kevin-toolbox-dev 1.4.6__py3-none-any.whl → 1.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
kevin_toolbox/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "1.4.6"
1
+ __version__ = "1.4.7"
2
2
 
3
3
 
4
4
  import os
@@ -12,5 +12,5 @@ os.system(
12
12
  os.system(
13
13
  f'python {os.path.split(__file__)[0]}/env_info/check_validity_and_uninstall.py '
14
14
  f'--package_name kevin-toolbox-dev '
15
- f'--expiration_timestamp 1753280251 --verbose 0'
15
+ f'--expiration_timestamp 1755525740 --verbose 0'
16
16
  )
@@ -1 +1,2 @@
1
1
  from .multi_thread_execute import multi_thread_execute
2
+ from .multi_process_execute import multi_process_execute
@@ -0,0 +1,109 @@
1
+ import pickle
2
+ import concurrent.futures
3
+ from multiprocessing import Manager
4
+ from kevin_toolbox.computer_science.data_structure import Executor
5
+ from kevin_toolbox.computer_science.algorithm.parallel_and_concurrent.utils import wrapper_for_mp as wrapper
6
+ from kevin_toolbox.computer_science.algorithm.parallel_and_concurrent.utils import DEFAULT_PROCESS_NUMS
7
+
8
+
9
+ def multi_process_execute(executors, worker_nums=DEFAULT_PROCESS_NUMS, b_display_progress=True, timeout=None,
10
+ _hook_for_debug=None):
11
+ """
12
+ 多进程执行
13
+
14
+ 参数:
15
+ executors: <list/generator/iterator of Executor> 执行器序列
16
+ worker_nums: <int> 进程数
17
+ b_display_progress: <boolean> 是否显示进度条
18
+ timeout: <int/float> 每个进程的最大等待时间,单位是s
19
+ 默认为 None,表示允许等待无限长的时间
20
+ _hook_for_debug: <dict/None> 当设置为非 None 值时,将保存中间的执行信息。
21
+ 包括:
22
+ - "execution_orders": 执行顺序
23
+ - "completion_orders": 完成顺序
24
+ 这些信息与最终结果无关,仅面向更底层的调试需求,任何人都不应依赖该特性
25
+ 返回:
26
+ res_ls, failed_idx_ls
27
+ 执行结果列表,以及执行失败的执行器索引列表
28
+ """
29
+ executor_ls = []
30
+ for i in executors:
31
+ assert isinstance(i, (Executor,))
32
+ try:
33
+ pickle.dumps(i)
34
+ except:
35
+ raise AttributeError(
36
+ f'非法任务。因为进程池中的任务必须要能被pickle化。\n对象 {i} 无法被 pickle,请检查其中是否使用了闭包内定义的函数')
37
+ executor_ls.append(i)
38
+ if b_display_progress:
39
+ from tqdm import tqdm
40
+ p_bar = tqdm(total=len(executor_ls))
41
+ else:
42
+ p_bar = None
43
+
44
+ if isinstance(_hook_for_debug, dict):
45
+ _execution_orders, _completion_orders = Manager().list(), Manager().list()
46
+ else:
47
+ _execution_orders, _completion_orders = None, None
48
+
49
+ res_ls = [None] * len(executor_ls)
50
+ failed_idx_ls = []
51
+ with concurrent.futures.ProcessPoolExecutor(max_workers=worker_nums) as process_pool:
52
+ # 提交任务并添加进度回调
53
+ futures = []
54
+ for i, executor in enumerate(executor_ls):
55
+ future = process_pool.submit(wrapper, executor, timeout, i, _execution_orders, _completion_orders)
56
+ if b_display_progress:
57
+ future.add_done_callback(lambda _: p_bar.update())
58
+ futures.append(future)
59
+
60
+ # 收集结果
61
+ for i, future in enumerate(futures):
62
+ try:
63
+ res, b_success = future.result()
64
+ except:
65
+ b_success = False
66
+ if b_success:
67
+ res_ls[i] = res
68
+ else:
69
+ failed_idx_ls.append(i)
70
+
71
+ if b_display_progress:
72
+ p_bar.close()
73
+
74
+ if isinstance(_hook_for_debug, (dict,)):
75
+ _hook_for_debug.update({
76
+ "execution_orders": list(_execution_orders),
77
+ "completion_orders": list(_completion_orders)
78
+ })
79
+
80
+ return res_ls, failed_idx_ls
81
+
82
+
83
+ if __name__ == '__main__':
84
+ import time
85
+
86
+
87
+ def func_(i):
88
+ # 模拟部分任务长时间运行,部分任务正常结束
89
+ if i in [2, 3, 7]:
90
+ time.sleep(100)
91
+ else:
92
+ time.sleep(0.01)
93
+ print(f"任务 {i} 执行完成")
94
+ return i * 2
95
+
96
+
97
+ hook_for_debug = dict()
98
+ a = time.time()
99
+ results, failed = multi_process_execute(
100
+ executors=[Executor(func=func_, args=(i,)) for i in range(10)],
101
+ worker_nums=10,
102
+ timeout=0.2,
103
+ _hook_for_debug=hook_for_debug
104
+ )
105
+ gap = time.time() - a
106
+ print("执行结果:", results)
107
+ print("超时失败的任务索引:", failed)
108
+ print("调试信息:", hook_for_debug)
109
+ print("总耗时:", gap)
@@ -1,14 +1,18 @@
1
1
  import concurrent.futures
2
+ from multiprocessing import Manager
2
3
  from kevin_toolbox.computer_science.data_structure import Executor
4
+ from kevin_toolbox.computer_science.algorithm.parallel_and_concurrent.utils import wrapper_for_mt as wrapper
5
+ from kevin_toolbox.computer_science.algorithm.parallel_and_concurrent.utils import DEFAULT_THREAD_NUMS
3
6
 
