keras-nightly 3.14.0.dev2026012104__py3-none-any.whl → 3.14.0.dev2026012304__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. keras/_tf_keras/keras/ops/__init__.py +1 -0
  2. keras/_tf_keras/keras/ops/numpy/__init__.py +1 -0
  3. keras/ops/__init__.py +1 -0
  4. keras/ops/numpy/__init__.py +1 -0
  5. keras/src/backend/jax/numpy.py +5 -0
  6. keras/src/backend/numpy/numpy.py +4 -0
  7. keras/src/backend/openvino/numpy.py +134 -6
  8. keras/src/backend/tensorflow/numpy.py +20 -0
  9. keras/src/backend/torch/numpy.py +18 -0
  10. keras/src/layers/layer.py +10 -1
  11. keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +13 -0
  12. keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py +58 -0
  13. keras/src/layers/preprocessing/image_preprocessing/cut_mix.py +13 -0
  14. keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py +23 -0
  15. keras/src/layers/preprocessing/image_preprocessing/rand_augment.py +15 -0
  16. keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py +15 -0
  17. keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py +15 -0
  18. keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +15 -0
  19. keras/src/layers/preprocessing/image_preprocessing/random_crop.py +15 -0
  20. keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py +14 -0
  21. keras/src/layers/preprocessing/image_preprocessing/random_erasing.py +15 -0
  22. keras/src/layers/preprocessing/image_preprocessing/random_flip.py +15 -0
  23. keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py +15 -0
  24. keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py +15 -0
  25. keras/src/layers/preprocessing/image_preprocessing/random_invert.py +15 -0
  26. keras/src/layers/preprocessing/image_preprocessing/random_perspective.py +14 -0
  27. keras/src/layers/preprocessing/image_preprocessing/random_posterization.py +15 -0
  28. keras/src/layers/preprocessing/image_preprocessing/random_rotation.py +15 -0
  29. keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py +15 -0
  30. keras/src/layers/preprocessing/image_preprocessing/random_shear.py +15 -0
  31. keras/src/layers/preprocessing/image_preprocessing/random_translation.py +15 -0
  32. keras/src/ops/numpy.py +56 -0
  33. keras/src/regularizers/regularizers.py +2 -2
  34. keras/src/version.py +1 -1
  35. {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/METADATA +1 -1
  36. {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/RECORD +38 -38
  37. {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/WHEEL +1 -1
  38. {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/top_level.txt +0 -0
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_color_example,
7
+ )
5
8
  from keras.src.random import SeedGenerator
6
9
 
7
10
 
@@ -41,6 +44,10 @@ class RandomErasing(BaseImagePreprocessingLayer):
41
44
  typically either `[0, 1]` or `[0, 255]` depending on how your
42
45
  preprocessing pipeline is set up.
43
46
  seed: Integer. Used to create a random seed.
47
+
48
+ Example:
49
+
50
+ {{base_image_preprocessing_color_example}}
44
51
  """
45
52
 
46
53
  _USE_BASE_FACTOR = False
@@ -326,3 +333,11 @@ class RandomErasing(BaseImagePreprocessingLayer):
326
333
  }
327
334
  base_config = super().get_config()
328
335
  return {**base_config, **config}
336
+
337
+
338
+ RandomErasing.__doc__ = RandomErasing.__doc__.replace(
339
+ "{{base_image_preprocessing_color_example}}",
340
+ base_image_preprocessing_color_example.replace(
341
+ "{LayerName}", "RandomErasing"
342
+ ),
343
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_transform_example,
7
+ )
5
8
  from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
6
9
  clip_to_image_size,
7
10
  )
@@ -46,6 +49,10 @@ class RandomFlip(BaseImagePreprocessingLayer):
46
49
  seed: Integer. Used to create a random seed.
47
50
  **kwargs: Base layer keyword arguments, such as
48
51
  `name` and `dtype`.
52
+
53
+ Example:
54
+
55
+ {{base_image_preprocessing_transform_example}}
49
56
  """
50
57
 
51
58
  _USE_BASE_FACTOR = False
@@ -234,3 +241,11 @@ class RandomFlip(BaseImagePreprocessingLayer):
234
241
  }
235
242
  )
236
243
  return config
244
+
245
+
246
+ RandomFlip.__doc__ = RandomFlip.__doc__.replace(
247
+ "{{base_image_preprocessing_transform_example}}",
248
+ base_image_preprocessing_transform_example.replace(
249
+ "{LayerName}", "RandomFlip"
250
+ ),
251
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_color_example,
7
+ )
5
8
  from keras.src.random import SeedGenerator
6
9
 
