keras-rs-nightly 0.3.1.dev202510170329__py3-none-any.whl → 0.3.1.dev202510190335__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-rs-nightly might be problematic. Click here for more details.
- keras_rs/src/layers/embedding/jax/distributed_embedding.py +4 -4
- keras_rs/src/layers/embedding/jax/embedding_utils.py +5 -296
- keras_rs/src/version.py +1 -1
- {keras_rs_nightly-0.3.1.dev202510170329.dist-info → keras_rs_nightly-0.3.1.dev202510190335.dist-info}/METADATA +1 -1
- {keras_rs_nightly-0.3.1.dev202510170329.dist-info → keras_rs_nightly-0.3.1.dev202510190335.dist-info}/RECORD +7 -7
- {keras_rs_nightly-0.3.1.dev202510170329.dist-info → keras_rs_nightly-0.3.1.dev202510190335.dist-info}/WHEEL +0 -0
- {keras_rs_nightly-0.3.1.dev202510170329.dist-info → keras_rs_nightly-0.3.1.dev202510190335.dist-info}/top_level.txt +0 -0
|
@@ -442,7 +442,7 @@ class DistributedEmbedding(base_distributed_embedding.DistributedEmbedding):
|
|
|
442
442
|
|
|
443
443
|
# Collect all stacked tables.
|
|
444
444
|
table_specs = embedding.get_table_specs(feature_specs)
|
|
445
|
-
table_stacks =
|
|
445
|
+
table_stacks = jte_table_stacking.get_table_stacks(table_specs)
|
|
446
446
|
|
|
447
447
|
# Create variables for all stacked tables and slot variables.
|
|
448
448
|
with sparsecore_distribution.scope():
|
|
@@ -516,7 +516,7 @@ class DistributedEmbedding(base_distributed_embedding.DistributedEmbedding):
|
|
|
516
516
|
|
|
517
517
|
# Each stacked-table gets a ShardedCooMatrix.
|
|
518
518
|
table_specs = embedding.get_table_specs(self._config.feature_specs)
|
|
519
|
-
table_stacks =
|
|
519
|
+
table_stacks = jte_table_stacking.get_table_stacks(table_specs)
|
|
520
520
|
stacked_table_specs = {
|
|
521
521
|
stack_name: stack[0].stacked_table_spec
|
|
522
522
|
for stack_name, stack in table_stacks.items()
|
|
@@ -720,7 +720,7 @@ class DistributedEmbedding(base_distributed_embedding.DistributedEmbedding):
|
|
|
720
720
|
config = self._config
|
|
721
721
|
num_table_shards = config.mesh.devices.size * config.num_sc_per_device
|
|
722
722
|
table_specs = embedding.get_table_specs(config.feature_specs)
|
|
723
|
-
sharded_tables =
|
|
723
|
+
sharded_tables = jte_table_stacking.stack_and_shard_tables(
|
|
724
724
|
table_specs,
|
|
725
725
|
tables,
|
|
726
726
|
num_table_shards,
|
|
@@ -763,7 +763,7 @@ class DistributedEmbedding(base_distributed_embedding.DistributedEmbedding):
|
|
|
763
763
|
|
|
764
764
|
return typing.cast(
|
|
765
765
|
dict[str, ArrayLike],
|
|
766
|
-
|
|
766
|
+
jte_table_stacking.unshard_and_unstack_tables(
|
|
767
767
|
table_specs, table_variables, num_table_shards
|
|
768
768
|
),
|
|
769
769
|
)
|
|
@@ -1,16 +1,13 @@
|
|
|
1
1
|
"""Utility functions for manipulating JAX embedding tables and inputs."""