4
7
 
5
- def multi_thread_execute(executors, thread_nums=50, b_display_progress=True, timeout=None, _hook_for_debug=None):
8
+ def multi_thread_execute(executors, worker_nums=DEFAULT_THREAD_NUMS, b_display_progress=True, timeout=None,
9
+ _hook_for_debug=None):
6
10
  """
7
11
  多线程执行
8
12
 
9
13
  参数:
10
14
  executors: <list/generator/iterator of Executor> 执行器序列
11
- thread_nums: <int> 线程数
15
+ worker_nums: <int> 线程数
12
16
  b_display_progress: <boolean> 是否显示进度条
13
17
  timeout: <int> 每个线程的最大等待时间,单位是s
14
18
  默认为 None,表示允许等待无限长的时间
@@ -30,37 +34,42 @@ def multi_thread_execute(executors, thread_nums=50, b_display_progress=True, tim
30
34
  p_bar = tqdm(total=len(executor_ls))
31
35
  else:
32
36
  p_bar = None
33
- _execution_orders, _completion_orders = [], []
34
37
 
35
- def wrapper(executor, idx):
36
- nonlocal p_bar, _execution_orders, _completion_orders
37
- _execution_orders.append(idx)
38
- res = executor.run()
39
- _completion_orders.append(idx)
40
- if p_bar is not None:
41
- p_bar.update()
42
-
43
- return res
38
+ if isinstance(_hook_for_debug, dict):
39
+ _execution_orders, _completion_orders = Manager().list(), Manager().list()
40
+ else:
41
+ _execution_orders, _completion_orders = None, None
44
42
 
45
- res_ls, failed_idx_ls = [], []
46
- with concurrent.futures.ThreadPoolExecutor(max_workers=thread_nums) as thread_pool:
43
+ res_ls = [None] * len(executor_ls)
44
+ failed_idx_ls = []
45
+ with concurrent.futures.ThreadPoolExecutor(max_workers=worker_nums) as thread_pool:
47
46
  # 提交任务
48
- futures = [thread_pool.submit(wrapper, executor, i) for i, executor in enumerate(executors)]
49
- # 设置超时时间
50
- concurrent.futures.wait(futures, timeout=timeout)
51
- #
47
+ futures = []
48
+ for i, executor in enumerate(executor_ls):
49
+ future = thread_pool.submit(wrapper, executor, timeout, i, _execution_orders, _completion_orders)
50
+ if b_display_progress:
51
+ future.add_done_callback(lambda _: p_bar.update())
52
+ futures.append(future)
53
+
54
+ # 收集结果
52
55
  for i, future in enumerate(futures):
53
- if future.done() and not future.cancelled():
54
- res_ls.append(future.result())
56
+ try:
57
+ res, b_success = future.result()
58
+ except:
59
+ b_success = False
60
+ if b_success:
61
+ res_ls[i] = res
55
62
  else:
56
- res_ls.append(None)
57
63
  failed_idx_ls.append(i)
64
+
58
65
  if b_display_progress:
59
66
  p_bar.close()
60
67
 
61
- #
62
68
  if isinstance(_hook_for_debug, (dict,)):
63
- _hook_for_debug.update(dict(execution_orders=_execution_orders, completion_orders=_completion_orders))
69
+ _hook_for_debug.update({
70
+ "execution_orders": list(_execution_orders),
71
+ "completion_orders": list(_completion_orders)
72
+ })
64
73
 
65
74
  return res_ls, failed_idx_ls
66
75
 
@@ -70,15 +79,27 @@ if __name__ == '__main__':
70
79
 
71
80
 
72
81
  def func_(i):
82
+ # 模拟部分任务长时间运行,部分任务正常结束
73
83
  if i in [2, 3, 7]:
74
- time.sleep(10)
84
+ time.sleep(100)
85
+ elif i in [4, 5, 6]:
86
+ time.sleep(0.01)
75
87
  else:
76
- time.sleep(2)
77
- print(i)
88
+ time.sleep(0.05)
89
+ print(f"任务 {i} 执行完成")
78
90
  return i * 2
79
91
 
