keras-nightly 3.14.0.dev2026013004__py3-none-any.whl → 3.14.0.dev2026020104__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/src/backend/jax/distribution_lib.py +0 -18
- keras/src/backend/jax/numpy.py +15 -6
- keras/src/backend/openvino/numpy.py +61 -8
- keras/src/backend/tensorflow/numpy.py +1 -3
- keras/src/ops/image.py +4 -0
- keras/src/optimizers/__init__.py +1 -0
- keras/src/testing/__init__.py +1 -0
- keras/src/testing/test_case.py +4 -7
- keras/src/version.py +1 -1
- {keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/METADATA +1 -1
- {keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/RECORD +13 -13
- {keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/WHEEL +0 -0
- {keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/top_level.txt +0 -0
|
@@ -3,7 +3,6 @@
|
|
|
3
3
|
import jax
|
|
4
4
|
import numpy as np
|
|
5
5
|
|
|
6
|
-
from keras.src.backend.common import global_state
|
|
7
6
|
from keras.src.random import seed_generator
|
|
8
7
|
from keras.src.utils import jax_utils
|
|
9
8
|
from keras.src.utils import rng_utils
|
|
@@ -157,23 +156,6 @@ def initialize_rng():
|
|
|
157
156
|
# Set the global seed.
|
|
158
157
|
rng_utils.set_random_seed(global_seed)
|
|
159
158
|
|
|
160
|
-
# Check if the global seed generator is set and ensure it has an initialized
|
|
161
|
-
# seed. Otherwise, reset the seed to the global seed.
|
|
162
|
-
global_seed_generator = global_state.get_global_attribute(
|
|
163
|
-
seed_generator.GLOBAL_SEED_GENERATOR
|
|
164
|
-
)
|
|
165
|
-
if global_seed_generator is not None:
|
|
166
|
-
seed = global_seed_generator.get_config()["seed"]
|
|
167
|
-
if seed is None:
|
|
168
|
-
global_state.set_global_attribute(
|
|
169
|
-
seed_generator.GLOBAL_SEED_GENERATOR,
|
|
170
|
-
seed_generator.SeedGenerator(
|
|
171
|
-
seed=global_seed,
|
|
172
|
-
name=global_seed_generator.name,
|
|
173
|
-
backend=global_seed_generator.backend,
|
|
174
|
-
),
|
|
175
|
-
)
|
|
176
|
-
|
|
177
159
|
|
|
178
160
|
def initialize(job_addresses, num_processes, process_id):
|
|
179
161
|
if job_addresses and "," in job_addresses:
|
keras/src/backend/jax/numpy.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
import builtins
|
|
2
2
|
import math
|
|
3
3
|
|
|
4
|
+
import jax
|
|
4
5
|
import jax.experimental.sparse as jax_sparse
|
|
5
6
|
import jax.numpy as jnp
|
|
6
7
|
from jax import export as jax_export
|
|
@@ -16,6 +17,18 @@ from keras.src.backend.jax.core import cast
|
|
|
16
17
|
from keras.src.backend.jax.core import convert_to_tensor
|
|
17
18
|
|
|
18
19
|
|
|
20
|
+
def _uses_cpu(x):
|
|
21
|
+
if hasattr(x, "device"):
|
|
22
|
+
device = x.device
|
|
23
|
+
if not isinstance(device, jax.Device):
|
|
24
|
+
# Array is sharded.
|
|
25
|
+
return False
|
|
26
|
+
return device.platform == "cpu"
|
|
27
|
+
else:
|
|
28
|
+
# This is a Tracer, not a concrete Array.
|
|
29
|
+
return jax.default_backend() == "cpu"
|
|
30
|
+
|
|
31
|
+
|
|
19
32
|
def rot90(array, k=1, axes=(0, 1)):
|
|
20
33
|
"""Rotate an array by 90 degrees in the specified plane."""