7
10
 
@@ -35,6 +38,10 @@ class RandomGaussianBlur(BaseImagePreprocessingLayer):
35
38
  typically either `[0, 1]` or `[0, 255]` depending on how your
36
39
  preprocessing pipeline is set up.
37
40
  seed: Integer. Used to create a random seed.
41
+
42
+ Example:
43
+
44
+ {{base_image_preprocessing_color_example}}
38
45
  """
39
46
 
40
47
  _USE_BASE_FACTOR = False
@@ -218,3 +225,11 @@ class RandomGaussianBlur(BaseImagePreprocessingLayer):
218
225
  }
219
226
  )
220
227
  return config
228
+
229
+
230
+ RandomGaussianBlur.__doc__ = RandomGaussianBlur.__doc__.replace(
231
+ "{{base_image_preprocessing_color_example}}",
232
+ base_image_preprocessing_color_example.replace(
233
+ "{LayerName}", "RandomGaussianBlur"
234
+ ),
235
+ )
@@ -3,6 +3,9 @@ from keras.src.api_export import keras_export
3
3
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
4
4
  BaseImagePreprocessingLayer,
5
5
  )
6
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
7
+ base_image_preprocessing_color_example,
8
+ )
6
9
 
7
10
 
8
11
  @keras_export("keras.layers.RandomGrayscale")
@@ -43,6 +46,10 @@ class RandomGrayscale(BaseImagePreprocessingLayer):
43
46
  Same as input shape. The output maintains the same number of channels
44
47
  as the input, even for grayscale-converted images where all channels
45
48
  will have the same value.
49
+
50
+ Example:
51
+
52
+ {{base_image_preprocessing_color_example}}
46
53
  """
47
54
 
48
55
  def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs):
@@ -115,3 +122,11 @@ class RandomGrayscale(BaseImagePreprocessingLayer):
115
122
  config = super().get_config()
116
123
  config.update({"factor": self.factor})
117
124
  return config
125
+
126
+
127
+ RandomGrayscale.__doc__ = RandomGrayscale.__doc__.replace(
128
+ "{{base_image_preprocessing_color_example}}",
129
+ base_image_preprocessing_color_example.replace(
130
+ "{LayerName}", "RandomGrayscale"
131
+ ),
132
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_color_example,
7
+ )
5
8
 
6
9
 
7
10
  @keras_export("keras.layers.RandomInvert")
@@ -30,6 +33,10 @@ class RandomInvert(BaseImagePreprocessingLayer):
30
33
  represents the upper bound. Images passed to the layer should have
31
34
  values within `value_range`. Defaults to `(0, 255)`.
32
35
  seed: Integer. Used to create a random seed.
36
+
37
+ Example:
38
+
39
+ {{base_image_preprocessing_color_example}}
33
40
  """
34
41
 
35
42
  _USE_BASE_FACTOR = False
@@ -127,3 +134,11 @@ class RandomInvert(BaseImagePreprocessingLayer):
127
134
  }
128
135
  base_config = super().get_config()
129
136
  return {**base_config, **config}
137
+
138
+
139
+ RandomInvert.__doc__ = RandomInvert.__doc__.replace(
140
+ "{{base_image_preprocessing_color_example}}",
141
+ base_image_preprocessing_color_example.replace(
142
+ "{LayerName}", "RandomInvert"
143
+ ),
144
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_transform_example,
7
+ )
5
8
  from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
6
9
  clip_to_image_size,
7
10
  )
@@ -43,6 +46,9 @@ class RandomPerspective(BaseImagePreprocessingLayer):
43
46
  boundaries when `fill_mode="constant"`.
44
47
  seed: Integer. Used to create a random seed.
45
48
 
49
+ Example:
50
+
51
+ {{base_image_preprocessing_transform_example}}
46
52
  """
47
53
 
48
54
  _USE_BASE_FACTOR = False
@@ -337,3 +343,11 @@ class RandomPerspective(BaseImagePreprocessingLayer):
337
343
  "seed": self.seed,
338
344
  }
339
345
  return {**base_config, **config}
346
+
347
+
348
+ RandomPerspective.__doc__ = RandomPerspective.__doc__.replace(
349
+ "{{base_image_preprocessing_transform_example}}",
350
+ base_image_preprocessing_transform_example.replace(
351
+ "{LayerName}", "RandomPerspective"
352
+ ),
353
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_color_example,
7
+ )
5
8
 