80
92
 
81
93
  hook_for_debug = dict()
82
- print(multi_thread_execute(executors=[Executor(func=func_, args=(i,)) for i in range(10)], thread_nums=5,
83
- _hook_for_debug=hook_for_debug))
84
- print(hook_for_debug)
94
+ a = time.time()
95
+ results, failed = multi_thread_execute(
96
+ executors=[Executor(func=func_, args=(i,)) for i in range(10)],
97
+ worker_nums=5,
98
+ timeout=0.2,
99
+ _hook_for_debug=hook_for_debug
100
+ )
101
+ gap = time.time() - a
102
+ print("执行结果:", results)
103
+ print("超时失败的任务索引:", failed)
104
+ print("调试信息:", hook_for_debug)
105
+ print("总耗时:", gap)
@@ -0,0 +1,15 @@
1
+ from .wrapper_with_timeout_1 import wrapper_with_timeout_1
2
+ from .wrapper_with_timeout_2 import wrapper_with_timeout_2
3
+
4
+ import signal
5
+ import multiprocessing
6
+
7
+ if callable(getattr(signal, "setitimer", None)):
8
+ wrapper_for_mp = wrapper_with_timeout_1 # 效率更高,优先选择
9
+ else:
10
+ wrapper_for_mp = wrapper_with_timeout_2
11
+
12
+ wrapper_for_mt = wrapper_with_timeout_2
13
+
14
+ DEFAULT_PROCESS_NUMS = multiprocessing.cpu_count() + 2
15
+ DEFAULT_THREAD_NUMS = DEFAULT_PROCESS_NUMS * 2
@@ -0,0 +1,69 @@
1
+ import signal
2
+
3
+
4
+ # 定义超时异常
5
+ class TimeoutException(Exception):
6
+ pass
7
+
8
+
9
+ # 定时器信号处理函数
10
+ def __alarm_handler(*args, **kwargs):
11
+ raise TimeoutException("任务超时")
12
+
13
+
14
+ def wrapper_with_timeout_1(executor, timeout=None, idx=-1, _execution_orders=None, _completion_orders=None):
15
+ """
16
+ 限制执行时间,使用 multiprocessing.Process 强制终止超时任务
17
+ 该函数仅适用于多进程以及 unix 操作系统
18
+
19
+ 参数:
20
+ executor: <Executor>执行器,需实现 run() 方法
21
+ idx: <int> 任务索引(用于调试)
22
+ timeout: <int/float>最大等待时间(单位:秒,支持 float)
23
+ _execution_orders, _completion_orders: 用于记录调试信息的 Manager.list
24
+ 返回:
25
+ (result, b_success) 若超时或异常则 b_success 为 False
26
+ """
27
+ if _execution_orders is not None:
28
+ _execution_orders.append(idx)
29
+
30
+ # 定时器
31
+ if timeout is not None:
32
+ signal.signal(signal.SIGALRM, __alarm_handler)
33
+ signal.setitimer(signal.ITIMER_REAL, timeout)
34
+
35
+ # 执行
36
+ res, b_success = None, True
37
+ try:
38
+ res = executor.run()
39
+ if _completion_orders is not None:
40
+ _completion_orders.append(idx)
41
+ except TimeoutException:
42
+ b_success = False
43
+ finally:
44
+ signal.alarm(0) # 取消定时器
45
+ return res, b_success
46
+
47
+
48
+ if __name__ == '__main__':
49
+ import time
50
+
51
+
52
+ def func_(i):
53
+ if i in [2, 3, 7]:
54
+ time.sleep(300)
55
+ else:
56
+ time.sleep(0.5)
57
+ return i * 2
58
+
59
+
60
+ from kevin_toolbox.computer_science.data_structure import Executor
61
+
62
+ print(wrapper_with_timeout_1(Executor(func=func_, args=(2,)), timeout=1))
63
+ print(wrapper_with_timeout_1(Executor(func=func_, args=(1,)), timeout=1))
64
+
65
+ execution_orders = []
66
+ completion_orders = []
67
+ print(wrapper_with_timeout_1(Executor(func=func_, args=(2,)), timeout=1, _execution_orders=execution_orders,
68
+ _completion_orders=completion_orders))
