keras-rs-nightly 0.0.1.dev2025043003__py3-none-any.whl → 0.2.2.dev202506100336__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-rs-nightly might be problematic. Click here for more details.

Files changed (37) hide show
  1. keras_rs/layers/__init__.py +12 -0
  2. keras_rs/src/layers/embedding/__init__.py +0 -0
  3. keras_rs/src/layers/embedding/base_distributed_embedding.py +1124 -0
  4. keras_rs/src/layers/embedding/distributed_embedding.py +33 -0
  5. keras_rs/src/layers/embedding/distributed_embedding_config.py +129 -0
  6. keras_rs/src/layers/embedding/embed_reduce.py +309 -0
  7. keras_rs/src/layers/embedding/jax/__init__.py +0 -0
  8. keras_rs/src/layers/embedding/jax/config_conversion.py +398 -0
  9. keras_rs/src/layers/embedding/jax/distributed_embedding.py +892 -0
  10. keras_rs/src/layers/embedding/jax/embedding_lookup.py +255 -0
  11. keras_rs/src/layers/embedding/jax/embedding_utils.py +596 -0
  12. keras_rs/src/layers/embedding/tensorflow/__init__.py +0 -0
  13. keras_rs/src/layers/embedding/tensorflow/config_conversion.py +323 -0
  14. keras_rs/src/layers/embedding/tensorflow/distributed_embedding.py +424 -0
  15. keras_rs/src/layers/feature_interaction/dot_interaction.py +2 -2
  16. keras_rs/src/layers/feature_interaction/feature_cross.py +14 -16
  17. keras_rs/src/layers/retrieval/brute_force_retrieval.py +5 -5
  18. keras_rs/src/layers/retrieval/retrieval.py +4 -4
  19. keras_rs/src/losses/pairwise_loss.py +2 -2
  20. keras_rs/src/losses/pairwise_mean_squared_error.py +1 -3
  21. keras_rs/src/metrics/dcg.py +2 -2
  22. keras_rs/src/metrics/mean_average_precision.py +1 -1
  23. keras_rs/src/metrics/mean_reciprocal_rank.py +4 -4
  24. keras_rs/src/metrics/ndcg.py +2 -2
  25. keras_rs/src/metrics/precision_at_k.py +3 -3
  26. keras_rs/src/metrics/ranking_metric.py +11 -5
  27. keras_rs/src/metrics/ranking_metrics_utils.py +10 -10
  28. keras_rs/src/metrics/recall_at_k.py +2 -2
  29. keras_rs/src/metrics/utils.py +2 -4
  30. keras_rs/src/types.py +43 -14
  31. keras_rs/src/utils/keras_utils.py +26 -6
  32. keras_rs/src/version.py +1 -1
  33. {keras_rs_nightly-0.0.1.dev2025043003.dist-info → keras_rs_nightly-0.2.2.dev202506100336.dist-info}/METADATA +6 -3
  34. keras_rs_nightly-0.2.2.dev202506100336.dist-info/RECORD +55 -0
  35. {keras_rs_nightly-0.0.1.dev2025043003.dist-info → keras_rs_nightly-0.2.2.dev202506100336.dist-info}/WHEEL +1 -1
  36. keras_rs_nightly-0.0.1.dev2025043003.dist-info/RECORD +0 -42
  37. {keras_rs_nightly-0.0.1.dev2025043003.dist-info → keras_rs_nightly-0.2.2.dev202506100336.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,596 @@
1
+ """Utility functions for manipulating JAX embedding tables and inputs."""
2
+
3
+ import collections
4
+ import dataclasses
5
+ import typing
6
+ from typing import Any, Mapping, NamedTuple, Sequence, TypeAlias, TypeVar
7
+
8
+ import jax
9
+ import numpy as np
10
+ from jax import numpy as jnp
11
+ from jax_tpu_embedding.sparsecore.lib.nn import embedding
12
+ from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import FeatureSpec
13
+ from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import StackedTableSpec
14
+ from jax_tpu_embedding.sparsecore.lib.nn.embedding_spec import TableSpec
15
+
16
+ from keras_rs.src.types import Nested
17
+
18
+ T = TypeVar("T")
19
+
20
+ # Any to support tf.Ragged without needing an explicit TF dependency.
