keras-nightly 3.14.0.dev2026012104__py3-none-any.whl → 3.14.0.dev2026012304__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/_tf_keras/keras/ops/__init__.py +1 -0
- keras/_tf_keras/keras/ops/numpy/__init__.py +1 -0
- keras/ops/__init__.py +1 -0
- keras/ops/numpy/__init__.py +1 -0
- keras/src/backend/jax/numpy.py +5 -0
- keras/src/backend/numpy/numpy.py +4 -0
- keras/src/backend/openvino/numpy.py +134 -6
- keras/src/backend/tensorflow/numpy.py +20 -0
- keras/src/backend/torch/numpy.py +18 -0
- keras/src/layers/layer.py +10 -1
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +13 -0
- keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py +58 -0
- keras/src/layers/preprocessing/image_preprocessing/cut_mix.py +13 -0
- keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py +23 -0
- keras/src/layers/preprocessing/image_preprocessing/rand_augment.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_crop.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py +14 -0
- keras/src/layers/preprocessing/image_preprocessing/random_erasing.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_flip.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_invert.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_perspective.py +14 -0
- keras/src/layers/preprocessing/image_preprocessing/random_posterization.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_rotation.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_shear.py +15 -0
- keras/src/layers/preprocessing/image_preprocessing/random_translation.py +15 -0
- keras/src/ops/numpy.py +56 -0
- keras/src/regularizers/regularizers.py +2 -2
- keras/src/version.py +1 -1
- {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/METADATA +1 -1
- {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/RECORD +38 -38
- {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/WHEEL +1 -1
- {keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/top_level.txt +0 -0
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_color_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.random import SeedGenerator
|
|
6
9
|
|
|
7
10
|
|
|
@@ -41,6 +44,10 @@ class RandomErasing(BaseImagePreprocessingLayer):
|
|
|
41
44
|
typically either `[0, 1]` or `[0, 255]` depending on how your
|
|
42
45
|
preprocessing pipeline is set up.
|
|
43
46
|
seed: Integer. Used to create a random seed.
|
|
47
|
+
|
|
48
|
+
Example:
|
|
49
|
+
|
|
50
|
+
{{base_image_preprocessing_color_example}}
|
|
44
51
|
"""
|
|
45
52
|
|
|
46
53
|
_USE_BASE_FACTOR = False
|
|
@@ -326,3 +333,11 @@ class RandomErasing(BaseImagePreprocessingLayer):
|
|
|
326
333
|
}
|
|
327
334
|
base_config = super().get_config()
|
|
328
335
|
return {**base_config, **config}
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
RandomErasing.__doc__ = RandomErasing.__doc__.replace(
|
|
339
|
+
"{{base_image_preprocessing_color_example}}",
|
|
340
|
+
base_image_preprocessing_color_example.replace(
|
|
341
|
+
"{LayerName}", "RandomErasing"
|
|
342
|
+
),
|
|
343
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_transform_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
|
|
6
9
|
clip_to_image_size,
|
|
7
10
|
)
|
|
@@ -46,6 +49,10 @@ class RandomFlip(BaseImagePreprocessingLayer):
|
|
|
46
49
|
seed: Integer. Used to create a random seed.
|
|
47
50
|
**kwargs: Base layer keyword arguments, such as
|
|
48
51
|
`name` and `dtype`.
|
|
52
|
+
|
|
53
|
+
Example:
|
|
54
|
+
|
|
55
|
+
{{base_image_preprocessing_transform_example}}
|
|
49
56
|
"""
|
|
50
57
|
|
|
51
58
|
_USE_BASE_FACTOR = False
|
|
@@ -234,3 +241,11 @@ class RandomFlip(BaseImagePreprocessingLayer):
|
|
|
234
241
|
}
|
|
235
242
|
)
|
|
236
243
|
return config
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
RandomFlip.__doc__ = RandomFlip.__doc__.replace(
|
|
247
|
+
"{{base_image_preprocessing_transform_example}}",
|
|
248
|
+
base_image_preprocessing_transform_example.replace(
|
|
249
|
+
"{LayerName}", "RandomFlip"
|
|
250
|
+
),
|
|
251
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_color_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.random import SeedGenerator
|
|
6
9
|
|
|
7
10
|
|
|
@@ -35,6 +38,10 @@ class RandomGaussianBlur(BaseImagePreprocessingLayer):
|
|
|
35
38
|
typically either `[0, 1]` or `[0, 255]` depending on how your
|
|
36
39
|
preprocessing pipeline is set up.
