieve relevant documents
550
555
  User: Who all did I meet here yesterday?
551
556
  Assistant: {{"queries": ["Met in {location} on {yesterday_date} dt>='{yesterday_date}' dt<'{current_date}'"]}}
552
557
  A: Yesterday's note mentions your visit to your local beach with Ram and Shyam.
553
558
 
559
+ Illustrate - Combining broad, diverse topics with date filters to answer meta or vague questions
554
560
  User: Share some random, interesting experiences from this month
555
561
  Assistant: {{"queries": ["Exciting travel adventures from {current_month}", "Fun social events dt>='{current_month}-01' dt<'{current_date}'", "Intense emotional experiences in {current_month}"]}}
556
562
  A: You had a great time at the local beach with your friends, attended a music concert and had a deep conversation with your friend, Khalid.
@@ -635,16 +641,17 @@ Here's some additional context about you:
635
641
 
636
642
  plan_function_execution = PromptTemplate.from_template(
637
643
  """
638
- You are Khoj, a smart, creative and meticulous researcher. Use the provided tool AIs to accomplish the task assigned to you.
644
+ You are Khoj, a smart, creative and meticulous researcher.
639
645
  Create a multi-step plan and intelligently iterate on the plan to complete the task.
646
+ Use the help of the provided tool AIs to accomplish the task assigned to you.
640
647
  {personality_context}
641
648
 
642
649
  # Instructions
643
- - Provide highly diverse, detailed requests to the tool AIs, one tool AI at a time, to gather information, perform actions etc. Their response will be shown to you in the next iteration.
644
- - Break down your research process into independent, self-contained steps that can be executed sequentially using the available tool AIs to answer the user's query. Write your step-by-step plan in the scratchpad.
645
- - Always ask a new query that was not asked to the tool AI in a previous iteration. Build on the results of the previous iterations.
650
+ - Make detailed, self-contained requests to the tool AIs, one tool AI at a time, to gather information, perform actions etc.
651
+ - Break down your research process into independent, self-contained steps that can be executed sequentially using the available tool AIs to accomplish the user assigned task.
646
652
  - Ensure that all required context is passed to the tool AIs for successful execution. Include any relevant stuff that has previously been attempted. They only know the context provided in your query.
647
653
  - Think step by step to come up with creative strategies when the previous iteration did not yield useful results.
654
+ - Do not ask the user to confirm or clarify assumptions for information gathering tasks and non-destructive actions, as you can always adjust later — decide what the most reasonable assumption is, proceed with it, and document it for the user's reference after you finish acting.
648
655
  - You are allowed upto {max_iterations} iterations to use the help of the provided tool AIs to accomplish the task assigned to you. Only stop when you have completed the task.
649
656
 
650
657
  # Examples
@@ -68,6 +68,9 @@ model_to_prompt_size = {
68
68
  "o3": 60000,
69
69
  "o3-pro": 30000,
70
70
  "o4-mini": 90000,
71
+ "gpt-5-2025-08-07": 120000,
72
+ "gpt-5-mini-2025-08-07": 120000,
73
+ "gpt-5-nano-2025-08-07": 120000,
71
74
  # Google Models
72
75
  "gemini-2.5-flash": 120000,
73
76
  "gemini-2.5-pro": 60000,
@@ -328,7 +331,7 @@ def construct_tool_chat_history(
328
331
  ConversationCommand.ReadWebpage: (
329
332
  lambda iteration: list(iteration.onlineContext.keys()) if iteration.onlineContext else []
330
333
  ),
331
- ConversationCommand.RunCode: (
334
+ ConversationCommand.PythonCoder: (
332
335
  lambda iteration: list(iteration.codeContext.keys()) if iteration.codeContext else []
333
336
  ),
334
337
  }