21
+ ArrayLike: TypeAlias = jax.Array | np.ndarray | Any # type: ignore
22
+ Shape: TypeAlias = tuple[int, ...]
23
+
24
+
25
+ class FeatureSamples(NamedTuple):
26
+ tokens: ArrayLike
27
+ weights: ArrayLike
28
+
29
+
30
+ class ShardedCooMatrix(NamedTuple):
31
+ shard_starts: ArrayLike
32
+ shard_ends: ArrayLike
33
+ col_ids: ArrayLike
34
+ row_ids: ArrayLike
35
+ values: ArrayLike
36
+
37
+
38
+ def _round_up_to_multiple(value: int, multiple: int) -> int:
39
+ return ((value + multiple - 1) // multiple) * multiple
40
+
41
+
42
+ def _default_stacked_table_spec(
43
+ table_spec: TableSpec, num_shards: int, batch_size: int
44
+ ) -> StackedTableSpec:
45
+ return StackedTableSpec(
46
+ stack_name=table_spec.name,
47
+ stack_vocab_size=_round_up_to_multiple(
48
+ table_spec.vocabulary_size, 8 * num_shards
49
+ ),
50
+ stack_embedding_dim=_round_up_to_multiple(table_spec.embedding_dim, 8),
51
+ optimizer=table_spec.optimizer,
52
+ combiner=table_spec.combiner,
53
+ total_sample_count=batch_size,
54
+ max_ids_per_partition=table_spec.max_ids_per_partition,
55
+ max_unique_ids_per_partition=table_spec.max_unique_ids_per_partition,
56
+ )
57
+
58
+
59
+ def _get_stacked_table_spec(
60
+ table_spec: TableSpec, num_shards: int, batch_size: int = 0
61
+ ) -> StackedTableSpec:
62
+ return table_spec.stacked_table_spec or _default_stacked_table_spec(
63
+ table_spec, num_shards, batch_size
64
+ )
65
+
66
+
67
+ def pad_table(
68
+ table_spec: TableSpec,
69
+ table_values: jax.Array,
70
+ num_shards: int,
71
+ pad_value: jnp.float32 = jnp.nan,
72
+ ) -> jax.Array:
73
+ """Adds appropriate padding to a table to prepare for stacking.
74
+
75
+ Args:
76
+ table_spec: Table specification describing the table to pad.
77
+ table_values: Table values array to pad.
78
+ num_shards: Number of shards in the table (typically
79
+ `global_device_count * num_sc_per_device`).
80
+ pad_value: Value to use for padding.
81
+
82
+ Returns:
83
+ Padded table values.
84
+ """
85
+ vocabulary_size = table_spec.vocabulary_size
86
+ embedding_dim = table_spec.embedding_dim
87
+ padded_vocabulary_size = _round_up_to_multiple(
88
+ vocabulary_size, 8 * num_shards
89
+ )
90
+ stack_embedding_dim = _get_stacked_table_spec(
91
+ table_spec, num_shards
92
+ ).stack_embedding_dim
93
+ return jnp.pad(
94
+ table_values,
95
+ (
96
+ (0, padded_vocabulary_size - vocabulary_size),
97
+ (0, stack_embedding_dim - embedding_dim),
98
+ ),
99
+ constant_values=pad_value,
100
+ )
101
+
102
+
103
+ def _stack_and_shard_table(
104
+ stacked_table: jax.Array,
105
+ table_spec: TableSpec,
106
+ table: jax.Array,
107
+ num_shards: int,
108
+ pad_value: jnp.float32,
109
+ ) -> jax.Array:
110
+ """Stacks and shards a single table for use in sparsecore lookups."""
111
+ padded_values = pad_table(table_spec, table, num_shards, pad_value)
112
+ sharded_padded_vocabulary_size = padded_values.shape[0] // num_shards
113
+ stack_embedding_dim = stacked_table.shape[-1]
114
+
115
+ # Mod-shard vocabulary across devices.