|
|
2
2
|
|
|
3
3
|
import collections
|
|
4
|
-
import typing
|
|
5
4
|
from typing import Any, Mapping, NamedTuple, Sequence, TypeAlias, TypeVar
|
|
6
5
|
|
|
7
6
|
import jax
|
|
8
7
|
import numpy as np
|
|
9
|
-
from jax import numpy as jnp
|
|
10
8
|
from jax_tpu_embedding.sparsecore.lib.nn import embedding
|
|
9
|
+
from jax_tpu_embedding.sparsecore.lib.nn import table_stacking
|
|
11
10
|
from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import FeatureSpec
|
|
12
|
-
from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import StackedTableSpec
|
|
13
|
-
from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import TableSpec
|
|
14
11
|
|
|
15
12
|
from keras_rs.src.types import Nested
|
|
16
13
|
|
|
@@ -34,297 +31,6 @@ class ShardedCooMatrix(NamedTuple):
|
|
|
34
31
|
values: ArrayLike
|
|
35
32
|
|
|
36
33
|
|
|
37
|
-
def _round_up_to_multiple(value: int, multiple: int) -> int:
|
|
38
|
-
return ((value + multiple - 1) // multiple) * multiple
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
def _default_stacked_table_spec(
|
|
42
|
-
table_spec: TableSpec, num_shards: int, batch_size: int
|
|
43
|
-
) -> StackedTableSpec:
|
|
44
|
-
return StackedTableSpec(
|
|
45
|
-
stack_name=table_spec.name,
|
|
46
|
-
stack_vocab_size=_round_up_to_multiple(
|
|
47
|
-
table_spec.vocabulary_size, 8 * num_shards
|
|
48
|
-
),
|
|
49
|
-
stack_embedding_dim=_round_up_to_multiple(table_spec.embedding_dim, 8),
|
|
50
|
-
optimizer=table_spec.optimizer,
|
|
51
|
-
combiner=table_spec.combiner,
|
|
52
|
-
total_sample_count=batch_size,
|
|
53
|
-
max_ids_per_partition=table_spec.max_ids_per_partition,
|
|
54
|
-
max_unique_ids_per_partition=table_spec.max_unique_ids_per_partition,
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def _get_stacked_table_spec(
|
|
59
|
-
table_spec: TableSpec, num_shards: int, batch_size: int = 0
|
|
60
|
-
) -> StackedTableSpec:
|
|
61
|
-
return table_spec.stacked_table_spec or _default_stacked_table_spec(
|
|
62
|
-
table_spec, num_shards, batch_size
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
def pad_table(
|
|
67
|
-
table_spec: TableSpec,
|
|
68
|
-
table_values: jax.Array,
|
|
69
|
-
num_shards: int,
|
|
70
|
-
pad_value: jnp.float32 = jnp.nan,
|
|
71
|
-
) -> jax.Array:
|
|
72
|
-
"""Adds appropriate padding to a table to prepare for stacking.
|
|
73
|
-
|
|
74
|
-
Args:
|
|
75
|
-
table_spec: Table specification describing the table to pad.
|
|
76
|
-
table_values: Table values array to pad.
|
|
77
|
-
num_shards: Number of shards in the table (typically
|
|
78
|
-
`global_device_count * num_sc_per_device`).
|
|
79
|
-
pad_value: Value to use for padding.
|
|
80
|
-
|
|
81
|
-
Returns:
|
|
82
|
-
Padded table values.
|
|
83
|
-
"""
|
|
84
|
-
vocabulary_size = table_spec.vocabulary_size
|
|
85
|
-
embedding_dim = table_spec.embedding_dim
|
|
86
|
-
padded_vocabulary_size = _round_up_to_multiple(
|
|
87
|
-
vocabulary_size, 8 * num_shards
|
|
88
|
-
)
|
|
89
|
-
stack_embedding_dim = _get_stacked_table_spec(
|
|
90
|
-
table_spec, num_shards
|
|
91
|
-
).stack_embedding_dim
|
|
92
|
-
return jnp.pad(
|
|
93
|
-
table_values,
|
|
94
|
-
(
|
|
95
|
-
(0, padded_vocabulary_size - vocabulary_size),
|
|
96
|
-
(0, stack_embedding_dim - embedding_dim),
|
|
97
|
-
),
|
|
98
|
-
constant_values=pad_value,
|
|
99
|
-
)
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
def _stack_and_shard_table(
|
|
103
|
-
stacked_table: jax.Array,
|
|
104
|
-
table_spec: TableSpec,
|
|
105
|
-
table: jax.Array,
|
|
106
|
-
num_shards: int,
|
|
107
|
-
pad_value: jnp.float32,
|
|
108
|
-
) -> jax.Array:
|
|
109
|
-
"""Stacks and shards a single table for use in sparsecore lookups."""