6
9
 
7
10
  @keras_export("keras.layers.RandomPosterization")
@@ -22,6 +25,10 @@ class RandomPosterization(BaseImagePreprocessingLayer):
22
25
  values within `value_range`. Defaults to `(0, 255)`.
23
26
  factor: integer, the number of bits to keep for each channel. Must be a
24
27
  value between 1-8.
28
+
29
+ Example:
30
+
31
+ {{base_image_preprocessing_color_example}}
25
32
  """
26
33
 
27
34
  _USE_BASE_FACTOR = False
@@ -152,3 +159,11 @@ class RandomPosterization(BaseImagePreprocessingLayer):
152
159
 
153
160
  def compute_output_shape(self, input_shape):
154
161
  return input_shape
162
+
163
+
164
+ RandomPosterization.__doc__ = RandomPosterization.__doc__.replace(
165
+ "{{base_image_preprocessing_color_example}}",
166
+ base_image_preprocessing_color_example.replace(
167
+ "{LayerName}", "RandomPosterization"
168
+ ),
169
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_transform_example,
7
+ )
5
8
  from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes import (
6
9
  converters,
7
10
  )
@@ -75,6 +78,10 @@ class RandomRotation(BaseImagePreprocessingLayer):
75
78
  `image_data_format` value found in your Keras config file at
76
79
  `~/.keras/keras.json`. If you never set it, then it will be
77
80
  `"channels_last"`.
81
+
82
+ Example:
83
+
84
+ {{base_image_preprocessing_transform_example}}
78
85
  """
79
86
 
80
87
  _SUPPORTED_FILL_MODE = ("reflect", "wrap", "constant", "nearest")
@@ -247,3 +254,11 @@ class RandomRotation(BaseImagePreprocessingLayer):
247
254
  }
248
255
  base_config = super().get_config()
249
256
  return {**base_config, **config}
257
+
258
+
259
+ RandomRotation.__doc__ = RandomRotation.__doc__.replace(
260
+ "{{base_image_preprocessing_transform_example}}",
261
+ base_image_preprocessing_transform_example.replace(
262
+ "{LayerName}", "RandomRotation"
263
+ ),
264
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_color_example,
7
+ )
5
8
  from keras.src.random import SeedGenerator
6
9
 
7
10
 
@@ -32,6 +35,10 @@ class RandomSharpness(BaseImagePreprocessingLayer):
32
35
  typically either `[0, 1]` or `[0, 255]` depending on how your
33
36
  preprocessing pipeline is set up.
34
37
  seed: Integer. Used to create a random seed.
38
+
39
+ Example:
40
+
41
+ {{base_image_preprocessing_color_example}}
35
42
  """
36
43
 
37
44
  _USE_BASE_FACTOR = False
@@ -169,3 +176,11 @@ class RandomSharpness(BaseImagePreprocessingLayer):
169
176
 
170
177
  def compute_output_shape(self, input_shape):
171
178
  return input_shape
179
+
180
+
181
+ RandomSharpness.__doc__ = RandomSharpness.__doc__.replace(
182
+ "{{base_image_preprocessing_color_example}}",
183
+ base_image_preprocessing_color_example.replace(
184
+ "{LayerName}", "RandomSharpness"
185
+ ),
186
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_transform_example,
7
+ )
5
8
  from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
6
9
  clip_to_image_size,
7
10
  )
@@ -61,6 +64,10 @@ class RandomShear(BaseImagePreprocessingLayer):
61
64
  fill_value: A float representing the value to be filled outside the
62
65
  boundaries when `fill_mode="constant"`.
63
66
  seed: Integer. Used to create a random seed.
67
+
68
+ Example:
69
+
70
+ {{base_image_preprocessing_transform_example}}
64
71
  """
65
72
 
66
73
  _USE_BASE_FACTOR = False
@@ -402,3 +409,11 @@ class RandomShear(BaseImagePreprocessingLayer):
402
409
 