|
|
37
40
|
seed: Integer. Used to create a random seed.
|
|
41
|
+
|
|
42
|
+
Example:
|
|
43
|
+
|
|
44
|
+
{{base_image_preprocessing_color_example}}
|
|
38
45
|
"""
|
|
39
46
|
|
|
40
47
|
_USE_BASE_FACTOR = False
|
|
@@ -218,3 +225,11 @@ class RandomGaussianBlur(BaseImagePreprocessingLayer):
|
|
|
218
225
|
}
|
|
219
226
|
)
|
|
220
227
|
return config
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
RandomGaussianBlur.__doc__ = RandomGaussianBlur.__doc__.replace(
|
|
231
|
+
"{{base_image_preprocessing_color_example}}",
|
|
232
|
+
base_image_preprocessing_color_example.replace(
|
|
233
|
+
"{LayerName}", "RandomGaussianBlur"
|
|
234
|
+
),
|
|
235
|
+
)
|
|
@@ -3,6 +3,9 @@ from keras.src.api_export import keras_export
|
|
|
3
3
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
4
4
|
BaseImagePreprocessingLayer,
|
|
5
5
|
)
|
|
6
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
7
|
+
base_image_preprocessing_color_example,
|
|
8
|
+
)
|
|
6
9
|
|
|
7
10
|
|
|
8
11
|
@keras_export("keras.layers.RandomGrayscale")
|
|
@@ -43,6 +46,10 @@ class RandomGrayscale(BaseImagePreprocessingLayer):
|
|
|
43
46
|
Same as input shape. The output maintains the same number of channels
|
|
44
47
|
as the input, even for grayscale-converted images where all channels
|
|
45
48
|
will have the same value.
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
|
|
52
|
+
{{base_image_preprocessing_color_example}}
|
|
46
53
|
"""
|
|
47
54
|
|
|
48
55
|
def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs):
|
|
@@ -115,3 +122,11 @@ class RandomGrayscale(BaseImagePreprocessingLayer):
|
|
|
115
122
|
config = super().get_config()
|
|
116
123
|
config.update({"factor": self.factor})
|
|
117
124
|
return config
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
RandomGrayscale.__doc__ = RandomGrayscale.__doc__.replace(
|
|
128
|
+
"{{base_image_preprocessing_color_example}}",
|
|
129
|
+
base_image_preprocessing_color_example.replace(
|
|
130
|
+
"{LayerName}", "RandomGrayscale"
|
|
131
|
+
),
|
|
132
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_color_example,
|
|
7
|
+
)
|
|
5
8
|
|
|
6
9
|
|
|
7
10
|
@keras_export("keras.layers.RandomInvert")
|
|
@@ -30,6 +33,10 @@ class RandomInvert(BaseImagePreprocessingLayer):
|
|
|
30
33
|
represents the upper bound. Images passed to the layer should have
|
|
31
34
|
values within `value_range`. Defaults to `(0, 255)`.
|
|
32
35
|
seed: Integer. Used to create a random seed.
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
|
|
39
|
+
{{base_image_preprocessing_color_example}}
|
|
33
40
|
"""
|
|
34
41
|
|
|
35
42
|
_USE_BASE_FACTOR = False
|
|
@@ -127,3 +134,11 @@ class RandomInvert(BaseImagePreprocessingLayer):
|
|
|
127
134
|
}
|
|
128
135
|
base_config = super().get_config()
|
|
129
136
|
return {**base_config, **config}
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
RandomInvert.__doc__ = RandomInvert.__doc__.replace(
|
|
140
|
+
"{{base_image_preprocessing_color_example}}",
|
|
141
|
+
base_image_preprocessing_color_example.replace(
|
|
142
|
+
"{LayerName}", "RandomInvert"
|
|
143
|
+
),
|
|
144
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_transform_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
|
|
6
9
|
clip_to_image_size,
|
|
7
10
|
)
|
|
@@ -43,6 +46,9 @@ class RandomPerspective(BaseImagePreprocessingLayer):
|
|
|
43
46
|
boundaries when `fill_mode="constant"`.
|
|
44
47
|
seed: Integer. Used to create a random seed.