|
|
21
34
|
if array.ndim < 2:
|
|
@@ -402,11 +415,9 @@ def arctanh(x):
|
|
|
402
415
|
|
|
403
416
|
|
|
404
417
|
def argmax(x, axis=None, keepdims=False):
|
|
405
|
-
from keras.src.testing.test_case import uses_cpu
|
|
406
|
-
|
|
407
418
|
x = convert_to_tensor(x)
|
|
408
419
|
dtype = standardize_dtype(x.dtype)
|
|
409
|
-
if "float" not in dtype or
|
|
420
|
+
if "float" not in dtype or x.ndim == 0 or not _uses_cpu(x):
|
|
410
421
|
return jnp.argmax(x, axis=axis, keepdims=keepdims)
|
|
411
422
|
|
|
412
423
|
# Fix the flush-to-zero (FTZ) issue based on this issue:
|
|
@@ -419,11 +430,9 @@ def argmax(x, axis=None, keepdims=False):
|
|
|
419
430
|
|
|
420
431
|
|
|
421
432
|
def argmin(x, axis=None, keepdims=False):
|
|
422
|
-
from keras.src.testing.test_case import uses_cpu
|
|
423
|
-
|
|
424
433
|
x = convert_to_tensor(x)
|
|
425
434
|
dtype = standardize_dtype(x.dtype)
|
|
426
|
-
if "float" not in dtype or
|
|
435
|
+
if "float" not in dtype or x.ndim == 0 or not _uses_cpu(x):
|
|
427
436
|
return jnp.argmin(x, axis=axis, keepdims=keepdims)
|
|
428
437
|
|
|
429
438
|
# Fix the flush-to-zero (FTZ) issue based on this issue:
|
|
@@ -366,6 +366,10 @@ def arctan2(x1, x2):
|
|
|
366
366
|
x1 = ov_opset.convert(x1, result_type)
|
|
367
367
|
x2 = ov_opset.convert(x2, result_type)
|
|
368
368
|
|
|
369
|
+
nan_x1 = ov_opset.is_nan(x1)
|
|
370
|
+
nan_x2 = ov_opset.is_nan(x2)
|
|
371
|
+
nan_mask = ov_opset.logical_or(nan_x1, nan_x2)
|
|
372
|
+
|
|
369
373
|
x = ov_opset.divide(x1, x2)
|
|
370
374
|
y = ov_opset.atan(x)
|
|
371
375
|
|
|
@@ -375,12 +379,12 @@ def arctan2(x1, x2):
|
|
|
375
379
|
neg_half_pi = ov_opset.constant(-float(np.pi / 2), ov_type)
|
|
376
380
|
zero_const = ov_opset.constant(0.0, ov_type)
|
|
377
381
|
|
|
378
|
-
cond_x2_gt0 = ov_opset.greater(x2, zero_const)
|
|
379
|
-
cond_x2_lt0 = ov_opset.less(x2, zero_const)
|
|
382
|
+
cond_x2_gt0 = ov_opset.greater(x2, zero_const)
|
|
383
|
+
cond_x2_lt0 = ov_opset.less(x2, zero_const)
|
|
380
384
|
|
|
381
|
-
cond_x1_ge0 = ov_opset.greater_equal(x1, zero_const)
|
|
382
|
-
cond_x1_gt0 = ov_opset.greater(x1, zero_const)
|
|
383
|
-
cond_x1_eq0 = ov_opset.equal(x1, zero_const)
|
|
385
|
+
cond_x1_ge0 = ov_opset.greater_equal(x1, zero_const)
|
|
386
|
+
cond_x1_gt0 = ov_opset.greater(x1, zero_const)
|
|
387
|
+
cond_x1_eq0 = ov_opset.equal(x1, zero_const)
|
|
384
388
|
|
|
385
389
|
out_x2_lt0 = ov_opset.select(
|
|
386
390
|
cond_x1_ge0,
|
|
@@ -393,7 +397,11 @@ def arctan2(x1, x2):
|
|
|
393
397
|
|
|
394
398
|
out_not_pos = ov_opset.select(cond_x2_lt0, out_x2_lt0, out_x2_zero)
|
|
395
399
|
|
|
396
|
-
|
|
400
|
+
value_out = ov_opset.select(cond_x2_gt0, y, out_not_pos)
|
|
401
|
+
|
|
402
|
+
# Generate NaN safely for all floating dtypes (including bf16)
|
|
403
|
+
nan_value = ov_opset.divide(zero_const, zero_const)
|
|
404
|
+
final_out = ov_opset.select(nan_mask, nan_value, value_out)
|
|
397
405