69
+ print(execution_orders, completion_orders)
@@ -0,0 +1,76 @@
1
+ from multiprocessing import Process, Queue
2
+
3
+
4
+ def __inner_wrapper(q, executor):
5
+ try:
6
+ res = executor.run()
7
+ q.put((res, True))
8
+ except:
9
+ q.put((None, False))
10
+
11
+
12
+ def wrapper_with_timeout_2(executor, timeout=None, idx=-1, _execution_orders=None, _completion_orders=None):
13
+ """
14
+ 限制执行时间,使用 multiprocessing.Process 强制终止超时任务
15
+ 该函数适用于多线程、多进程以及所有操作系统,但是效率相较于 wrapper_with_timeout_1 较差
16
+
17
+ 参数:
18
+ executor: <Executor>执行器,需实现 run() 方法
19
+ idx: <int> 任务索引(用于调试)
20
+ timeout: <int/float>最大等待时间(单位:秒,支持 float)
21
+ _execution_orders, _completion_orders: 用于记录调试信息的 Manager.list
22
+ 返回:
23
+ (result, b_success) 若超时或异常则 b_success 为 False
24
+ """
25
+ if _execution_orders is not None:
26
+ _execution_orders.append(idx)
27
+
28
+ res, b_success = None, False
29
+ if timeout is not None:
30
+ q = Queue()
31
+ p = Process(target=__inner_wrapper, args=(q, executor))
32
+ p.start()
33
+ p.join(timeout) # 最多等待 timeout 秒
34
+
35
+ if q.qsize():
36
+ try:
37
+ res, b_success = q.get_nowait()
38
+ except:
39
+ pass
40
+ if p.is_alive():
41
+ p.terminate()
42
+ p.join()
43
+ else:
44
+ try:
45
+ res, b_success = executor.run(), True
46
+ except:
47
+ pass
48
+
49
+ if b_success:
50
+ if _completion_orders is not None:
51
+ _completion_orders.append(idx)
52
+ return res, b_success
53
+
54
+
55
+ if __name__ == '__main__':
56
+ import time
57
+
58
+
59
+ def func_(i):
60
+ if i in [2, 3, 7]:
61
+ time.sleep(300)
62
+ else:
63
+ time.sleep(0.5)
64
+ return i * 2
65
+
66
+
67
+ from kevin_toolbox.computer_science.data_structure import Executor
68
+
69
+ print(wrapper_with_timeout_2(Executor(func=func_, args=(2,)), timeout=1))
70
+ print(wrapper_with_timeout_2(Executor(func=func_, args=(1,)), timeout=1))
71
+
72
+ execution_orders = []
73
+ completion_orders = []
74
+ print(wrapper_with_timeout_2(Executor(func=func_, args=(2,)), timeout=1, _execution_orders=execution_orders,
75
+ _completion_orders=completion_orders))
76
+ print(execution_orders, completion_orders)
@@ -83,7 +83,7 @@ class Executor:
83
83
  # 校验参数
84
84
  # func
85
85
  assert paras["func"] is None or callable(paras["func"]), \
86
- f"func should be callable, but get a {type(func)}"
86
+ f'func should be callable, but get a {type(paras["func"])}'
87
87
  # args
88
88
  assert isinstance(paras["args"], (list, tuple,)) and isinstance(paras["f_args"], (list, tuple,))
89
89
  for i, f in enumerate(paras["f_args"]):
@@ -93,7 +93,7 @@ class Executor:
93
93
  assert isinstance(paras["kwargs"], (dict,)) and isinstance(paras["f_kwargs"], (dict,))
94
94
  for k, v in paras["f_kwargs"].items():
95
95
  assert callable(v) and isinstance(k, (str,)), \
96
- f"item {key} in f_kwargs should be (str, callable) pairs, but get a ({type(key)}, {type(v)})"
96
+ f"item {k} in f_kwargs should be (str, callable) pairs, but get a ({type(k)}, {type(v)})"
97
97
 