116
+ sharded_values = jnp.swapaxes(
117
+ padded_values.reshape(-1, num_shards, stack_embedding_dim),
118
+ 0,
119
+ 1,
120
+ )
121
+
122
+ # Rotate shards.
123
+ setting_in_stack = table_spec.setting_in_stack
124
+ rotated_values = jnp.roll(
125
+ sharded_values, setting_in_stack.shard_rotation, axis=0
126
+ )
127
+
128
+ # Insert table into the stack.
129
+ table_row = setting_in_stack.row_offset_in_shard
130
+ stacked_table = stacked_table.at[
131
+ :, table_row : (table_row + sharded_padded_vocabulary_size), :
132
+ ].set(rotated_values)
133
+
134
+ return stacked_table
135
+
136
+
137
+ def stack_and_shard_tables(
138
+ table_specs: Nested[TableSpec],
139
+ tables: Nested[ArrayLike],
140
+ num_shards: int,
141
+ pad_value: jnp.float32 = jnp.nan,
142
+ ) -> dict[str, Nested[jax.Array]]:
143
+ """Stacks and shards tables for use in sparsecore lookups.
144
+
145
+ Args:
146
+ table_specs: Nested collection of unstacked table specifications.
147
+ tables: Table values corresponding to the table_specs.
148
+ num_shards: Number of shards in the table (typically
149
+ `global_device_count * num_sc_per_device`).
150
+ pad_value: Value to use for padding.
151
+
152
+ Returns:
153
+ A mapping of stacked table names to stacked table values.
154
+ """
155
+
156
+ # Gather stacked table information.
157
+ stacked_table_map: dict[
158
+ str,
159
+ tuple[StackedTableSpec, list[TableSpec]],
160
+ ] = {}
161
+
162
+ def collect_stacked_tables(table_spec: TableSpec) -> None:
163
+ stacked_table_spec = _get_stacked_table_spec(table_spec, num_shards)
164
+ stacked_table_name = stacked_table_spec.stack_name
165
+ if stacked_table_name not in stacked_table_map:
166
+ stacked_table_map[stacked_table_name] = (stacked_table_spec, [])
167
+ stacked_table_map[stacked_table_name][1].append(table_spec)
168
+
169
+ _ = jax.tree.map(collect_stacked_tables, table_specs)
170
+
171
+ table_map: dict[str, Nested[jax.Array]] = {}
172
+
173
+ def collect_tables(table_spec: TableSpec, table: Nested[jax.Array]) -> None:
174
+ table_map[table_spec.name] = table
175
+
176
+ _ = jax.tree.map(collect_tables, table_specs, tables)
177
+
178
+ stacked_tables: dict[str, Nested[jax.Array]] = {}
179
+ for (
180
+ stacked_table_spec,
181
+ table_specs,
182
+ ) in stacked_table_map.values():
183
+ stack_vocab_size = stacked_table_spec.stack_vocab_size
184
+ sharded_vocab_size = stack_vocab_size // num_shards
185
+ stack_embedding_dim = stacked_table_spec.stack_embedding_dim
186
+
187
+ # Allocate initial buffer. The stacked table will be divided among
188
+ # shards by splitting the vocabulary dimension:
189
+ # [ v, e ] -> [s, v/s, e]
190
+ stacked_table_tree = jax.tree.map(
191
+ lambda _: jnp.zeros(
192
+ # pylint: disable-next=cell-var-from-loop, used only in loop body.
193
+ shape=(num_shards, sharded_vocab_size, stack_embedding_dim),
194
+ dtype=jnp.float32,
195
+ ),
196
+ table_map[table_specs[0].name],
197
+ )
198
+
199
+ for table_spec in table_specs:
200
+ table_tree = table_map[table_spec.name]
201
+ stacked_table_tree = jax.tree.map(
202
+ lambda stacked_table, table: _stack_and_shard_table(
203
+ # pylint: disable-next=cell-var-from-loop, used only in loop body.
204
+ stacked_table,
205
+ # pylint: disable-next=cell-var-from-loop, used only in loop body.