|
return OpenVINOKerasTensor(final_out.output(0))
|
|
398
406
|
|
|
399
407
|
|
|
@@ -2122,7 +2130,22 @@ def nanmin(x, axis=None, keepdims=False):
|
|
|
2122
2130
|
|
|
2123
2131
|
|
|
2124
2132
|
def nansum(x, axis=None, keepdims=False):
|
|
2125
|
-
|
|
2133
|
+
x = get_ov_output(x)
|
|
2134
|
+
x_type = x.get_element_type()
|
|
2135
|
+
|
|
2136
|
+
if not x_type.is_integral() and x_type != Type.boolean:
|
|
2137
|
+
nan_mask = ov_opset.is_nan(x)
|
|
2138
|
+
zero = ov_opset.constant(0, x_type)
|
|
2139
|
+
x = ov_opset.select(nan_mask, zero, x).output(0)
|
|
2140
|
+
|
|
2141
|
+
x, axis = _resolve_axis(x, axis)
|
|
2142
|
+
if axis is None:
|
|
2143
|
+
return OpenVINOKerasTensor(x)
|
|
2144
|
+
|
|
2145
|
+
x = _upcast_type_if_needed(x)
|
|
2146
|
+
result = ov_opset.reduce_sum(x, axis, keepdims).output(0)
|
|
2147
|
+
|
|
2148
|
+
return OpenVINOKerasTensor(result)
|
|
2126
2149
|
|
|
2127
2150
|
|
|
2128
2151
|
def nan_to_num(x, nan=0.0, posinf=None, neginf=None):
|
|
@@ -2717,7 +2740,37 @@ def round(x, decimals=0):
|
|
|
2717
2740
|
|
|
2718
2741
|
|
|
2719
2742
|
def tile(x, repeats):
|
|
2720
|
-
|
|
2743
|
+
x = get_ov_output(x)
|
|
2744
|
+
|
|
2745
|
+
if isinstance(repeats, int):
|
|
2746
|
+
repeats = [repeats]
|
|
2747
|
+
repeats = get_ov_output(repeats)
|
|
2748
|
+
|
|
2749
|
+
if repeats.get_element_type() != Type.i64:
|
|
2750
|
+
repeats = ov_opset.convert(repeats, Type.i64)
|
|
2751
|
+
|
|
2752
|
+
if len(repeats.get_partial_shape()) != 1:
|
|
2753
|
+
repeats = ov_opset.reshape(repeats, [-1], False)
|
|
2754
|
+
|
|
2755
|
+
shape_x = ov_opset.shape_of(x, Type.i64)
|
|
2756
|
+
rank_x = ov_opset.shape_of(shape_x, Type.i64)
|
|
2757
|
+
rank_r = ov_opset.shape_of(repeats, Type.i64)
|
|
2758
|
+
|
|
2759
|
+
one = ov_opset.constant(1, Type.i64)
|
|
2760
|
+
zero = ov_opset.constant(0, Type.i64)
|
|
2761
|
+
|
|
2762
|
+
pad_x = ov_opset.maximum(ov_opset.subtract(rank_r, rank_x), zero)
|
|
2763
|
+
new_x_shape = ov_opset.concat(
|
|
2764
|
+
[ov_opset.broadcast(one, pad_x).output(0), shape_x], 0
|
|
2765
|
+
)
|
|
2766
|
+
x = ov_opset.reshape(x, new_x_shape, False)
|
|
2767
|
+
|
|
2768
|
+
pad_r = ov_opset.maximum(ov_opset.subtract(rank_x, rank_r), zero)
|
|
2769
|
+
repeats = ov_opset.concat(
|
|
2770
|
+
[ov_opset.broadcast(one, pad_r).output(0), repeats], 0
|
|
2771
|
+
)
|
|
2772
|
+
|
|
2773
|
+
return OpenVINOKerasTensor(ov_opset.tile(x, repeats).output(0))
|
|
2721
2774
|
|
|
2722
2775
|
|
|
2723
2776
|
def trace(x, offset=0, axis1=0, axis2=1):
|
|
@@ -949,11 +949,9 @@ def argmax(x, axis=None, keepdims=False):
|
|
|
949
949
|
|
|
950
950
|
|
|
951
951
|
def argmin(x, axis=None, keepdims=False):
|
|
952
|
-
from keras.src.testing.test_case import uses_cpu
|
|
953
|
-
|
|
954
952
|
x = convert_to_tensor(x)
|
|
955
953
|
dtype = standardize_dtype(x.dtype)
|
|
956
|
-
if "float" not in dtype or
|
|
954
|
+
if "float" not in dtype or x.ndim == 0:
|