403
410
  def compute_output_shape(self, input_shape):
404
411
  return input_shape
412
+
413
+
414
+ RandomShear.__doc__ = RandomShear.__doc__.replace(
415
+ "{{base_image_preprocessing_transform_example}}",
416
+ base_image_preprocessing_transform_example.replace(
417
+ "{LayerName}", "RandomShear"
418
+ ),
419
+ )
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
2
2
  from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
3
3
  BaseImagePreprocessingLayer,
4
4
  )
5
+ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
6
+ base_image_preprocessing_transform_example,
7
+ )
5
8
  from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
6
9
  clip_to_image_size,
7
10
  )
@@ -87,6 +90,10 @@ class RandomTranslation(BaseImagePreprocessingLayer):
87
90
  `~/.keras/keras.json`. If you never set it, then it will be
88
91
  `"channels_last"`.
89
92
  **kwargs: Base layer keyword arguments, such as `name` and `dtype`.
93
+
94
+ Example:
95
+
96
+ {{base_image_preprocessing_transform_example}}
90
97
  """
91
98
 
92
99
  _USE_BASE_FACTOR = False
@@ -382,3 +389,11 @@ class RandomTranslation(BaseImagePreprocessingLayer):
382
389
  "data_format": self.data_format,
383
390
  }
384
391
  return {**base_config, **config}
392
+
393
+
394
+ RandomTranslation.__doc__ = RandomTranslation.__doc__.replace(
395
+ "{{base_image_preprocessing_transform_example}}",
396
+ base_image_preprocessing_transform_example.replace(
397
+ "{LayerName}", "RandomTranslation"
398
+ ),
399
+ )
keras/src/ops/numpy.py CHANGED
@@ -5064,6 +5064,62 @@ def moveaxis(x, source, destination):
5064
5064
  return backend.numpy.moveaxis(x, source=source, destination=destination)
5065
5065
 
5066
5066
 
5067
+ class Nanmin(Operation):
5068
+ def __init__(self, axis=None, keepdims=False, *, name=None):
5069
+ super().__init__(name=name)
5070
+ self.axis = axis
5071
+ self.keepdims = keepdims
5072
+
5073
+ def call(self, x):
5074
+ return backend.numpy.nanmin(x, axis=self.axis, keepdims=self.keepdims)
5075
+
5076
+ def compute_output_spec(self, x):
5077
+ dtype = dtypes.result_type(getattr(x, "dtype", backend.floatx()))
5078
+
5079
+ if backend.backend() == "torch" and dtype == "uint32":
5080
+ dtype = "int32"
5081
+
5082
+ return KerasTensor(
5083
+ reduce_shape(x.shape, axis=self.axis, keepdims=self.keepdims),
5084
+ dtype=dtype,
5085
+ )
5086
+
5087
+
5088
+ @keras_export(["keras.ops.nanmin", "keras.ops.numpy.nanmin"])
5089
+ def nanmin(x, axis=None, keepdims=False):
5090
+ """Minimum of a tensor over the given axes, ignoring NaNs.
5091
+
5092
+ Args:
5093
+ x: Input tensor.
5094
+ axis: Axis or axes along which the minimum is computed.
5095
+ The default is to compute the minimum of the flattened tensor.
5096
+ keepdims: If this is set to `True`, the axes which are reduced are left
5097
+ in the result as dimensions with size one.
5098
+
5099
+ Returns:
5100
+ Output tensor containing the minimum, with NaN values ignored. If all
5101
+ values along a reduced axis are NaN, the result is NaN.
5102
+
5103
+ Examples:
5104
+ >>> import numpy as np
5105
+ >>> from keras import ops
5106
+ >>> x = np.array([[1.0, np.nan, 3.0],
5107
+ ... [np.nan, 2.0, 1.0]])
5108
+ >>> ops.nanmin(x)
5109
+ 1.0
5110
+
5111
+ >>> ops.nanmin(x, axis=1)
5112
+ array([1., 1.])
5113
+
5114
+ >>> ops.nanmin(x, axis=1, keepdims=True)
5115
+ array([[1.],
5116
+ [1.]])
5117
+ """
5118
+ if any_symbolic_tensors((x,)):
5119
+ return Nanmin(axis=axis, keepdims=keepdims).symbolic_call(x)
5120
+ return backend.numpy.nanmin(x, axis=axis, keepdims=keepdims)
5121
+
5122
+
5067
5123
  class Nansum(Operation):
5068
5124
  def __init__(self, axis=None, keepdims=False, *, name=None):
5069
5125
  super().__init__(name=name)
@@ -45,8 +45,8 @@ class Regularizer:
45
45
  >>> out = layer(tensor)
46
46
 