|
|
110
|
-
padded_values = pad_table(table_spec, table, num_shards, pad_value)
|
|
111
|
-
sharded_padded_vocabulary_size = padded_values.shape[0] // num_shards
|
|
112
|
-
stack_embedding_dim = stacked_table.shape[-1]
|
|
113
|
-
|
|
114
|
-
# Mod-shard vocabulary across devices.
|
|
115
|
-
sharded_values = jnp.swapaxes(
|
|
116
|
-
padded_values.reshape(-1, num_shards, stack_embedding_dim),
|
|
117
|
-
0,
|
|
118
|
-
1,
|
|
119
|
-
)
|
|
120
|
-
|
|
121
|
-
# Rotate shards.
|
|
122
|
-
setting_in_stack = table_spec.setting_in_stack
|
|
123
|
-
rotated_values = jnp.roll(
|
|
124
|
-
sharded_values, setting_in_stack.shard_rotation, axis=0
|
|
125
|
-
)
|
|
126
|
-
|
|
127
|
-
# Insert table into the stack.
|
|
128
|
-
table_row = setting_in_stack.row_offset_in_shard
|
|
129
|
-
stacked_table = stacked_table.at[
|
|
130
|
-
:, table_row : (table_row + sharded_padded_vocabulary_size), :
|
|
131
|
-
].set(rotated_values)
|
|
132
|
-
|
|
133
|
-
return stacked_table
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
def stack_and_shard_tables(
|
|
137
|
-
table_specs: Nested[TableSpec],
|
|
138
|
-
tables: Nested[ArrayLike],
|
|
139
|
-
num_shards: int,
|
|
140
|
-
pad_value: jnp.float32 = jnp.nan,
|
|
141
|
-
) -> dict[str, Nested[jax.Array]]:
|
|
142
|
-
"""Stacks and shards tables for use in sparsecore lookups.
|
|
143
|
-
|
|
144
|
-
Args:
|
|
145
|
-
table_specs: Nested collection of unstacked table specifications.
|
|
146
|
-
tables: Table values corresponding to the table_specs.
|
|
147
|
-
num_shards: Number of shards in the table (typically
|
|
148
|
-
`global_device_count * num_sc_per_device`).
|
|
149
|
-
pad_value: Value to use for padding.
|
|
150
|
-
|
|
151
|
-
Returns:
|
|
152
|
-
A mapping of stacked table names to stacked table values.
|
|
153
|
-
"""
|
|
154
|
-
|
|
155
|
-
# Gather stacked table information.
|
|
156
|
-
stacked_table_map: dict[
|
|
157
|
-
str,
|
|
158
|
-
tuple[StackedTableSpec, list[TableSpec]],
|
|
159
|
-
] = {}
|
|
160
|
-
|
|
161
|
-
def collect_stacked_tables(table_spec: TableSpec) -> None:
|
|
162
|
-
stacked_table_spec = _get_stacked_table_spec(table_spec, num_shards)
|
|
163
|
-
stacked_table_name = stacked_table_spec.stack_name
|
|
164
|
-
if stacked_table_name not in stacked_table_map:
|
|
165
|
-
stacked_table_map[stacked_table_name] = (stacked_table_spec, [])
|
|
166
|
-
stacked_table_map[stacked_table_name][1].append(table_spec)
|
|
167
|
-
|
|
168
|
-
_ = jax.tree.map(collect_stacked_tables, table_specs)
|
|
169
|
-
|
|
170
|
-
table_map: dict[str, Nested[jax.Array]] = {}
|
|
171
|
-
|
|
172
|
-
def collect_tables(table_spec: TableSpec, table: Nested[jax.Array]) -> None:
|
|
173
|
-
table_map[table_spec.name] = table
|
|
174
|
-
|
|
175
|
-
_ = jax.tree.map(collect_tables, table_specs, tables)
|
|
176
|
-
|
|
177
|
-
stacked_tables: dict[str, Nested[jax.Array]] = {}
|
|
178
|
-
for (
|
|
179
|
-
stacked_table_spec,
|
|
180
|
-
table_specs,
|
|
181
|
-
) in stacked_table_map.values():