|
957
955
|
_x = x
|
|
958
956
|
if axis is None:
|
|
959
957
|
x = tf.reshape(x, [-1])
|
keras/src/ops/image.py
CHANGED
|
@@ -342,6 +342,10 @@ def resize(
|
|
|
342
342
|
"Expected `size` to be a tuple of 2 integers. "
|
|
343
343
|
f"Received: size={size}"
|
|
344
344
|
)
|
|
345
|
+
if size[0] <= 0 or size[1] <= 0:
|
|
346
|
+
raise ValueError(
|
|
347
|
+
f"`size` must have positive height and width. Received: size={size}"
|
|
348
|
+
)
|
|
345
349
|
if len(images.shape) < 3 or len(images.shape) > 4:
|
|
346
350
|
raise ValueError(
|
|
347
351
|
"Invalid images rank: expected rank 3 (single image) "
|
keras/src/optimizers/__init__.py
CHANGED
keras/src/testing/__init__.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from keras.src.testing.test_case import TestCase
|
|
2
2
|
from keras.src.testing.test_case import jax_uses_gpu
|
|
3
|
+
from keras.src.testing.test_case import jax_uses_tpu
|
|
3
4
|
from keras.src.testing.test_case import tensorflow_uses_gpu
|
|
4
5
|
from keras.src.testing.test_case import torch_uses_gpu
|
|
5
6
|
from keras.src.testing.test_case import uses_gpu
|
keras/src/testing/test_case.py
CHANGED
|
@@ -650,6 +650,10 @@ def uses_gpu():
|
|
|
650
650
|
return False
|
|
651
651
|
|
|
652
652
|
|
|
653
|
+
def jax_uses_tpu():
|
|
654
|
+
return backend.backend() == "jax" and uses_tpu()
|
|
655
|
+
|
|
656
|
+
|
|
653
657
|
def uses_tpu():
|
|
654
658
|
# Condition used to skip tests when using the TPU
|
|
655
659
|
try:
|
|
@@ -661,13 +665,6 @@ def uses_tpu():
|
|
|
661
665
|
return False
|
|
662
666
|
|
|
663
667
|
|
|
664
|
-
def uses_cpu():
|
|
665
|
-
devices = distribution.list_devices()
|
|
666
|
-
if any(d.startswith("cpu") for d in devices):
|
|
667
|
-
return True
|
|
668
|
-
return False
|
|
669
|
-
|
|
670
|
-
|
|
671
668
|
def create_keras_tensors(input_shape, dtype, sparse, ragged):
|
|
672
669
|
if isinstance(input_shape, dict):
|
|
673
670
|
return {
|
keras/src/version.py
CHANGED
{keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/RECORD
RENAMED
|
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
|
128
128
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
129
129
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
|
130
130
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
|
131
|
-
keras/src/version.py,sha256=
|
|
131
|
+
keras/src/version.py,sha256=YVXKe5l9tEt9_9bakF2ygI06eoZxA2c62e5pIfrcCDA,204
|
|
132
132
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
|
133
133
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
|
134
134
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -164,14 +164,14 @@ keras/src/backend/common/tensor_attributes.py,sha256=X5sYeGDu9YmVBIn8oX31IeE-v-b
|
|
|
164
164
|
keras/src/backend/common/variables.py,sha256=ENq8lbwCGoIggC3Ef92Ea9G7ej4NZJnomvJZYwp8BaI,24467
|
|
165
165
|
keras/src/backend/jax/__init__.py,sha256=l_HMwAZ3oAV4Etnw9RPqbvLYPPs3CZYbgaLd_qy36ps,1495
|
|
166
166
|