206
+ table_spec,
207
+ table,
208
+ num_shards,
209
+ pad_value,
210
+ ),
211
+ stacked_table_tree,
212
+ table_tree,
213
+ )
214
+
215
+ stacked_tables[stacked_table_spec.stack_name] = stacked_table_tree
216
+
217
+ return stacked_tables
218
+
219
+
220
+ def _unshard_and_unstack_table(
221
+ table_spec: TableSpec,
222
+ stacked_table_tree: Nested[jax.Array],
223
+ num_shards: int,
224
+ ) -> Nested[jax.Array]:
225
+ """Unshards and unstacks a single table."""
226
+ vocabulary_size = table_spec.vocabulary_size
227
+ embedding_dim = table_spec.embedding_dim
228
+
229
+ def _unshard_and_unstack_single_table(
230
+ table_spec: TableSpec, stacked_table: jax.Array
231
+ ) -> jax.Array:
232
+ stack_embedding_dim = stacked_table.shape[-1]
233
+
234
+ # Maybe re-shape in case it was flattened.
235
+ stacked_table = stacked_table.reshape(
236
+ num_shards, -1, stack_embedding_dim
237
+ )
238
+ sharded_vocabulary_size = (
239
+ _round_up_to_multiple(vocabulary_size, 8 * num_shards) // num_shards
240
+ )
241
+
242
+ # Extract padded values from the stacked table.
243
+ setting_in_stack = table_spec.setting_in_stack
244
+ row = setting_in_stack.row_offset_in_shard
245
+ padded_values = stacked_table[
246
+ :, row : (row + sharded_vocabulary_size), :
247
+ ]
248
+
249
+ # Un-rotate shards.
250
+ padded_values = jnp.roll(
251
+ padded_values, -setting_in_stack.shard_rotation, axis=0
252
+ )
253
+
254
+ # Un-mod-shard.
255
+ padded_values = jnp.swapaxes(padded_values, 0, 1).reshape(
256
+ -1, stack_embedding_dim
257
+ )
258
+
259
+ # Un-pad.
260
+ return padded_values[:vocabulary_size, :embedding_dim]
261
+
262
+ output: Nested[jax.Array] = jax.tree.map(
263
+ lambda stacked_table: _unshard_and_unstack_single_table(
264
+ table_spec, stacked_table
265
+ ),
266
+ stacked_table_tree,
267
+ )
268
+ return output
269
+
270
+
271
+ def unshard_and_unstack_tables(
272
+ table_specs: Nested[TableSpec],
273
+ stacked_tables: Mapping[str, Nested[jax.Array]],
274
+ num_shards: int,
275
+ ) -> Nested[jax.Array]:
276
+ """Unshards and unstacks a collection of tables.
277
+
278
+ Args:
279
+ table_specs: Nested collection of unstacked table specifications.
280
+ stacked_tables: Mapping of stacked table names to stacked table values.
281
+ num_shards: Number of shards in the table (typically
282
+ `global_device_count * num_sc_per_device`).
283
+
284
+ Returns:
285
+ A mapping of table names to unstacked table values.
286
+ """
287
+ output: Nested[jax.Array] = jax.tree.map(
288
+ lambda table_spec: _unshard_and_unstack_table(
289
+ table_spec,
290
+ stacked_tables[
291
+ _get_stacked_table_spec(table_spec, num_shards=1).stack_name
292
+ ],
293
+ num_shards,
294
+ ),
295
+ table_specs,
296
+ )
297
+ return output
298
+
299
+
300
+ def get_table_specs(feature_specs: Nested[FeatureSpec]) -> dict[str, TableSpec]:
301
+ table_spec_map: dict[str, TableSpec] = {}
302
+ flat_feature_specs, _ = jax.tree.flatten(feature_specs)
303
+ for feature_spec in flat_feature_specs:
304
+ table_spec = feature_spec.table_spec
305
+ table_spec_map[table_spec.name] = table_spec
306
+ return table_spec_map
307
+
308
+
309
+ def get_table_stacks(
310
+ table_specs: Nested[TableSpec],
311
+ ) -> dict[str, list[TableSpec]]:
312
+ """Extracts lists of tables that are stacked together.
