keras-rs-nightly 0.0.1.dev2025040803__py3-none-any.whl → 0.0.1.dev2025040903__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-rs-nightly might be problematic. Click here for more details.

@@ -19,8 +19,8 @@ class RemoveAccidentalHits(keras.layers.Layer):
19
19
 
20
20
  def call(
21
21
  self,
22
- labels: types.Tensor,
23
22
  logits: types.Tensor,
23
+ labels: types.Tensor,
24
24
  candidate_ids: types.Tensor,
25
25
  ) -> types.Tensor:
26
26
  """Zeroes selected logits.
@@ -29,16 +29,16 @@ class RemoveAccidentalHits(keras.layers.Layer):
29
29
  have the same ID as the positive candidate in that row.
30
30
 
31
31
  Args:
32
- labels: one-hot labels tensor, typically
33
- `[batch_size, num_candidates]` but can have more dimensions or be
34
- 1D as `[num_candidates]`.
35
- logits: logits tensor. Must have the same shape as `labels`.
36
- candidate_ids: candidate identifiers tensor, can be `[num_candidates]`
37
- or `[batch_size, num_candidates]` or have more dimensions as long
38
- as they match the last dimensions of `labels`.
32
+ logits: logits tensor, typically `[batch_size, num_candidates]` but
33
+ can have more dimensions or be 1D as `[num_candidates]`.
34
+ labels: one-hot labels tensor, must be the same shape as `logits`.
35
+ candidate_ids: candidate identifiers tensor, can be
36
+ `[num_candidates]` or `[batch_size, num_candidates]` or have
37
+ more dimensions as long as they match the last dimensions of
38
+ `labels`.
39
39
 
40
40
  Returns:
41
- logits: Modified logits.
41
+ logits: Modified logits with the same shape as the input logits.
42
42
  """
43
43
  # A more principled way is to implement
44
44
  # `softmax_cross_entropy_with_logits` with a input mask. Here we
keras_rs/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_rs.src.api_export import keras_rs_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.0.1.dev2025040803"
4
+ __version__ = "0.0.1.dev2025040903"
5
5
 
6
6
 
7
7
  @keras_rs_export("keras_rs.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-rs-nightly
3
- Version: 0.0.1.dev2025040803
3
+ Version: 0.0.1.dev2025040903
4
4
  Summary: Multi-backend recommender systems with Keras 3.
5
5
  Author-email: Keras RS team <keras-rs@google.com>
6
6
  License: Apache License 2.0
@@ -5,7 +5,7 @@ keras_rs/api/losses/__init__.py,sha256=LGW7eHQh8FbQXdMV1s9zJpbloVlz_Zlo51sorWAvF
5
5
  keras_rs/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  keras_rs/src/api_export.py,sha256=RsmG-DvO-cdFeAF9W6LRzms0kvtm-Yp9BAA_d-952zI,510
7
7
  keras_rs/src/types.py,sha256=UyOdgjqrqg_b58opnY8n6gTiDHKVR8z_bmEruehERBk,514
8
- keras_rs/src/version.py,sha256=a9BItWgRhEYrbx2zCLxStYnDVn5qAEy8Ovsszh2TS_o,222
8
+ keras_rs/src/version.py,sha256=wVn06NpH2Q2aM6jiAg5DElYd-lEp6sbrNZSQL-1PPss,222
9
9
  keras_rs/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_rs/src/layers/feature_interaction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_rs/src/layers/feature_interaction/dot_interaction.py,sha256=jGHcg0EiWxth6LTxG2yWgHcyx_GXrxvA61uQqpPfnDQ,6900
@@ -13,7 +13,7 @@ keras_rs/src/layers/feature_interaction/feature_cross.py,sha256=5OCSI0vFYzJNmgkK
13
13
  keras_rs/src/layers/retrieval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_rs/src/layers/retrieval/brute_force_retrieval.py,sha256=mohILOt6PC6jHBztaowDbj3QBnSetuvkq55FmE39PlY,7321
15
15
  keras_rs/src/layers/retrieval/hard_negative_mining.py,sha256=CY8-3W52ZBIFcEfvjXJxbFltD6ulXl4-sZCRF6stIEc,4119
16
- keras_rs/src/layers/retrieval/remove_accidental_hits.py,sha256=fiFQLlkMBXhG8V7a8mv_hKOwlqEJeUiMBYUVQw1woTE,3270
16
+ keras_rs/src/layers/retrieval/remove_accidental_hits.py,sha256=Z84z2YgKspKeNdc5id8lf9TAyFsbCCz3acJxiKXYipc,3324
17
17
  keras_rs/src/layers/retrieval/sampling_probability_correction.py,sha256=80vgOPfBiF-PC0dSyqS57IcIxOxi_Q_R7eSXHn1G0yI,1437
18
18
  keras_rs/src/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
19
  keras_rs/src/losses/pairwise_hinge_loss.py,sha256=vqDGd-OnZxiqdeE6vuabE8BKDfill3D2GM0lW5JUmsg,922
@@ -24,7 +24,7 @@ keras_rs/src/losses/pairwise_soft_zero_one_loss.py,sha256=XBej5nybFXEQ-Vp6GLvNmq
24
24
  keras_rs/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  keras_rs/src/utils/keras_utils.py,sha256=IjWSRieBkv7UX12qgUoI1tcOeISstCLRSTqSHpT06yE,1275
26
26
  keras_rs/src/utils/pairwise_loss_utils.py,sha256=5SAqA3z30A1awzV9l5oVbcno5Z6HXARkNcUFTPL7_jg,3380
27
- keras_rs_nightly-0.0.1.dev2025040803.dist-info/METADATA,sha256=oC2tgoUja1GWeMPNM6ZFmrBJNnuPof-Eb8LioVF3kYs,3547
28
- keras_rs_nightly-0.0.1.dev2025040803.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
29
- keras_rs_nightly-0.0.1.dev2025040803.dist-info/top_level.txt,sha256=pWs8X78Z0cn6lfcIb9VYOW5UeJ-TpoaO9dByzo7_FFo,9
30
- keras_rs_nightly-0.0.1.dev2025040803.dist-info/RECORD,,
27
+ keras_rs_nightly-0.0.1.dev2025040903.dist-info/METADATA,sha256=KWzgc2oFlkqoj-qkXObJvbUissueApGcNWH9IZpCQWw,3547
28
+ keras_rs_nightly-0.0.1.dev2025040903.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
29
+ keras_rs_nightly-0.0.1.dev2025040903.dist-info/top_level.txt,sha256=pWs8X78Z0cn6lfcIb9VYOW5UeJ-TpoaO9dByzo7_FFo,9
30
+ keras_rs_nightly-0.0.1.dev2025040903.dist-info/RECORD,,