47
47
  >>> # The kernel regularization term is 0.25
48
- >>> # The activity regularization term (after dividing by the batch size)
49
- >>> # is 5
48
+ >>> # The activity regularization term (after dividing by batch size of 5)
49
+ >>> # is 5.0
50
50
  >>> ops.sum(layer.losses)
51
51
  5.25
52
52
 
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.14.0.dev2026012104"
4
+ __version__ = "3.14.0.dev2026012304"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.14.0.dev2026012104
3
+ Version: 3.14.0.dev2026012304
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
45
45
  keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
46
46
  keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
47
47
  keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
48
- keras/_tf_keras/keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
48
+ keras/_tf_keras/keras/ops/__init__.py,sha256=Exo66cXhtlICdHcwCb9W1aY_kyKGmu_E0gx2g8arqAA,15667
49
49
  keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
50
50
  keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
51
51
  keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
52
- keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
52
+ keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=Et9qtWaBOwKAOyJJcBnUjmu40MKJz6mRHtUXHdWdH-Q,9729
53
53
  keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
54
54
  keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
55
55
  keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -111,11 +111,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
111
111
  keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
112
112
  keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
113
113
  keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
114
- keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
114
+ keras/ops/__init__.py,sha256=Exo66cXhtlICdHcwCb9W1aY_kyKGmu_E0gx2g8arqAA,15667
115
115
  keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
116
116
  keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
117
117
  keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
118
- keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
118
+ keras/ops/numpy/__init__.py,sha256=Et9qtWaBOwKAOyJJcBnUjmu40MKJz6mRHtUXHdWdH-Q,9729
119
119
  keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
120
120
  keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
121
121
  keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
128
128
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
129
129
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
130
130
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
131
- keras/src/version.py,sha256=j3Ml6phnds_K6jMOGglQnTbKSNPTKDHjsbdTSMqC_v8,204
131
+ keras/src/version.py,sha256=zrwbXx271qaOFPQlnpEWKXzwfgQbyWOQOcBlTEB9byM,204
132
132
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
133
133
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
134
134
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -171,7 +171,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
171
171
  keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
172
172
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
173
173
  keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
174
- keras/src/backend/jax/numpy.py,sha256=5C-obBCsAdY288BhjtxDIccqXDDle5eaP2yt7jfeUy8,38869
174
+ keras/src/backend/jax/numpy.py,sha256=e-EU_q5qbWL4tQAmuXgLTzBtAReMbkJ_lHtzmP2J634,38997
175
175
  keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
176
176
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
177
177
  keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
186
186
  keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
187
187
  keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
188
188
  keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
189
- keras/src/backend/numpy/numpy.py,sha256=W2P2A1_Y54xR07xmR-T4ALrqJA_SliDwmoOALeI37P0,38070
189
+ keras/src/backend/numpy/numpy.py,sha256=o71x6rkJgj1Mq2e0iJSIDq9v-xs_PFgskBioLc-_5cs,38168