313
+
314
+ Args:
315
+ table_specs: Nested collection of table specifications.
316
+
317
+ Returns:
318
+ A mapping of stacked table names to lists of table specifications for
319
+ each stack.
320
+ """
321
+ stacked_table_specs: dict[str, list[TableSpec]] = collections.defaultdict(
322
+ list
323
+ )
324
+ flat_table_specs, _ = jax.tree.flatten(table_specs)
325
+ for table_spec in flat_table_specs:
326
+ table_spec = typing.cast(TableSpec, table_spec)
327
+ stacked_table_spec = table_spec.stacked_table_spec
328
+ if stacked_table_spec is not None:
329
+ stacked_table_specs[stacked_table_spec.stack_name].append(
330
+ table_spec
331
+ )
332
+ else:
333
+ stacked_table_specs[table_spec.name].append(table_spec)
334
+
335
+ return stacked_table_specs
336
+
337
+
338
+ def update_stacked_table_specs(
339
+ feature_specs: Nested[FeatureSpec],
340
+ max_ids_per_partition: Mapping[str, int],
341
+ max_unique_ids_per_partition: Mapping[str, int],
342
+ ) -> None:
343
+ """Updates properties in the supplied feature specs.
344
+
345
+ Args:
346
+ feature_specs: Feature specs to update in-place.
347
+ max_ids_per_partition: Mapping of table stack name to
348
+ new `max_ids_per_partition` for the stack.
349
+ max_unique_ids_per_partition: Mapping of table stack name to
350
+ new `max_unique_ids_per_partition` for the stack.
351
+ """
352
+ # Collect table specs and stacked table specs.
353
+ table_specs: dict[str, TableSpec] = {}
354
+ for feature_spec in jax.tree.flatten(feature_specs)[0]:
355
+ feature_spec = typing.cast(FeatureSpec, feature_spec)
356
+ table_specs[feature_spec.table_spec.name] = feature_spec.table_spec
357
+
358
+ stacked_table_specs: dict[str, StackedTableSpec] = {}
359
+ for table_spec in table_specs.values():
360
+ stacked_table_spec = typing.cast(
361
+ StackedTableSpec, table_spec.stacked_table_spec
362
+ )
363
+ stacked_table_specs[stacked_table_spec.stack_name] = stacked_table_spec
364
+
365
+ # Replace fields in the stacked_table_specs.
366
+ stacked_table_specs = {
367
+ stack_name: dataclasses.replace(
368
+ stacked_table_spec,
369
+ max_ids_per_partition=max_ids_per_partition[
370
+ stacked_table_spec.stack_name
371
+ ],
372
+ max_unique_ids_per_partition=max_unique_ids_per_partition[
373
+ stacked_table_spec.stack_name
374
+ ],
375
+ )
376
+ for stack_name, stacked_table_spec in stacked_table_specs.items()
377
+ }
378
+
379
+ # Insert new stacked tables into tables.
380
+ for table_spec in table_specs.values():
381
+ stacked_table_spec = typing.cast(
382
+ StackedTableSpec, table_spec.stacked_table_spec
383
+ )
384
+ table_spec.stacked_table_spec = stacked_table_specs[
385
+ stacked_table_spec.stack_name
386
+ ]
387
+
388
+
389
+ def convert_to_numpy(
390
+ ragged_or_dense: np.ndarray[Any, Any] | Sequence[Sequence[Any]] | Any,
391
+ dtype: Any,
392
+ ) -> np.ndarray[Any, Any]:
393
+ """Converts a ragged or dense list of inputs to a ragged/dense numpy array.
394
+
395
+ The output is adjusted to be 2D.
396
+
397
+ Args:
398
+ ragged_or_dense: Input that is either already a numpy array, or nested
399
+ sequence.
400
+ dtype: Numpy dtype of output array.
401
+
402
+ Returns:
403
+ Corresponding numpy array.
404
+ """
405
+ if hasattr(ragged_or_dense, "numpy"):
406
+ # Support tf.RaggedTensor and other TF input dtypes.