|
|
45
48
|
|
|
49
|
+
Example:
|
|
50
|
+
|
|
51
|
+
{{base_image_preprocessing_transform_example}}
|
|
46
52
|
"""
|
|
47
53
|
|
|
48
54
|
_USE_BASE_FACTOR = False
|
|
@@ -337,3 +343,11 @@ class RandomPerspective(BaseImagePreprocessingLayer):
|
|
|
337
343
|
"seed": self.seed,
|
|
338
344
|
}
|
|
339
345
|
return {**base_config, **config}
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
RandomPerspective.__doc__ = RandomPerspective.__doc__.replace(
|
|
349
|
+
"{{base_image_preprocessing_transform_example}}",
|
|
350
|
+
base_image_preprocessing_transform_example.replace(
|
|
351
|
+
"{LayerName}", "RandomPerspective"
|
|
352
|
+
),
|
|
353
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_color_example,
|
|
7
|
+
)
|
|
5
8
|
|
|
6
9
|
|
|
7
10
|
@keras_export("keras.layers.RandomPosterization")
|
|
@@ -22,6 +25,10 @@ class RandomPosterization(BaseImagePreprocessingLayer):
|
|
|
22
25
|
values within `value_range`. Defaults to `(0, 255)`.
|
|
23
26
|
factor: integer, the number of bits to keep for each channel. Must be a
|
|
24
27
|
value between 1-8.
|
|
28
|
+
|
|
29
|
+
Example:
|
|
30
|
+
|
|
31
|
+
{{base_image_preprocessing_color_example}}
|
|
25
32
|
"""
|
|
26
33
|
|
|
27
34
|
_USE_BASE_FACTOR = False
|
|
@@ -152,3 +159,11 @@ class RandomPosterization(BaseImagePreprocessingLayer):
|
|
|
152
159
|
|
|
153
160
|
def compute_output_shape(self, input_shape):
|
|
154
161
|
return input_shape
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
RandomPosterization.__doc__ = RandomPosterization.__doc__.replace(
|
|
165
|
+
"{{base_image_preprocessing_color_example}}",
|
|
166
|
+
base_image_preprocessing_color_example.replace(
|
|
167
|
+
"{LayerName}", "RandomPosterization"
|
|
168
|
+
),
|
|
169
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_transform_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes import (
|
|
6
9
|
converters,
|
|
7
10
|
)
|
|
@@ -75,6 +78,10 @@ class RandomRotation(BaseImagePreprocessingLayer):
|
|
|
75
78
|
`image_data_format` value found in your Keras config file at
|
|
76
79
|
`~/.keras/keras.json`. If you never set it, then it will be
|
|
77
80
|
`"channels_last"`.
|
|
81
|
+
|
|
82
|
+
Example:
|
|
83
|
+
|
|
84
|
+
{{base_image_preprocessing_transform_example}}
|
|
78
85
|
"""
|
|
79
86
|
|
|
80
87
|
_SUPPORTED_FILL_MODE = ("reflect", "wrap", "constant", "nearest")
|
|
@@ -247,3 +254,11 @@ class RandomRotation(BaseImagePreprocessingLayer):
|
|
|
247
254
|
}
|
|
248
255
|
base_config = super().get_config()
|
|
249
256
|
return {**base_config, **config}
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
RandomRotation.__doc__ = RandomRotation.__doc__.replace(
|
|
260
|
+
"{{base_image_preprocessing_transform_example}}",
|
|
261
|
+
base_image_preprocessing_transform_example.replace(
|
|
262
|
+
"{LayerName}", "RandomRotation"
|
|
263
|
+
),
|
|
264
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_color_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.random import SeedGenerator
|
|
6
9
|
|
|
7
10
|
|
|
@@ -32,6 +35,10 @@ class RandomSharpness(BaseImagePreprocessingLayer):
|
|
|
32
35
|
typically either `[0, 1]` or `[0, 255]` depending on how your
|
|
33
36
|
preprocessing pipeline is set up.
|
|
34
37
|
seed: Integer. Used to create a random seed.
|
|
38
|
+
|
|
39
|
+
Example:
|
|
40
|
+
|
|
41
|
+
{{base_image_preprocessing_color_example}}
|
|
35
42
|
"""
|
|
36
43
|
|
|
37
44
|
_USE_BASE_FACTOR = False
|
|
@@ -169,3 +176,11 @@ class RandomSharpness(BaseImagePreprocessingLayer):
|
|
|
169
176
|
|
|
170
177
|
def compute_output_shape(self, input_shape):
|
|
171
178
|
return input_shape
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
RandomSharpness.__doc__ = RandomSharpness.__doc__.replace(
|
|
182
|
+
"{{base_image_preprocessing_color_example}}",
|
|
183
|
+
base_image_preprocessing_color_example.replace(
|
|
184
|
+
"{LayerName}", "RandomSharpness"
|
|
185
|
+
),
|
|
186
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_transform_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
|
|
6
9
|
clip_to_image_size,
|
|
7
10
|
)
|
|
@@ -61,6 +64,10 @@ class RandomShear(BaseImagePreprocessingLayer):
|
|
|
61
64
|
fill_value: A float representing the value to be filled outside the
|
|
62
65
|
boundaries when `fill_mode="constant"`.