190
190
  keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
191
191
  keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
192
192
  keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
198
198
  keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
199
199
  keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
200
200
  keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
201
- keras/src/backend/openvino/numpy.py,sha256=nZnbUk_nNaSqKaShEUwyu7Z7buGvFNxEfiNCePuYBiM,105660
201
+ keras/src/backend/openvino/numpy.py,sha256=D1ALQlwjLfIUnWslmUbDtvmqCUF4Hy_zYoSPV_O1PIc,109841
202
202
  keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
203
203
  keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
204
204
  keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
@@ -211,7 +211,7 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
211
211
  keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
212
212
  keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
213
213
  keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
214
- keras/src/backend/tensorflow/numpy.py,sha256=I5S0igFo2Mq3Q0SodRyNggip9F_gwWfch6TyvVbQj_E,105076
214
+ keras/src/backend/tensorflow/numpy.py,sha256=j_EuTLDE8mgJSZuCt7yWHZUbvwQz3T-ZksSzCP3cl4s,105695
215
215
  keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
216
216
  keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
217
217
  keras/src/backend/tensorflow/rnn.py,sha256=JbOSpt48cm612c7YwiTYOQCQsNXyI_6QeRhtUn8qEvM,34829
@@ -227,7 +227,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
227
227
  keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
228
228
  keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
229
229
  keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
230
- keras/src/backend/torch/numpy.py,sha256=zZDkUDmph1c_D0VOsSzkYjAj4TKln7laDxypVRBsZ6o,58072
230
+ keras/src/backend/torch/numpy.py,sha256=JeMDIOubCyLqMqid1xg4CQ0Nm4gf5F7WLNggaiTviuE,58582
231
231
  keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
232
232
  keras/src/backend/torch/rnn.py,sha256=MJIVbHKsUA2dZm4Gu2NvRxlrFCWeWSxSZRmFxSsC3Zg,26041
233
233
  keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
@@ -295,7 +295,7 @@ keras/src/initializers/initializer.py,sha256=kNAyRA8CzBdtknT6ZUt5XIO2_Z9NzpN119C
295
295
  keras/src/initializers/random_initializers.py,sha256=AuUeQ3YZGakDKTCs8njQLhozE6iWYHwP6-VstnEMOaQ,23631
296
296
  keras/src/layers/__init__.py,sha256=s7jrOesk0YMUKCxe5BTdQ5cxqrnkYbA-GWRoCXuqpsg,12103
297
297
  keras/src/layers/input_spec.py,sha256=cjBUBmgdneJfhvbI-WLqSapJInCsxliWBygyfMWgkj4,10010
298
- keras/src/layers/layer.py,sha256=Nbs9ke8ecAhTffiHyZ2cJUIt-3yaJb5fcjXKJAnOCHE,79634
298
+ keras/src/layers/layer.py,sha256=uBgdpYjGcdvjAFN4hjd-li7A4UM5Xw3Z-WHm0FdrqvM,80143
299
299
  keras/src/layers/activations/__init__.py,sha256=MhPBye8WWLSf_iDel3BuuqYk4nx6Sym8s4dZKb1KTqQ,272
300
300
  keras/src/layers/activations/activation.py,sha256=c_Q5gUjCTD70a9-I1m5eEPcrWPpE-5iAlkDMt4lxRgA,1287
301
301
  keras/src/layers/activations/elu.py,sha256=jtszCDe6Cs_L3jITK3ascKouqgYUxdbGvT60kxQbcHM,840
@@ -389,34 +389,34 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
389
389
  keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
390
390
  keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
391
391
  keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
392
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=spvWYUG6GcPrYZgedaE8LIwTbYE2yvPg2Hwao9UAang,11221
392
+ keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=Z6mpMF8QYP3gbfdeWaM6Rw6rzyBkK7MP369SJOnigCQ,11627
393
393
  keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
394
- keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=Ga1Wewc0Pl9uLGUp3x6dxS2j4Lh-1o7TaOtxxo9kf5o,13853
394
+ keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=cn_ieMUfz884kCAmAstdZtNcaO4vtJ9n4Q7uD-TR8XA,15249
395
395
  keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=Pi9GlYTo7kZbfZpfF1FUwkwi0y9v8PcQYQAurixHaeU,9965
396
- keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=reDSKzm15J7TR5TLrx92mWE-os2H6X0jY2Pd_ra_i_E,7877
396
+ keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=v3emau6I3pbOMCmaOk0k3HS3XNT2BkL9HM0sx0UT-EI,8267
397
397
  keras/src/layers/preprocessing/image_preprocessing/equalization.py,sha256=Q6URzVSxTxcd166oNFJsVlNO3x8EUMS0plqthDwKzu4,8659
398
- keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=BTQaWjx-bMnwtsQDQLmeohs_VQECu1WZzPmi2PkDYHs,3435
398
+ keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=szo2mxzLWbHfMDcNpKjg_7q-xPc8aZjLHRxp-DG8bEk,3938
399
399
  keras/src/layers/preprocessing/image_preprocessing/mix_up.py,sha256=wQOq7pmMUmUPUsYyoORkCKzxEZJGRssi5kM7Y5RIwbo,6651
400
- keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=upDdEgg4IXIGH-jTqjOabHXq8X84g-OtmTbnrFk08ew,8893
400
+ keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=qfxMaJeLE_7QlMSq1Mjw_1pK59bFZylWRp-GfsqFtlk,9328
401
401
  keras/src/layers/preprocessing/image_preprocessing/random_brightness.py,sha256=Ix01T1xsbf_QknyWcSlK1SxVPvFNtHw20xmWHhuQPZI,6083
402
- keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=N6rCXPhWCEh-xWqC9ETYwrbJ2f6lIqyCR9Z18uV3xd0,4896
403
- keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=rbQvLhCPPXyAaYfcMiVzyN0yvfFrcfbRbkVruO9o38U,9464
404
- keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=eJ7aakES1YfSv1JXjv8ZT3ltTqgG6Oo1_XU6BopKDng,5470
405
- keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=y2iHw-xbSV11uK4D34VT9QEkpvKOk-D-TmVSCZUjDn0,10553
406
- keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=fIfPe-906LUhTUDpiuPwM5oEOJ_1UQ9BhMHBFpItcGM,10208
407
- keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=O7f44V805Wta9RMZyks4sl-LViglTCdp7_n-qj_nWbI,11233
408
- keras/src/layers/preprocessing/image_preprocessing/random_flip.py,sha256=Lmnbm-RX58fw34n55rjMYcnuJkg1B7xqG8_L2dYVMOQ,8057
409
- keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py,sha256=8QHtZvMEayvi22iPbqBCJriZ8lwLMKtM5LoupJVziak,7713
410
- keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py,sha256=6yfwMky9QJxEmF1lW-RICPq9nLT0fcfPnlIc-jreOQI,4525
402
+ keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=okHRWZzIpcN20X19FOl4gibunk2NywRIjBKbysdloGc,5351
403
+ keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=gyDuZjvu0MS1czEd2UgnMr7JRBnv7pY7I4JIGlrc3Bs,9901
404
+ keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=tVNj7ZymKvjk8627LiohGr6D-2vqAwysD4x6R0yN2aI,5898
405
+ keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=sCyUCTEllkcHpMW5d2bsrCjtrXHnBTP--NDLrXbHOsw,10985
406
+ keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=Qr7NTxZo64qIA0eggbtdEaO5F3ZptTVb2bBd_6pncXE,10675
407
+ keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=SJGh_uzZ5cA8QgGCLnRWKiigwD_NZg_3LVztq4UXeBY,11658
408
+ keras/src/layers/preprocessing/image_preprocessing/random_flip.py,sha256=x5gmcmIaTekD2s3BcQgQA3hd2RQO8scLkxe-u9KQ2A8,8489
409
+ keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py,sha256=PRjcmmXeJymHip_tbs5sQOB6_2hrqWKcHrWcon-9cyA,8153
410
+ keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py,sha256=AQtfK7glY8n5dCId2KFlESd9zXYxxUPIG99inYh8Sh0,4956
411
411
  keras/src/layers/preprocessing/image_preprocessing/random_hue.py,sha256=wL9Nc3sogNs-zjXtuW55jqqcVE69fTRQo8HNJ-oZpVI,6466
412
- keras/src/layers/preprocessing/image_preprocessing/random_invert.py,sha256=Y_yPzcf9H9rUgk6G9_XMNTqdwVKNBN8xvLygfwQVOkU,4371
413
- keras/src/layers/preprocessing/image_preprocessing/random_perspective.py,sha256=SZofshsQk_QDprFi0Sb1coaabWvaWk07mOC0x8ePjIU,11747
414
- keras/src/layers/preprocessing/image_preprocessing/random_posterization.py,sha256=msyMgi7Gi_dHpfBkOFadcMHL8dW4iCzxR-neh3iRc4Y,5167
415
- keras/src/layers/preprocessing/image_preprocessing/random_rotation.py,sha256=pKVg1Jvqu1zJhM3ewnvFyC8plHJCKkaCDD2hp1bRTMg,9635
412
+ keras/src/layers/preprocessing/image_preprocessing/random_invert.py,sha256=6FcvSFiaydAbUoMJ-pQT1UJq5l_a9DLk8qLGsiVF7ew,4793
413
+ keras/src/layers/preprocessing/image_preprocessing/random_perspective.py,sha256=_mEAGNeyYOdGTI7quUZ82thlSxFdA_TsDuL9c4jqWpg,12199