407
+ if callable(getattr(ragged_or_dense, "numpy")):
408
+ ragged_or_dense = ragged_or_dense.numpy()
409
+
410
+ if isinstance(ragged_or_dense, jax.Array):
411
+ ragged_or_dense = np.asarray(ragged_or_dense)
412
+
413
+ if isinstance(ragged_or_dense, np.ndarray):
414
+ # Convert 1D to 2D.
415
+ if ragged_or_dense.dtype != np.ndarray and ragged_or_dense.ndim == 1:
416
+ return ragged_or_dense.reshape(-1, 1).astype(dtype)
417
+
418
+ # If dense, return converted dense type.
419
+ if ragged_or_dense.dtype != np.ndarray:
420
+ return ragged_or_dense.astype(dtype)
421
+
422
+ # Ragged numpy array.
423
+ return ragged_or_dense
424
+
425
+ # Handle 1D sequence input.
426
+ if not isinstance(ragged_or_dense[0], collections.abc.Sequence):
427
+ return np.asarray(ragged_or_dense, dtype=dtype).reshape(-1, 1)
428
+
429
+ # Assemble elements into an nd-array.
430
+ counts = [len(vals) for vals in ragged_or_dense]
431
+ if all([count == counts[0] for count in counts]):
432
+ # Dense input.
433
+ return np.asarray(ragged_or_dense, dtype=dtype)
434
+ else:
435
+ # Ragged input, convert to ragged numpy arrays.
436
+ return np.array(
437
+ [np.array(row, dtype=dtype) for row in ragged_or_dense],
438
+ dtype=np.ndarray,
439
+ )
440
+
441
+
442
+ def ones_like(
443
+ ragged_or_dense: np.ndarray[Any, Any], dtype: Any = None
444
+ ) -> np.ndarray[Any, Any]:
445
+ """Creates an array of ones the same as as the input.
446
+
447
+ This differs from traditional numpy in that a ragged input will lead to
448
+ a resulting ragged array of ones, whereas np.ones_like(...) will instead
449
+ only consider the outer array and return a 1D dense array of ones.
450
+
451
+ Args:
452
+ ragged_or_dense: The ragged or dense input whose shape and data-type
453
+ define these same attributes of the returned array.
454
+ dtype: The data-type of the returned array.
455
+
456
+ Returns:
457
+ An array of ones with the same shape as the input, and specified data
458
+ type.
459
+ """
460
+ dtype = dtype or ragged_or_dense.dtype
461
+ if ragged_or_dense.dtype == np.ndarray:
462
+ # Ragged.
463
+ return np.array(
464
+ [np.ones_like(row, dtype=dtype) for row in ragged_or_dense],
465
+ dtype=np.ndarray,
466
+ )
467
+ else:
468
+ # Dense.
469
+ return np.ones_like(ragged_or_dense, dtype=dtype)
470
+
471
+
472
+ def create_feature_samples(
473
+ feature_structure: Nested[T],
474
+ feature_ids: Nested[ArrayLike | Sequence[int] | Sequence[Sequence[int]]],
475
+ feature_weights: None
476
+ | (Nested[ArrayLike | Sequence[float] | Sequence[Sequence[float]]]),
477
+ ) -> Nested[FeatureSamples]:
478
+ """Constructs a collection of sample tuples from provided IDs and weights.
479
+
480
+ Args:
481
+ feature_structure: The nested structure of the inputs (typically
482
+ `FeatureSpec`s).
483
+ feature_ids: The feature IDs to use for the samples.
484
+ feature_weights: The feature weights to use for the samples. Defaults
485
+ to ones if not provided.
486
+
487
+ Returns:
488
+ A nested collection of `FeatureSamples` corresponding to the input IDs
489
+ and weights, for use in embedding lookups.
490
+ """
491
+ # Create numpy arrays from inputs.
492
+ feature_ids = jax.tree.map(
493
+ lambda _, ids: convert_to_numpy(ids, np.int32),
494
+ feature_structure,
495
+ feature_ids,
496
+ )
497
+
498
+ if feature_weights is None:
499
+ # Make ragged or dense ones_like.