|
|
63
66
|
seed: Integer. Used to create a random seed.
|
|
67
|
+
|
|
68
|
+
Example:
|
|
69
|
+
|
|
70
|
+
{{base_image_preprocessing_transform_example}}
|
|
64
71
|
"""
|
|
65
72
|
|
|
66
73
|
_USE_BASE_FACTOR = False
|
|
@@ -402,3 +409,11 @@ class RandomShear(BaseImagePreprocessingLayer):
|
|
|
402
409
|
|
|
403
410
|
def compute_output_shape(self, input_shape):
|
|
404
411
|
return input_shape
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
RandomShear.__doc__ = RandomShear.__doc__.replace(
|
|
415
|
+
"{{base_image_preprocessing_transform_example}}",
|
|
416
|
+
base_image_preprocessing_transform_example.replace(
|
|
417
|
+
"{LayerName}", "RandomShear"
|
|
418
|
+
),
|
|
419
|
+
)
|
|
@@ -2,6 +2,9 @@ from keras.src.api_export import keras_export
|
|
|
2
2
|
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
3
3
|
BaseImagePreprocessingLayer,
|
|
4
4
|
)
|
|
5
|
+
from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501
|
|
6
|
+
base_image_preprocessing_transform_example,
|
|
7
|
+
)
|
|
5
8
|
from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( # noqa: E501
|
|
6
9
|
clip_to_image_size,
|
|
7
10
|
)
|
|
@@ -87,6 +90,10 @@ class RandomTranslation(BaseImagePreprocessingLayer):
|
|
|
87
90
|
`~/.keras/keras.json`. If you never set it, then it will be
|
|
88
91
|
`"channels_last"`.
|
|
89
92
|
**kwargs: Base layer keyword arguments, such as `name` and `dtype`.
|
|
93
|
+
|
|
94
|
+
Example:
|
|
95
|
+
|
|
96
|
+
{{base_image_preprocessing_transform_example}}
|
|
90
97
|
"""
|
|
91
98
|
|
|
92
99
|
_USE_BASE_FACTOR = False
|
|
@@ -382,3 +389,11 @@ class RandomTranslation(BaseImagePreprocessingLayer):
|
|
|
382
389
|
"data_format": self.data_format,
|
|
383
390
|
}
|
|
384
391
|
return {**base_config, **config}
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
RandomTranslation.__doc__ = RandomTranslation.__doc__.replace(
|
|
395
|
+
"{{base_image_preprocessing_transform_example}}",
|
|
396
|
+
base_image_preprocessing_transform_example.replace(
|
|
397
|
+
"{LayerName}", "RandomTranslation"
|
|
398
|
+
),
|
|
399
|
+
)
|
keras/src/ops/numpy.py
CHANGED
|
@@ -5064,6 +5064,62 @@ def moveaxis(x, source, destination):
|
|
|
5064
5064
|
return backend.numpy.moveaxis(x, source=source, destination=destination)
|
|
5065
5065
|
|
|
5066
5066
|
|
|
5067
|
+
class Nanmin(Operation):
|
|
5068
|
+
def __init__(self, axis=None, keepdims=False, *, name=None):
|
|
5069
|
+
super().__init__(name=name)
|
|
5070
|
+
self.axis = axis
|
|
5071
|
+
self.keepdims = keepdims
|
|
5072
|
+
|
|
5073
|
+
def call(self, x):
|
|
5074
|
+
return backend.numpy.nanmin(x, axis=self.axis, keepdims=self.keepdims)
|
|
5075
|
+
|
|
5076
|
+
def compute_output_spec(self, x):
|
|
5077
|
+
dtype = dtypes.result_type(getattr(x, "dtype", backend.floatx()))
|
|
5078
|
+
|
|
5079
|
+
if backend.backend() == "torch" and dtype == "uint32":
|
|
5080
|
+
dtype = "int32"
|
|
5081
|
+
|
|
5082
|
+
return KerasTensor(
|
|
5083
|
+
reduce_shape(x.shape, axis=self.axis, keepdims=self.keepdims),
|
|
5084
|
+
dtype=dtype,
|
|
5085
|
+
)
|
|
5086
|
+
|
|
5087
|
+
|
|
5088
|
+
@keras_export(["keras.ops.nanmin", "keras.ops.numpy.nanmin"])
|
|
5089
|
+
def nanmin(x, axis=None, keepdims=False):
|
|
5090
|
+
"""Minimum of a tensor over the given axes, ignoring NaNs.