|
|
182
|
-
stack_vocab_size = stacked_table_spec.stack_vocab_size
|
|
183
|
-
sharded_vocab_size = stack_vocab_size // num_shards
|
|
184
|
-
stack_embedding_dim = stacked_table_spec.stack_embedding_dim
|
|
185
|
-
|
|
186
|
-
# Allocate initial buffer. The stacked table will be divided among
|
|
187
|
-
# shards by splitting the vocabulary dimension:
|
|
188
|
-
# [ v, e ] -> [s, v/s, e]
|
|
189
|
-
stacked_table_tree = jax.tree.map(
|
|
190
|
-
lambda _: jnp.zeros(
|
|
191
|
-
# pylint: disable-next=cell-var-from-loop, used only in loop body.
|
|
192
|
-
shape=(num_shards, sharded_vocab_size, stack_embedding_dim),
|
|
193
|
-
dtype=jnp.float32,
|
|
194
|
-
),
|
|
195
|
-
table_map[table_specs[0].name],
|
|
196
|
-
)
|
|
197
|
-
|
|
198
|
-
for table_spec in table_specs:
|
|
199
|
-
table_tree = table_map[table_spec.name]
|
|
200
|
-
stacked_table_tree = jax.tree.map(
|
|
201
|
-
lambda stacked_table, table: _stack_and_shard_table(
|
|
202
|
-
# pylint: disable-next=cell-var-from-loop, used only in loop body.
|
|
203
|
-
stacked_table,
|
|
204
|
-
# pylint: disable-next=cell-var-from-loop, used only in loop body.
|
|
205
|
-
table_spec,
|
|
206
|
-
table,
|
|
207
|
-
num_shards,
|
|
208
|
-
pad_value,
|
|
209
|
-
),
|
|
210
|
-
stacked_table_tree,
|
|
211
|
-
table_tree,
|
|
212
|
-
)
|
|
213
|
-
|
|
214
|
-
stacked_tables[stacked_table_spec.stack_name] = stacked_table_tree
|
|
215
|
-
|
|
216
|
-
return stacked_tables
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
def _unshard_and_unstack_table(
|
|
220
|
-
table_spec: TableSpec,
|
|
221
|
-
stacked_table_tree: Nested[jax.Array],
|
|
222
|
-
num_shards: int,
|
|
223
|
-
) -> Nested[jax.Array]:
|
|
224
|
-
"""Unshards and unstacks a single table."""
|
|
225
|
-
vocabulary_size = table_spec.vocabulary_size
|
|
226
|
-
embedding_dim = table_spec.embedding_dim
|
|
227
|
-
|
|
228
|
-
def _unshard_and_unstack_single_table(
|
|
229
|
-
table_spec: TableSpec, stacked_table: jax.Array
|
|
230
|
-
) -> jax.Array:
|
|
231
|
-
stack_embedding_dim = stacked_table.shape[-1]
|
|
232
|
-
|
|
233
|
-
# Maybe re-shape in case it was flattened.
|
|
234
|
-
stacked_table = stacked_table.reshape(
|
|
235
|
-
num_shards, -1, stack_embedding_dim
|
|
236
|
-
)
|
|
237
|
-
sharded_vocabulary_size = (
|
|
238
|
-
_round_up_to_multiple(vocabulary_size, 8 * num_shards) // num_shards
|
|
239
|
-
)
|
|
240
|
-
|
|
241
|
-
# Extract padded values from the stacked table.
|
|
242
|
-
setting_in_stack = table_spec.setting_in_stack
|
|
243
|
-
row = setting_in_stack.row_offset_in_shard
|
|
244
|
-
padded_values = stacked_table[
|
|
245
|
-
:, row : (row + sharded_vocabulary_size), :
|
|
246
|
-
]
|
|
247
|
-
|
|
248
|
-
# Un-rotate shards.
|
|
249
|
-
padded_values = jnp.roll(
|
|
250
|
-
padded_values, -setting_in_stack.shard_rotation, axis=0
|
|
251
|
-
)
|
|
252
|
-
|
|
253
|
-
# Un-mod-shard.
|
|
254
|
-
padded_values = jnp.swapaxes(padded_values, 0, 1).reshape(
|
|
255
|
-
-1, stack_embedding_dim
|
|
256
|
-
)
|
|
257
|
-
|
|
258
|
-
# Un-pad.
|
|
259
|
-
return padded_values[:vocabulary_size, :embedding_dim]
|
|
260
|
-
|
|
261
|
-
output: Nested[jax.Array] = jax.tree.map(
|
|
262
|
-
lambda stacked_table: _unshard_and_unstack_single_table(
|
|
263
|
-
table_spec, stacked_table
|
|
264
|
-
),
|
|
265
|
-
stacked_table_tree,
|
|
266
|
-
)
|
|
267
|
-
return output
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
def unshard_and_unstack_tables(
|
|
271
|
-
table_specs: Nested[TableSpec],
|
|
272
|
-
stacked_tables: Mapping[str, Nested[jax.Array]],
|
|
273
|
-
num_shards: int,
|
|
274
|
-
) -> Nested[jax.Array]:
|
|
275
|
-
"""Unshards and unstacks a collection of tables.