keras/src/backend/jax/core.py,sha256=pwsVWZF63o47StwMdwm9tRQapX_EHNnMt4r8Xe37gIg,23132
|
|
167
|
-
keras/src/backend/jax/distribution_lib.py,sha256=
|
|
167
|
+
keras/src/backend/jax/distribution_lib.py,sha256=y5bCEApRjDKhBeobI6h9ydjZDA8mqNjT1xYW_IsHWGw,8498
|
|
168
168
|
keras/src/backend/jax/export.py,sha256=jV2yKQLzYjK72vTJmdNomWPLeNS_lDTCEKzQx_5D_-E,7368
|
|
169
169
|
keras/src/backend/jax/image.py,sha256=RiYIalbIaUQdDOGpDZUBk5KNsX94Xqg7iyXGATN9V58,30482
|
|
170
170
|
keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0iw,308
|
|
171
171
|
keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
|
|
172
172
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
|
173
173
|
keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
|
|
174
|
-
keras/src/backend/jax/numpy.py,sha256=
|
|
174
|
+
keras/src/backend/jax/numpy.py,sha256=cfsOw40nf4gcTaiU3LZHY91hjMpa7gORAfcL8rTlbO4,39487
|
|
175
175
|
keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
|
|
176
176
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
|
177
177
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
|
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
|
198
198
|
keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
|
|
199
199
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
|
200
200
|
keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
|
|
201
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
|
201
|
+
keras/src/backend/openvino/numpy.py,sha256=9wznF_6eqxuUd5CM4-Vnqufep-gdQUw9Y0ayYYGTMv4,113392
|
|
202
202
|
keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
|
|
203
203
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
|
204
204
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
|
@@ -211,7 +211,7 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
|
|
|
211
211
|
keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
|
|
212
212
|
keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
|
|
213
213
|
keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
|
|
214
|
-
keras/src/backend/tensorflow/numpy.py,sha256=
|
|
214
|
+
keras/src/backend/tensorflow/numpy.py,sha256=Gp68IjpfHTnLj9QTxfBRODR7YQjWRez-Y8zo5n6_vGs,106811
|
|
215
215
|
keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
|
|
216
216
|
keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
|
|
217
217
|
keras/src/backend/tensorflow/rnn.py,sha256=JbOSpt48cm612c7YwiTYOQCQsNXyI_6QeRhtUn8qEvM,34829
|
|
@@ -499,7 +499,7 @@ keras/src/ops/__init__.py,sha256=aORlvnrqY_eQl0EFLWdpHsXHnQ6JLSw1qhwJMr-VXJ0,644
|
|
|
499
499
|
keras/src/ops/core.py,sha256=1L74Jox7wY6R_DFBzVVS3VjLlIKbE0sxyK5x-pjzx8Q,42779
|
|
500
500
|
keras/src/ops/einops.py,sha256=-pxW0_AzDQNsR7t2TJrzvYXBJpmLYA3fJoO0U_U96PY,6268
|
|
501
501
|
keras/src/ops/function.py,sha256=QV9n1-xeTPDK_FJ3sjlHDWVH2sqDj96R6YQnJueMOlA,17821
|
|
502
|
-
keras/src/ops/image.py,sha256=
|
|
502
|
+
keras/src/ops/image.py,sha256=JtGvaPiqv04o8ZQJfOpZDXy8aXzPfn-MwnErfKcVHd4,67405