500
+ feature_weights = jax.tree.map(
501
+ lambda _, ids: ones_like(ids, np.float32),
502
+ feature_structure,
503
+ feature_ids,
504
+ )
505
+ else:
506
+ feature_weights = jax.tree.map(
507
+ lambda _, wgts: convert_to_numpy(wgts, np.float32),
508
+ feature_structure,
509
+ feature_weights,
510
+ )
511
+
512
+ # Assemble.
513
+ def _create_feature_samples(
514
+ sample_ids: np.ndarray[Any, Any],
515
+ sample_weights: np.ndarray[Any, Any],
516
+ ) -> FeatureSamples:
517
+ return FeatureSamples(sample_ids, sample_weights)
518
+
519
+ output: Nested[FeatureSamples] = jax.tree.map(
520
+ lambda _, sample_ids, sample_weights: _create_feature_samples(
521
+ sample_ids, sample_weights
522
+ ),
523
+ feature_structure,
524
+ feature_ids,
525
+ feature_weights,
526
+ )
527
+ return output
528
+
529
+
530
+ def stack_and_shard_samples(
531
+ feature_specs: Nested[FeatureSpec],
532
+ feature_samples: Nested[FeatureSamples],
533
+ local_device_count: int,
534
+ global_device_count: int,
535
+ num_sc_per_device: int,
536
+ static_buffer_size: int | Mapping[str, int] | None = None,
537
+ ) -> tuple[dict[str, ShardedCooMatrix], embedding.SparseDenseMatmulInputStats]:
538
+ """Prepares input samples for use in embedding lookups.
539
+
540
+ Args:
541
+ feature_specs: Nested collection of feature specifications.
542
+ feature_samples: Nested collection of feature samples.
543
+ local_device_count: Number of local JAX devices.
544
+ global_device_count: Number of global JAX devices.
545
+ num_sc_per_device: Number of sparsecores per device.
546
+ static_buffer_size: The static buffer size to use for the samples.
547
+ Defaults to None, in which case an upper-bound for the buffer size
548
+ will be automatically determined.
549
+
550
+ Returns:
551
+ The preprocessed inputs, and statistics useful for updating FeatureSpecs
552
+ based on the provided input data.
553
+ """
554
+ del static_buffer_size # Currently ignored.
555
+ flat_feature_specs, _ = jax.tree.flatten(feature_specs)
556
+
557
+ feature_tokens = []
558
+ feature_weights = []
559
+
560
+ def collect_tokens_and_weights(
561
+ feature_spec: FeatureSpec, samples: FeatureSamples
562
+ ) -> None:
563
+ del feature_spec
564
+ feature_tokens.append(samples.tokens)
565
+ feature_weights.append(samples.weights)
566
+
567
+ jax.tree.map(collect_tokens_and_weights, feature_specs, feature_samples)
568
+
569
+ preprocessed_inputs, stats = embedding.preprocess_sparse_dense_matmul_input(
570
+ feature_tokens,
571
+ feature_weights,
572
+ flat_feature_specs,
573
+ local_device_count=local_device_count,
574
+ global_device_count=global_device_count,
575
+ num_sc_per_device=num_sc_per_device,
576
+ sharding_strategy="MOD",
577
+ has_leading_dimension=False,
578
+ allow_id_dropping=True,
579
+ )
580
+
581
+ out: dict[str, ShardedCooMatrix] = {}
582
+ tables_names = preprocessed_inputs.lhs_row_pointers.keys()
583
+ for table_name in tables_names:
584
+ shard_ends = preprocessed_inputs.lhs_row_pointers[table_name]
585
+ shard_starts = np.concatenate(
586
+ [np.asarray([0]), _round_up_to_multiple(shard_ends[:-1], 8)]
587
+ )
588
+ out[table_name] = ShardedCooMatrix(
589
+ shard_starts=shard_starts,
590
+ shard_ends=shard_ends,
591
+ col_ids=preprocessed_inputs.lhs_embedding_ids[table_name],
592
+ row_ids=preprocessed_inputs.lhs_sample_ids[table_name],
593
+ values=preprocessed_inputs.lhs_gains[table_name],
594
+ )
595
+
596
+ return out, stats
File without changes