98
98
  # update paras
99
99
  self.paras = paras
@@ -4,8 +4,13 @@ import copy
4
4
  from kevin_toolbox.data_flow.file.json_.converter import integrate, escape_tuple_and_set, escape_non_str_dict_key
5
5
  from kevin_toolbox.nested_dict_list import traverse
6
6
 
7
+ format_s = {
8
+ "pretty_printed": dict(indent=4, ensure_ascii=False, sort_keys=False),
9
+ "minified": dict(indent=None, ensure_ascii=False, sort_keys=False, separators=(',', ':'))
10
+ }
7
11
 
8
- def write_json(content, file_path, sort_keys=False, converters=None, b_use_suggested_converter=False):
12
+
13
+ def write_json(content, file_path, converters=None, b_use_suggested_converter=False, output_format="pretty_printed"):
9
14
  """
10
15
  写入 json file
11
16
 
@@ -13,7 +18,6 @@ def write_json(content, file_path, sort_keys=False, converters=None, b_use_sugge
13
18
  content: 待写入内容
14
19
  file_path: <path or None> 写入路径
15
20
  当设置为 None 时,将直接把(经converters处理后的)待写入内容作为结果返回,而不进行实际的写入
16
- sort_keys
17
21
  converters: <list of converters> 对写入内容中每个节点的处理方式
18
22
  转换器 converter 应该是一个形如 def(x): ... ; return x 的函数,具体可以参考
19
23
  json_.converter 中已实现的转换器
@@ -22,8 +26,27 @@ def write_json(content, file_path, sort_keys=False, converters=None, b_use_sugge
22
26
  可以避免因 json 的读取/写入而丢失部分信息。
23
27
  默认为 False。
24
28
  注意:当 converters 非 None,此参数失效,以 converters 中的具体设置为准
29
+ output_format: <str/dict/tuple> json的输出格式
30
+ 对于 str 目前支持以下取值:
31
+ - "pretty_printed": 通过添加大量的空格和换行符来格式化输出,使输出更易读
32
+ - "minified": 删除所有空格和换行符,使输出更紧凑
33
+ 默认为 pretty_printed。
34
+ 对于 dict,将允许使用更加细致的格式设定,比如:
35
+ {"indent": 2, ensure_ascii=True}
36
+ 如果需要基于已有格式进行微调可以使用以下方式:
37
+ ("pretty_printed", {"indent": 2, ensure_ascii=True})
25
38
  """
39
+ global format_s
26
40
  assert isinstance(file_path, (str, type(None)))
41
+ if isinstance(output_format, (str,)):
42
+ output_format = format_s[output_format]
43
+ elif isinstance(output_format, (tuple,)):
44
+ output_format = format_s[output_format[0]]
45
+ output_format.update(output_format[1])
46
+ elif isinstance(output_format, (dict,)):
47
+ pass
48
+ else:
49
+ raise ValueError(f'Unsupported output_format: {output_format}.')
27
50
 
28
51
  if converters is None and b_use_suggested_converter:
29
52
  converters = [escape_tuple_and_set, escape_non_str_dict_key]
@@ -35,7 +58,7 @@ def write_json(content, file_path, sort_keys=False, converters=None, b_use_sugge
35
58
  converter=lambda _, x: converter(x),
36
59
  b_traverse_matched_element=True)[0]
37
60
 
38
- content = json.dumps(content, indent=4, ensure_ascii=False, sort_keys=sort_keys)
61
+ content = json.dumps(content, **output_format)
39
62
 
40
63
  if file_path is not None:
41
64
  file_path = os.path.abspath(os.path.expanduser(file_path))
@@ -44,3 +67,13 @@ def write_json(content, file_path, sort_keys=False, converters=None, b_use_sugge
44
67
  f.write(content)
45
68
  else:
46
69
  return content
70
+
71
+
72
+ if __name__ == "__main__":
73
+ a = {'rect': {'l:eft': [0, 1, 2], 'top': 67, 'right': 286, 'bottom': 332}}
74
+ res_0 = write_json(a, file_path=None, output_format="pretty_printed")
75
+ print(res_0)
76
+ print(len(res_0))
77
+ res_1 = write_json(a, file_path=None, output_format="minified")
78
+ print(res_1)
79
+ print(len(res_1))
@@ -35,8 +35,8 @@ class Json_(Backend_Base):
35
35
  """
36
36
  if id(var) != self.w_cache_s["id_"]:
37
37
  try:
38
- self.w_cache_s["content"] = json_.write(content=var, file_path=None, sort_keys=False,
39
- b_use_suggested_converter=True)
38
+ self.w_cache_s["content"] = json_.write(content=var, file_path=None, b_use_suggested_converter=True,
39
+ output_format=kwargs.get("output_format", "pretty_printed"))
40
40
  except:
41
41
  self.w_cache_s["content"], self.w_cache_s["id_"] = None, None
42
42
  self.w_cache_s["able"] = False
@@ -5,7 +5,7 @@ from kevin_toolbox.patches.for_os.path import replace_illegal_chars
5
5
  from kevin_toolbox.patches.for_matplotlib.color import generate_color_list
6
6
 
7
7
 
8
- def plot_lines(data_s, title, x_name, output_dir=None, **kwargs):
8
+ def plot_lines(data_s, title, x_name, x_ticklabels_name=None, output_dir=None, **kwargs):
9
9
  data_s = copy.copy(data_s)
10
10
  line_nums = len(data_s) - 1
11
11
  paras = {
@@ -23,6 +23,10 @@ def plot_lines(data_s, title, x_name, output_dir=None, **kwargs):
23
23
  plt.clf()
24
24
  #
25
25
  x_all_ls = data_s.pop(x_name)
26
+ if x_ticklabels_name is not None:
27
+ x_ticklabels = data_s.pop(x_ticklabels_name)
28
+ assert len(x_all_ls) == len(x_ticklabels)
29
+ plt.xticks(x_all_ls, x_ticklabels)
26
30
  data_s, temp = dict(), data_s
27
31
  for k, v_ls in temp.items():
28
32
  y_ls, x_ls = [], []
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: kevin-toolbox-dev
3
- Version: 1.4.6
3
+ Version: 1.4.7
4
4
  Summary: 一个常用的工具代码包集合
5
5
  Home-page: https://github.com/cantbeblank96/kevin_toolbox
6
6
  Download-URL: https://github.com/username/your-package/archive/refs/tags/v1.0.0.tar.gz
@@ -51,26 +51,19 @@ pip install kevin-toolbox --no-dependencies
51
51
 
52
52
  [版本更新记录](./notes/Release_Record.md):
53
53
 
54
- - v 1.4.6 (2025-01-24)【new feature】
54
+ - v 1.4.7 (2025-02-19)【new feature】【bug fix】【incompatible change
55
55
 