|
|
503
503
|
keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
|
|
504
504
|
keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
|
|
505
505
|
keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
|
|
@@ -508,7 +508,7 @@ keras/src/ops/numpy.py,sha256=VmjIuyjZYDu37AO0PaJ6fpw8MnVKcFUJ5IDx_nnPxps,264374
|
|
|
508
508
|
keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
|
|
509
509
|
keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
|
|
510
510
|
keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
|
|
511
|
-
keras/src/optimizers/__init__.py,sha256=
|
|
511
|
+
keras/src/optimizers/__init__.py,sha256=9NzqTWeXY5NwY9Z3htYsZAVmEQFFudX1eGrv8uJizX0,3984
|
|
512
512
|
keras/src/optimizers/adadelta.py,sha256=QRVnzP2vdaEX02yb81Wv9ovV5VNvjBGZz3iKISBp150,4581
|
|
513
513
|
keras/src/optimizers/adafactor.py,sha256=wz90cSLBM-pCtYHSnxFSSYXEo-CBa4POCmL98HWhwcs,8418
|
|
514
514
|
keras/src/optimizers/adagrad.py,sha256=x6HxwrqAjyhro1HQabcJQLLPPaXhWFJH6n-K0jBvE9g,3722
|
|
@@ -550,8 +550,8 @@ keras/src/saving/orbax_util.py,sha256=ArJI9hQODUyyvzCiXt8AS3VH6E4SL0vF02-RHBk30g
|
|
|
550
550
|
keras/src/saving/saving_api.py,sha256=X-zsTum57M3AWf_cYqhq_o5wgLcFxNh1ditoxbL_0LY,14694
|
|
551
551
|
keras/src/saving/saving_lib.py,sha256=bRI8TeNOlflTfX3njSkkwNv-VYip-OW7ienIm0lL96I,58920
|
|
552
552
|
keras/src/saving/serialization_lib.py,sha256=yzCTm8hin__MGA2N5M5F-8Zbts5ZJVmINbrH4wEtIwI,30334
|
|
553
|
-
keras/src/testing/__init__.py,sha256=
|
|
554
|
-
keras/src/testing/test_case.py,sha256=
|
|
553
|
+
keras/src/testing/__init__.py,sha256=RQ5ZZ88NhcDTHCIpPulvaiTOTdJqAMH9ZhptXyMcqqY,368
|
|
554
|
+
keras/src/testing/test_case.py,sha256=24aSbz5WG5ICUavaLWo-PWBD_O9T7feRGvrLoNS19Q8,31780
|
|
555
555
|
keras/src/testing/test_utils.py,sha256=6Vb8tJIyjU1ay63w3jvXNNhh7sSNrosQll4ii1NXELQ,6197
|
|
556
556
|
keras/src/trainers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
557
557
|
keras/src/trainers/compile_utils.py,sha256=k5FDn7we0RN9fhRslY_WOQZRFwfzjqpYmiDeOKkAKqk,31260
|
|
@@ -618,7 +618,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
|
618
618
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
|
619
619
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
|
620
620
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
|
621
|
-
keras_nightly-3.14.0.
|
|
622
|
-
keras_nightly-3.14.0.
|
|
623
|
-
keras_nightly-3.14.0.
|
|
624
|
-
keras_nightly-3.14.0.
|
|
621
|
+
keras_nightly-3.14.0.dev2026020104.dist-info/METADATA,sha256=T47ZKAAxW5fg84V14AxGHf_xKq5LpV3lmhdzMr5iE2I,6339
|
|
622
|
+
keras_nightly-3.14.0.dev2026020104.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
623
|
+
keras_nightly-3.14.0.dev2026020104.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
|
624
|
+
keras_nightly-3.14.0.dev2026020104.dist-info/RECORD,,
|
{keras_nightly-3.14.0.dev2026013004.dist-info → keras_nightly-3.14.0.dev2026020104.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|