|
|
5091
|
+
|
|
5092
|
+
Args:
|
|
5093
|
+
x: Input tensor.
|
|
5094
|
+
axis: Axis or axes along which the minimum is computed.
|
|
5095
|
+
The default is to compute the minimum of the flattened tensor.
|
|
5096
|
+
keepdims: If this is set to `True`, the axes which are reduced are left
|
|
5097
|
+
in the result as dimensions with size one.
|
|
5098
|
+
|
|
5099
|
+
Returns:
|
|
5100
|
+
Output tensor containing the minimum, with NaN values ignored. If all
|
|
5101
|
+
values along a reduced axis are NaN, the result is NaN.
|
|
5102
|
+
|
|
5103
|
+
Examples:
|
|
5104
|
+
>>> import numpy as np
|
|
5105
|
+
>>> from keras import ops
|
|
5106
|
+
>>> x = np.array([[1.0, np.nan, 3.0],
|
|
5107
|
+
... [np.nan, 2.0, 1.0]])
|
|
5108
|
+
>>> ops.nanmin(x)
|
|
5109
|
+
1.0
|
|
5110
|
+
|
|
5111
|
+
>>> ops.nanmin(x, axis=1)
|
|
5112
|
+
array([1., 1.])
|
|
5113
|
+
|
|
5114
|
+
>>> ops.nanmin(x, axis=1, keepdims=True)
|
|
5115
|
+
array([[1.],
|
|
5116
|
+
[1.]])
|
|
5117
|
+
"""
|
|
5118
|
+
if any_symbolic_tensors((x,)):
|
|
5119
|
+
return Nanmin(axis=axis, keepdims=keepdims).symbolic_call(x)
|
|
5120
|
+
return backend.numpy.nanmin(x, axis=axis, keepdims=keepdims)
|
|
5121
|
+
|
|
5122
|
+
|
|
5067
5123
|
class Nansum(Operation):
|
|
5068
5124
|
def __init__(self, axis=None, keepdims=False, *, name=None):
|
|
5069
5125
|
super().__init__(name=name)
|
|
@@ -45,8 +45,8 @@ class Regularizer:
|
|
|
45
45
|
>>> out = layer(tensor)
|
|
46
46
|
|
|
47
47
|
>>> # The kernel regularization term is 0.25
|
|
48
|
-
>>> # The activity regularization term (after dividing by
|
|
49
|
-
>>> # is 5
|
|
48
|
+
>>> # The activity regularization term (after dividing by batch size of 5)
|
|
49
|
+
>>> # is 5.0
|
|
50
50
|
>>> ops.sum(layer.losses)
|
|
51
51
|
5.25
|
|
52
52
|
|
keras/src/version.py
CHANGED
{keras_nightly-3.14.0.dev2026012104.dist-info → keras_nightly-3.14.0.dev2026012304.dist-info}/RECORD
RENAMED
|
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
|
|
|
45
45
|
keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
|
|
46
46
|
keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
47
47
|
keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
48
|
-
keras/_tf_keras/keras/ops/__init__.py,sha256=
|
|
48
|
+
keras/_tf_keras/keras/ops/__init__.py,sha256=Exo66cXhtlICdHcwCb9W1aY_kyKGmu_E0gx2g8arqAA,15667
|
|
49
49
|
keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
50
50
|
keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
51
51
|
keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
52
|
-
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=
|
|
52
|
+
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=Et9qtWaBOwKAOyJJcBnUjmu40MKJz6mRHtUXHdWdH-Q,9729
|
|
53
53
|
keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
54
54
|
keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
55
55
|
keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
@@ -111,11 +111,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
|
|
|
111
111
|
keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
|
|
112
112
|
keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
113
113
|
keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
114
|
-
keras/ops/__init__.py,sha256=
|
|
114
|
+
keras/ops/__init__.py,sha256=Exo66cXhtlICdHcwCb9W1aY_kyKGmu_E0gx2g8arqAA,15667
|
|
115
115
|
keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
116
116
|
keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
117
117
|
keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
118
|
-
keras/ops/numpy/__init__.py,sha256=
|
|
118
|
+
keras/ops/numpy/__init__.py,sha256=Et9qtWaBOwKAOyJJcBnUjmu40MKJz6mRHtUXHdWdH-Q,9729
|
|
119
119
|
keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
120
120
|
keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
121
121
|
keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
|
128
128
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
129
129
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
|
130
130
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
|
131
|
-
keras/src/version.py,sha256=
|
|
131
|
+