56
56
  - data_flow.file
57
- - modify json_.read(),支持输入路径使用 ~ 表示家目录。
58
- - 【new feature】add excel,该模块用于 excel 表格处理。
59
- - write_with_matrix():将矩阵写入到 excel 文件中
60
-
61
- - patches.for_os
62
- - modify find_files_in_dir(),支持 suffix_ls 设定 None 以表示不进行任何过滤。
63
- - 【new featureadd organize,该模块用于文件整理。
64
- - group_files_by_timestamp():将 input_dir 中的文件按照时间戳信息进行分组,输出到 output_dir 中。
65
- - 添加了对应的测试用例。
66
- - env_info
67
- - 【new feature】add check_validity_and_uninstall(),检查当前机器时间是否超过 expiration_timestamp 指定的有效期,若超过则卸载 package_name 对应的库。
68
- - 【new feature】add check_version_and_update(),检查当前库的版本,并尝试更新。
69
- - 以上函数均系从同名脚本中抽取出来。
57
+ - 【new feature】【incompatible change】modify json_.write(),支持使用参数 output_format 设置更复杂的输出格式。同时废弃原来的sort_keys参数。
58
+ - output_format 支持以下输入:
59
+ - "pretty_printed": 通过添加大量的空格和换行符来格式化输出,使输出更易读
60
+ - "minified": 删除所有空格和换行符,使输出更紧凑
61
+ - `<dict/tuple>`: 更加细致的格式设定,比如 `{"indent": 2, ensure_ascii=True}`,如果需要基于已有格式进行微调可以使用以下方式:`("pretty_printed", {"indent": 2, ensure_ascii=True})`
62
+ - computer_science.algorithm.parallel_and_concurrent
63
+ - 【bug fix】【incompatible changefix bug in multi_thread_execute(),修正了参数timeout无法对每个任务起效的bug,将参数thread_nums更名为worker_nums。
64
+ - 【new feature】add multi_process_execute(),用于多进程执行任务。同样支持timeout设定和进度条显示。
65
+ - patches.for_matplotlib.common_charts
66
+ - modify plot_lines(),添加了 x_ticklabels_name 参数用于自定义x轴的坐标值
70
67
  - 以上修改,均已添加了对应的测试用例。
71
- - developing
72
- - 【new feature】add photo_album_organization,该模块包含一系列整理相册相关的脚本。
73
- - 0_group_by_timestamp.py :按照时间戳分组
74
- - 1_merge_folders.py :将文件数量较少的目录合并
75
68
 