|
|
276
|
-
|
|
277
|
-
Args:
|
|
278
|
-
table_specs: Nested collection of unstacked table specifications.
|
|
279
|
-
stacked_tables: Mapping of stacked table names to stacked table values.
|
|
280
|
-
num_shards: Number of shards in the table (typically
|
|
281
|
-
`global_device_count * num_sc_per_device`).
|
|
282
|
-
|
|
283
|
-
Returns:
|
|
284
|
-
A mapping of table names to unstacked table values.
|
|
285
|
-
"""
|
|
286
|
-
output: Nested[jax.Array] = jax.tree.map(
|
|
287
|
-
lambda table_spec: _unshard_and_unstack_table(
|
|
288
|
-
table_spec,
|
|
289
|
-
stacked_tables[
|
|
290
|
-
_get_stacked_table_spec(table_spec, num_shards=1).stack_name
|
|
291
|
-
],
|
|
292
|
-
num_shards,
|
|
293
|
-
),
|
|
294
|
-
table_specs,
|
|
295
|
-
)
|
|
296
|
-
return output
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
def get_table_stacks(
|
|
300
|
-
table_specs: Nested[TableSpec],
|
|
301
|
-
) -> dict[str, list[TableSpec]]:
|
|
302
|
-
"""Extracts lists of tables that are stacked together.
|
|
303
|
-
|
|
304
|
-
Args:
|
|
305
|
-
table_specs: Nested collection of table specifications.
|
|
306
|
-
|
|
307
|
-
Returns:
|
|
308
|
-
A mapping of stacked table names to lists of table specifications for
|
|
309
|
-
each stack.
|
|
310
|
-
"""
|
|
311
|
-
stacked_table_specs: dict[str, list[TableSpec]] = collections.defaultdict(
|
|
312
|
-
list
|
|
313
|
-
)
|
|
314
|
-
flat_table_specs, _ = jax.tree.flatten(table_specs)
|
|
315
|
-
for table_spec in flat_table_specs:
|
|
316
|
-
table_spec = typing.cast(TableSpec, table_spec)
|
|
317
|
-
stacked_table_spec = table_spec.stacked_table_spec
|
|
318
|
-
if stacked_table_spec is not None:
|
|
319
|
-
stacked_table_specs[stacked_table_spec.stack_name].append(
|
|
320
|
-
table_spec
|
|
321
|
-
)
|
|
322
|
-
else:
|
|
323
|
-
stacked_table_specs[table_spec.name].append(table_spec)
|
|
324
|
-
|
|
325
|
-
return stacked_table_specs
|
|
326
|
-
|
|
327
|
-
|
|
328
34
|
def convert_to_numpy(
|
|
329
35
|
ragged_or_dense: np.ndarray[Any, Any] | Sequence[Sequence[Any]] | Any,
|
|
330
36
|
dtype: Any,
|
|
@@ -522,7 +228,10 @@ def stack_and_shard_samples(
|
|
|
522
228
|
for table_name in tables_names:
|
|
523
229
|
shard_ends = preprocessed_inputs.lhs_row_pointers[table_name]
|
|
524
230
|
shard_starts = np.concatenate(
|
|
525
|
-
[
|
|
231
|
+
[
|
|
232
|
+
np.asarray([0]),
|
|
233
|
+
table_stacking._next_largest_multiple(shard_ends[:-1], 8),
|
|
234
|
+
]
|
|
526
235
|
)
|
|
527
236
|
out[table_name] = ShardedCooMatrix(
|
|
528
237
|
shard_starts=shard_starts,
|
keras_rs/src/version.py
CHANGED
|
@@ -5,7 +5,7 @@ keras_rs/metrics/__init__.py,sha256=Qxpf6OFooIL9TIn2l3WgOea3HFRG0hq02glPAxtMZ9c,
|
|
|
5
5
|
keras_rs/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
6
|
keras_rs/src/api_export.py,sha256=RsmG-DvO-cdFeAF9W6LRzms0kvtm-Yp9BAA_d-952zI,510
