keras-rs-nightly 0.2.2.dev202507220342__py3-none-any.whl → 0.2.2.dev202507240342__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-rs-nightly might be problematic. Click here for more details.

@@ -337,18 +337,33 @@ class DistributedEmbedding(keras.layers.Layer):
337
337
  embedding_layer = DistributedEmbedding(feature_configs)
338
338
 
339
339
  # Add preprocessing to a data input pipeline.
340
- def train_dataset_generator():
341
- for (inputs, weights), labels in iter(train_dataset):
340
+ def preprocessed_dataset_generator(dataset):
341
+ for (inputs, weights), labels in iter(dataset):
342
342
  yield embedding_layer.preprocess(
343
343
  inputs, weights, training=True
344
344
  ), labels
345
345
 
346
- preprocessed_train_dataset = train_dataset_generator()
346
+ preprocessed_train_dataset = preprocessed_dataset_generator(train_dataset)
347
347
  ```
348
348
  This explicit preprocessing stage combines the input and optional weights,
349
349
  so the new data can be passed directly into the `inputs` argument of the
350
350
  layer or model.
351
351
 
352
+ **NOTE**: When working in a multi-host setting with data parallelism, the
353
+ data needs to be sharded properly across hosts. If the original dataset is
354
+ of type `tf.data.Dataset`, it will need to be manually sharded _prior_ to
355
+ applying the preprocess generator:
356
+ ```python
357
+ # Manually shard the dataset across hosts.
358
+ train_dataset = distribution.distribute_dataset(train_dataset)
359
+ distribution.auto_shard_dataset = False # Dataset is already sharded.
360
+
361
+ # Add a preprocessing stage to the distributed data input pipeline.
362
+ train_dataset = preprocessed_dataset_generator(train_dataset)
363
+ ```
364
+ If the original dataset is _not_ a `tf.data.Dataset`, it must already be
365
+ pre-sharded across hosts.
366
+
352
367
  #### Usage in a Keras model
353
368
 
354
369
  Once the global distribution is set and the input preprocessing pipeline
keras_rs/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_rs.src.api_export import keras_rs_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.2.2.dev202507220342"
4
+ __version__ = "0.2.2.dev202507240342"
5
5
 
6
6
 
7
7
  @keras_rs_export("keras_rs.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-rs-nightly
3
- Version: 0.2.2.dev202507220342
3
+ Version: 0.2.2.dev202507240342
4
4
  Summary: Multi-backend recommender systems with Keras 3.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -5,10 +5,10 @@ keras_rs/metrics/__init__.py,sha256=Qxpf6OFooIL9TIn2l3WgOea3HFRG0hq02glPAxtMZ9c,
5
5
  keras_rs/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  keras_rs/src/api_export.py,sha256=RsmG-DvO-cdFeAF9W6LRzms0kvtm-Yp9BAA_d-952zI,510
7
7
  keras_rs/src/types.py,sha256=1A-oLRdX1-f2DsVZBcNl8qNsaH8pM-gnleLT9FWZWBw,1189
8
- keras_rs/src/version.py,sha256=L5RNwN10wq7mNEDC0RdSRznQ05SqrnaSv1xvthTIT68,224
8
+ keras_rs/src/version.py,sha256=T-FyaR6NCFCB80KOZmuIrS1cT2EYhRcJ9tB52MpHBc4,224
9
9
  keras_rs/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_rs/src/layers/embedding/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- keras_rs/src/layers/embedding/base_distributed_embedding.py,sha256=11GicbB6m0wsHJQXISp6lcUyACVVYFLFerluUJUjDFA,44265
11
+ keras_rs/src/layers/embedding/base_distributed_embedding.py,sha256=Hr54K8Y3OpUQc7ExtftLONoY7w4x4R08BkkMNtrpbZw,45026
12
12
  keras_rs/src/layers/embedding/distributed_embedding.py,sha256=94jxUHoGK3Gs9yfV0KxFTuqPo7XFnhgCNlO2FEeiSgM,1072
13
13
  keras_rs/src/layers/embedding/distributed_embedding_config.py,sha256=AWPmZBir1shhqNP6U_jiQ9lsBhMXVikW4B5VnzLsvPg,5579
14
14
  keras_rs/src/layers/embedding/embed_reduce.py,sha256=c-MnEw1-KWs0jTf0JJ_ZBOY-9hRkiFyu989Dof3DnS8,12343
@@ -50,7 +50,7 @@ keras_rs/src/metrics/utils.py,sha256=fGTo8j0ykVE5Y3yQCS2orSFcHY20Uxt0NazyPsybUsw
50
50
  keras_rs/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  keras_rs/src/utils/doc_string_utils.py,sha256=CmqomepmaYcvpACpXEXkrJb8DMnvIgmYK-lJ53lYarY,1675
52
52
  keras_rs/src/utils/keras_utils.py,sha256=dc-NFzs3a-qmRw0vBDiMslPLfrm9yymGduLWesXPhuY,2123
53
- keras_rs_nightly-0.2.2.dev202507220342.dist-info/METADATA,sha256=a1VXlFTuydVDmQcA7GrFJjTA5jsU8XylwJTNuuy8NhQ,5273
54
- keras_rs_nightly-0.2.2.dev202507220342.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
55
- keras_rs_nightly-0.2.2.dev202507220342.dist-info/top_level.txt,sha256=pWs8X78Z0cn6lfcIb9VYOW5UeJ-TpoaO9dByzo7_FFo,9
56
- keras_rs_nightly-0.2.2.dev202507220342.dist-info/RECORD,,
53
+ keras_rs_nightly-0.2.2.dev202507240342.dist-info/METADATA,sha256=AEDq65IcqhpOhiJ8NxNZJM14hCAB-YxmvSBvM0EUogY,5273
54
+ keras_rs_nightly-0.2.2.dev202507240342.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
55
+ keras_rs_nightly-0.2.2.dev202507240342.dist-info/top_level.txt,sha256=pWs8X78Z0cn6lfcIb9VYOW5UeJ-TpoaO9dByzo7_FFo,9
56
+ keras_rs_nightly-0.2.2.dev202507240342.dist-info/RECORD,,