76
69
 
@@ -1,4 +1,4 @@
1
- kevin_toolbox/__init__.py,sha256=J3exMbMRFMTDP3RxpdeO_mXW0RvxbLdqQ_D0yxWUDmE,410
1
+ kevin_toolbox/__init__.py,sha256=-Tz-COP35PmSQrmLdDYK9Eq_i7wCXKv3hJp2_MzZHRw,410
2
2
  kevin_toolbox/computer_science/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  kevin_toolbox/computer_science/algorithm/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
4
4
  kevin_toolbox/computer_science/algorithm/cache_manager/__init__.py,sha256=p2hddkZ1HfYF9-m2Hx-o9IotwQHd4QwDCePy2ADpTDA,41
@@ -35,9 +35,13 @@ kevin_toolbox/computer_science/algorithm/for_seq/flatten_list.py,sha256=XnDq-_nQ
35
35
  kevin_toolbox/computer_science/algorithm/for_seq/get_subsets.py,sha256=uVc2pf9cBjX9sWd9VJ3w6nbsRPaeFT1fXRFfGl1zk6Q,309
36
36
  kevin_toolbox/computer_science/algorithm/locks/__init__.py,sha256=ZjZjqGsQB-z9MoYfOPYlI0H7nfZI1hNgxtmJaDdrynI,35
37
37
  kevin_toolbox/computer_science/algorithm/locks/mutex_lock.py,sha256=81cCw3oTXCZxFNhUzFTB5cPKmvbcLM_Gg-5DlT2nuRQ,2492
38
- kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/__init__.py,sha256=EUy1RptOJCLzu6L0ZWGdyto0btI_vEvjEJHvKKBN4pk,55
38
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/__init__.py,sha256=bIyMaB3v6JFjkrY7-sg_-yAnFH8I53E2qxIhGprcLzo,112
39
39
  kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/async_executor.py,sha256=yWHpD_1XrC8hG3PWXUZEDj5rnfM0-d-NptRE856tcmY,896
40
- kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/multi_thread_execute.py,sha256=WSQZ9BE-21oc59leHxd-2IRMMxpmEezX7SX7e1UyV-4,3126
40
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/multi_process_execute.py,sha256=00QSeECaglANNyfeAeqWrP83WAhoixpg_zyy6k1ioyY,4176
41
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/multi_thread_execute.py,sha256=psvezDjaPAwK05GYCJno7GhiW-Zt_Swy5nuyS_xOgUU,3901
42
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/utils/__init__.py,sha256=zdYxhuhJk3m7b1MMaXh2frCpOh6vbK3N6u3t0UEC3_w,475
43
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/utils/wrapper_with_timeout_1.py,sha256=8vO26zBOq12BXJc0wudyGeWObIAfDkxWU-pg5VOOZMA,2165
44
+ kevin_toolbox/computer_science/algorithm/parallel_and_concurrent/utils/wrapper_with_timeout_2.py,sha256=LcDBFjPY77tyZGjk2g3iCEj7bNeQS4usaqgoUQAZxSY,2412
41
45
  kevin_toolbox/computer_science/algorithm/pareto_front/__init__.py,sha256=F1uD0ZT2Ukb708_Eay96SEhaDfCq9YEheJRust33P6w,111
42
46
  kevin_toolbox/computer_science/algorithm/pareto_front/get_pareto_points_idx.py,sha256=WR-_9BruqAWH0QECa40b1Iz1_k6uesBrUYrn2s9ALBM,3008
43
47
  kevin_toolbox/computer_science/algorithm/pareto_front/optimum_picker.py,sha256=wnYN2s9r2g1z5wF0FvFLawRYITUJbMXbBs4TPsdvhlE,9923
@@ -58,7 +62,7 @@ kevin_toolbox/computer_science/algorithm/statistician/init_var/init_by_data_form
58
62
  kevin_toolbox/computer_science/algorithm/statistician/init_var/init_by_like.py,sha256=8QfvltiNDqZUYiNW6Ebt0UIuYvyqhSpsCYn99T2q70c,572
59
63
  kevin_toolbox/computer_science/algorithm/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
64
  kevin_toolbox/computer_science/data_structure/__init__.py,sha256=_esL73v9Gi40xb5N7UGxslIk8yHM6idQlXbzELR7XhA,31
61
- kevin_toolbox/computer_science/data_structure/executor.py,sha256=i-2zQj4lj597BvkarCMT-gYxhoRe8cHyQyO98X7m-9E,6206
65
+ kevin_toolbox/computer_science/data_structure/executor.py,sha256=ogcozUbd2QW6AruS50CkMdXWc9rE_UJd-KcHO_RMXQg,6211
62
66
  kevin_toolbox/dangerous/__init__.py,sha256=7TqcyVO0IUUZnFw6vFybvdY7UCg-Bv1Moh95IIVMT2c,93
63
67
  kevin_toolbox/dangerous/dump_into_pickle_with_executor_attached.py,sha256=oaPlXyMsG57XbahVqrZENvGSZy2EefoRCmfpm_6tNEQ,2898
64
68
  kevin_toolbox/data_flow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -76,7 +80,7 @@ kevin_toolbox/data_flow/file/excel/__init__.py,sha256=5m_rmklI6n6yk4rSAEW39pxzYT
76
80
  kevin_toolbox/data_flow/file/excel/write_excel_with_matrix.py,sha256=zrY_l0xCBpjqxm_9MoGpEXaZ4V_UwRMRgShessJ1sxA,5121
77
81
  kevin_toolbox/data_flow/file/json_/__init__.py,sha256=VAt8COS2tO3PJRuhSc43i35fEOlArFM_YahdTmEBaHE,85
78
82