414
+ keras/src/layers/preprocessing/image_preprocessing/random_posterization.py,sha256=riEGot-yz9BZhYjN_FsJYzKNGpLnJIZnqL8wzLlCAwM,5610
415
+ keras/src/layers/preprocessing/image_preprocessing/random_rotation.py,sha256=OhtkfgmOcQjFAWlGcfw7VdiACe6ovMhsY99qG0LgVUU,10079
416
416
  keras/src/layers/preprocessing/image_preprocessing/random_saturation.py,sha256=ShsqSjkazbg9kJU8e3k6ko2ytN5ZCdAA_Ol9ku4uwOs,6105
417
- keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=4RGEEtorNlOyQXNvXMga08TxsaynayD6Ksu-eAzkm8U,6152
418
- keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=uEr1iCCAHdpIhAVz2VZh7u82NEYtiM9eMIhvvIQyA9A,15020
419
- keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=1l1Oufpsu54SunSrrBb-nq6cM9ANehgHJxWx40sTPig,14932
417
+ keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=Hh7fBYdxedJdsod4y0gnFJSsuL-7AaUqzxEGwamjlhU,6583
418
+ keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=2KLTCjDdPc_rJvC2IQm45OMsqogp8Ep3-P_1MDtAOvc,15455
419
+ keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=W7ctCMjKXSl7nD7Lva6j-1brD-Drj_ZheNMq5k6UOf4,15385
420
420
  keras/src/layers/preprocessing/image_preprocessing/random_zoom.py,sha256=DBDSep-CGk-lsWP0gwP89SQR2k8-ZjYqKKj0rf-KWWA,16472
421
421
  keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=N3_Mw4KA-DC7R0zBNeRnCQWvzKa8Bpg1jRooUJSZLq0,12241
422
422
  keras/src/layers/preprocessing/image_preprocessing/solarization.py,sha256=URBAHjCIRs8mlb1RCt39pHtylRgZuhxC7kFtACsGIbc,8015
@@ -504,7 +504,7 @@ keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
504
504
  keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
505
505
  keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
506
506
  keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
507
- keras/src/ops/numpy.py,sha256=c5jXbWiE5jrGh1AteL3XsSgs1wNrpNUKxmTdThpNh-0,259129
507
+ keras/src/ops/numpy.py,sha256=6-nCfjwd4y0oWLoL72ZTmyDu-kNLWdNlL4KDr6TsqC8,260893
508
508
  keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
509
509
  keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
510
510
  keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
@@ -541,7 +541,7 @@ keras/src/random/__init__.py,sha256=BmXVYPzxbhADohoLtAEEzB3cesP7YBFDsp1qc6BWWlg,
541
541
  keras/src/random/random.py,sha256=bUADZIVDuCghwIWTk0qBxXTxUdiNGWIdsRi8QJ3ePg4,17581
542
542
  keras/src/random/seed_generator.py,sha256=-a0CQa7--Xt0g0nfdjLmUzlFElY9Y838VcCx05AcllY,5655
543
543
  keras/src/regularizers/__init__.py,sha256=GzK9FTKL2Xxd5H55GfG9gxDqt4eZoVHFWICgb2VW8qM,1731
544
- keras/src/regularizers/regularizers.py,sha256=urXNmMGuqHT7lOmS-yQPl3At3Ny-37Xlo389ErCg84A,11799
544
+ keras/src/regularizers/regularizers.py,sha256=MDtsiFjLgI1sl9z036XcQhZH9OnUmMHM74l27dspum0,11802
545
545
  keras/src/saving/__init__.py,sha256=vnrtfvnzW7Gwtxe5COhaMoEnVYB5iDe2YlqJ-DvqFIk,614
546
546
  keras/src/saving/file_editor.py,sha256=tsUo9mQbMa8433tHTnOKWFhDeathYwDb0CeWcDTTTBQ,32089
547
547
  keras/src/saving/keras_saveable.py,sha256=aGIt1ajtsaamfUq18LM6ql8JEoQzi3HwzJEuwQ9bmKE,1285
@@ -618,7 +618,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
618
618
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
619
619
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
620
620
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
621
- keras_nightly-3.14.0.dev2026012104.dist-info/METADATA,sha256=X7LrSSzvSkKfxvLyQxMDiMc62ql2aJbcD2AE3hH-ogc,6339
622
- keras_nightly-3.14.0.dev2026012104.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
623
- keras_nightly-3.14.0.dev2026012104.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
624
- keras_nightly-3.14.0.dev2026012104.dist-info/RECORD,,
621
+ keras_nightly-3.14.0.dev2026012304.dist-info/METADATA,sha256=WLjmq7_YlxrYTWWRdBTiOboC4zCj0j5pKexkiZZ6C6Y,6339
622
+ keras_nightly-3.14.0.dev2026012304.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
623
+ keras_nightly-3.14.0.dev2026012304.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
624
+ keras_nightly-3.14.0.dev2026012304.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5