|
|
7
7
|
keras_rs/src/types.py,sha256=1A-oLRdX1-f2DsVZBcNl8qNsaH8pM-gnleLT9FWZWBw,1189
|
|
8
|
-
keras_rs/src/version.py,sha256=
|
|
8
|
+
keras_rs/src/version.py,sha256=Dfbd1hKKKzbupaHAXOYy0JJxm63_IMnv_JAuV-Rdymc,224
|
|
9
9
|
keras_rs/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_rs/src/layers/embedding/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_rs/src/layers/embedding/base_distributed_embedding.py,sha256=RkXZ6notj3Cq6ryR9w30Wb8UlaWjLcUK2Os9ZUQvuhY,45568
|
|
@@ -15,9 +15,9 @@ keras_rs/src/layers/embedding/embed_reduce.py,sha256=c-MnEw1-KWs0jTf0JJ_ZBOY-9hR
|
|
|
15
15
|
keras_rs/src/layers/embedding/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
16
16
|
keras_rs/src/layers/embedding/jax/checkpoint_utils.py,sha256=wZ4I5WZVNg5WnrD2j7nhAXgLzDc7xMrUEkSAOx5Sz5c,3495
|
|
17
17
|
keras_rs/src/layers/embedding/jax/config_conversion.py,sha256=Di1UzRwLgGHd7RuWYJMj2mCOr1u9MseFEWaYKnwD9Bs,16742
|
|
18
|
-
keras_rs/src/layers/embedding/jax/distributed_embedding.py,sha256=
|
|
18
|
+
keras_rs/src/layers/embedding/jax/distributed_embedding.py,sha256=l3gpFXBAdkJw7yVntl0s25excCfC5jryyqBxUKZd2Fk,29820
|
|
19
19
|
keras_rs/src/layers/embedding/jax/embedding_lookup.py,sha256=8LigXjPr7uQaUOdZM6yoLGoPYdRcbkXkFeL_sJoQ6uQ,8223
|
|
20
|
-
keras_rs/src/layers/embedding/jax/embedding_utils.py,sha256=
|
|
20
|
+
keras_rs/src/layers/embedding/jax/embedding_utils.py,sha256=slJ0XwkI1z4vTAnRXQwm39LFnK9AL3CODuGRn5BufgE,8292
|
|
21
21
|
keras_rs/src/layers/embedding/tensorflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
22
|
keras_rs/src/layers/embedding/tensorflow/config_conversion.py,sha256=HpuDthRQQ3X0EO8dW6OAdcgTODkujZlx_swgreVwXyk,13220
|
|
23
23
|
keras_rs/src/layers/embedding/tensorflow/distributed_embedding.py,sha256=TBPYV8gP3ZnAFEwtxmWr_Rp3s-Cj0RrKzF6UOALJ4B0,17817
|
|
@@ -50,7 +50,7 @@ keras_rs/src/metrics/utils.py,sha256=fGTo8j0ykVE5Y3yQCS2orSFcHY20Uxt0NazyPsybUsw
|
|
|
50
50
|
keras_rs/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
51
|
keras_rs/src/utils/doc_string_utils.py,sha256=CmqomepmaYcvpACpXEXkrJb8DMnvIgmYK-lJ53lYarY,1675
|
|
52
52
|
keras_rs/src/utils/keras_utils.py,sha256=dc-NFzs3a-qmRw0vBDiMslPLfrm9yymGduLWesXPhuY,2123
|
|
53
|
-
keras_rs_nightly-0.3.1.
|
|
54
|
-
keras_rs_nightly-0.3.1.
|
|
55
|
-
keras_rs_nightly-0.3.1.
|
|
56
|
-
keras_rs_nightly-0.3.1.
|
|
53
|
+
keras_rs_nightly-0.3.1.dev202510190335.dist-info/METADATA,sha256=w_luc5R9kFzLeA6xlPEqwHo9iKnuWYFvHUnuxnQ_iOM,5324
|
|
54
|
+
keras_rs_nightly-0.3.1.dev202510190335.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
55
|
+
keras_rs_nightly-0.3.1.dev202510190335.dist-info/top_level.txt,sha256=pWs8X78Z0cn6lfcIb9VYOW5UeJ-TpoaO9dByzo7_FFo,9
|
|
56
|
+
keras_rs_nightly-0.3.1.dev202510190335.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|