  kevin_toolbox/data_flow/file/json_/read_json.py,sha256=RyCeNONMmvVOeX_F3kSSmED_nx4opipLe8OHJzXKZvQ,2151
79
- kevin_toolbox/data_flow/file/json_/write_json.py,sha256=uG6UnQ9KVhL_UWndGjvLLHF_UoGtOwVn4ADi1Gb1nRU,2417
83
+ kevin_toolbox/data_flow/file/json_/write_json.py,sha256=ZiNrVUK3ofFmtA-5mU_W1N7bDdReC_yi6CtG2I47B4A,4198
80
84
  kevin_toolbox/data_flow/file/json_/converter/__init__.py,sha256=oQMgAgzELLq_f4LIIfz5E6l_E7g4lFsXqfmnJ3tPZTY,401
81
85
  kevin_toolbox/data_flow/file/json_/converter/convert_dict_key_to_number.py,sha256=SuSZj_HCqKZutHAJ5AttABnGBRZplPGQhMxJBt2Wlgc,559
82
86
  kevin_toolbox/data_flow/file/json_/converter/convert_ndarray_to_list.py,sha256=GALpC1MFJ4aMzs0FZIfJScYznfCP-gmhPeM8sWXGSWg,391
@@ -256,7 +260,7 @@ kevin_toolbox/nested_dict_list/serializer/saved_node_name_builder.py,sha256=qsD-
256
260
  kevin_toolbox/nested_dict_list/serializer/variable.py,sha256=ZywG6obipRBCGY1cY42gdvsuWk8GLZXr6eCYcW7ZJ9c,392
257
261
  kevin_toolbox/nested_dict_list/serializer/write.py,sha256=ZUYJlBXQbCkMW2UN3d29obskGGbTA-gm3dmuLLltxLI,24101
258
262
  kevin_toolbox/nested_dict_list/serializer/backends/__init__.py,sha256=8g7y-L3cmctxao616dVkGiot00FJzKNmNl_69V2bSmE,39
259
- kevin_toolbox/nested_dict_list/serializer/backends/_json_.py,sha256=oJXIc28yjxsD9ZJuw120pVHTVsTzCdaXEhVUSQeydq4,2145
263
+ kevin_toolbox/nested_dict_list/serializer/backends/_json_.py,sha256=yu3604KvzU8dKyECBQ3v127dsEr-VaRz0Mm4dBJgNfc,2189
260
264
  kevin_toolbox/nested_dict_list/serializer/backends/_ndl.py,sha256=3YkAq_Bqzehnw0kGxqxwtF6uUz0EV37tLI-1ROHjixY,1794
261
265
  kevin_toolbox/nested_dict_list/serializer/backends/_numpy_bin.py,sha256=xiPFmPUTjy0X0R1E0N8mrByENhNb69QalHnbYQXFvTo,1470
262
266
  kevin_toolbox/nested_dict_list/serializer/backends/_numpy_npy.py,sha256=CF6R7ie68zA0TqAXBdxUgHKVDYtEPHfVXR9rMFBbsdw,1384
@@ -289,7 +293,7 @@ kevin_toolbox/patches/for_matplotlib/common_charts/__init__.py,sha256=etey2r0LO4
289
293
  kevin_toolbox/patches/for_matplotlib/common_charts/plot_bars.py,sha256=crS1h79Dz6gGOnqhjuuN2o5pl8CekhCenx9lRz5KPiI,1887
290
294
  kevin_toolbox/patches/for_matplotlib/common_charts/plot_confusion_matrix.py,sha256=KtmUAlKs3_ALFRKAEi0OAXj6SyG5L7LMmoSgOxKvvVs,3213
291
295
  kevin_toolbox/patches/for_matplotlib/common_charts/plot_distribution.py,sha256=stuyaULWM_vVW3r9WrpzGqA8rohQrdNKT3Agsbobqck,2396
292
- kevin_toolbox/patches/for_matplotlib/common_charts/plot_lines.py,sha256=j2GBT_E9tvQhLN2ynCknuBl1MjD6q2TZeNYGvm2IVRA,2034
296
+ kevin_toolbox/patches/for_matplotlib/common_charts/plot_lines.py,sha256=R7mbfmXIOj52BrGuQjf9uDXJ2etwCRCN7ZWX_5cQtBs,2242
293
297
  kevin_toolbox/patches/for_matplotlib/common_charts/plot_scatters.py,sha256=whO36bmixjwtsjCS6Ah6zEGJAlJyGcD-wmV3dA6u7mk,1658
294
298
  kevin_toolbox/patches/for_matplotlib/common_charts/plot_scatters_matrix.py,sha256=bf2EfGlPW9dtDfRse1gk8RVxvC8CJ0NeMdrpSw43wFg,1989
295
299
  kevin_toolbox/patches/for_numpy/__init__.py,sha256=SNjZGxTRBn-uzkyZi6Jcz-9juhhZKT8TI70qH-fhGGc,21
@@ -354,7 +358,7 @@ kevin_toolbox/patches/for_torch/nn/__init__.py,sha256=aJs3RMqRzQmd8KKDmQW9FxwCqS
354
358
  kevin_toolbox/patches/for_torch/nn/lambda_layer.py,sha256=KUuLiX_Dr4bvRmpAaCW5QTDWDcnMPRnw0jg4NNXTFhM,223
355
359
  kevin_toolbox/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
356
360
  kevin_toolbox/utils/variable.py,sha256=PxUmp9w4CKKcKHjgdVNF_Iaw5gwPPOd4aY_Oe5F9U1M,133
357
- kevin_toolbox_dev-1.4.6.dist-info/METADATA,sha256=G-yjDl5MP56GAhXAoPnGcqJPGqpuUiSt4X4B90dsP7c,2578
358
- kevin_toolbox_dev-1.4.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
359
- kevin_toolbox_dev-1.4.6.dist-info/top_level.txt,sha256=S5TeRGF-PwlhsaUEPTI-f2vWrpLmh3axpyI6v-Fi75o,14
360
- kevin_toolbox_dev-1.4.6.dist-info/RECORD,,
361
+ kevin_toolbox_dev-1.4.7.dist-info/METADATA,sha256=WBubN5isDdTd6IK1yTNeqFgU7ZfnrE4LbjU57x3Q0x4,2586
362
+ kevin_toolbox_dev-1.4.7.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
363
+ kevin_toolbox_dev-1.4.7.dist-info/top_level.txt,sha256=S5TeRGF-PwlhsaUEPTI-f2vWrpLmh3axpyI6v-Fi75o,14
364
+ kevin_toolbox_dev-1.4.7.dist-info/RECORD,,