keras/src/version.py,sha256=zrwbXx271qaOFPQlnpEWKXzwfgQbyWOQOcBlTEB9byM,204
|
|
132
132
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
|
133
133
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
|
134
134
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -171,7 +171,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
|
|
|
171
171
|
keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
|
|
172
172
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
|
173
173
|
keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
|
|
174
|
-
keras/src/backend/jax/numpy.py,sha256=
|
|
174
|
+
keras/src/backend/jax/numpy.py,sha256=e-EU_q5qbWL4tQAmuXgLTzBtAReMbkJ_lHtzmP2J634,38997
|
|
175
175
|
keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
|
|
176
176
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
|
177
177
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
|
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
|
|
|
186
186
|
keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
|
|
187
187
|
keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
|
|
188
188
|
keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
|
|
189
|
-
keras/src/backend/numpy/numpy.py,sha256=
|
|
189
|
+
keras/src/backend/numpy/numpy.py,sha256=o71x6rkJgj1Mq2e0iJSIDq9v-xs_PFgskBioLc-_5cs,38168
|
|
190
190
|
keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
|
|
191
191
|
keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
|
|
192
192
|
keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
|
|
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
|
198
198
|
keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
|
|
199
199
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
|
200
200
|
keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
|
|
201
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
|
201
|
+
keras/src/backend/openvino/numpy.py,sha256=D1ALQlwjLfIUnWslmUbDtvmqCUF4Hy_zYoSPV_O1PIc,109841
|
|
202
202
|
keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
|
|
203
203
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
|
204
204
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
|
@@ -211,7 +211,7 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
|
|
|
211
211
|
keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
|
|
212
212
|
keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
|
|
213
213
|
keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
|
|
214
|
-
keras/src/backend/tensorflow/numpy.py,sha256=
|
|
214
|
+
keras/src/backend/tensorflow/numpy.py,sha256=j_EuTLDE8mgJSZuCt7yWHZUbvwQz3T-ZksSzCP3cl4s,105695
|
|
215
215
|
keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
|
|
216
216
|
keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
|
|
217
217
|
keras/src/backend/tensorflow/rnn.py,sha256=JbOSpt48cm612c7YwiTYOQCQsNXyI_6QeRhtUn8qEvM,34829
|
|
@@ -227,7 +227,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
|
|
|
227
227
|
keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
|
|
228
228
|
keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
|
|
229
229
|
keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
|
|
230
|
-
keras/src/backend/torch/numpy.py,sha256=
|
|
230
|
+
keras/src/backend/torch/numpy.py,sha256=JeMDIOubCyLqMqid1xg4CQ0Nm4gf5F7WLNggaiTviuE,58582
|
|
231
231
|
keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
|
|
232
232
|
keras/src/backend/torch/rnn.py,sha256=MJIVbHKsUA2dZm4Gu2NvRxlrFCWeWSxSZRmFxSsC3Zg,26041
|
|
233
233
|
keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
|
|
@@ -295,7 +295,7 @@ keras/src/initializers/initializer.py,sha256=kNAyRA8CzBdtknT6ZUt5XIO2_Z9NzpN119C
|
|
|
295
295
|
keras/src/initializers/random_initializers.py,sha256=AuUeQ3YZGakDKTCs8njQLhozE6iWYHwP6-VstnEMOaQ,23631
|
|
296
296
|
keras/src/layers/__init__.py,sha256=s7jrOesk0YMUKCxe5BTdQ5cxqrnkYbA-GWRoCXuqpsg,12103
|
|
297
297
|
keras/src/layers/input_spec.py,sha256=cjBUBmgdneJfhvbI-WLqSapJInCsxliWBygyfMWgkj4,10010
|
|
298
|
-
keras/src/layers/layer.py,sha256=
|
|
298
|
+
keras/src/layers/layer.py,sha256=uBgdpYjGcdvjAFN4hjd-li7A4UM5Xw3Z-WHm0FdrqvM,80143
|
|
299
299
|
keras/src/layers/activations/__init__.py,sha256=MhPBye8WWLSf_iDel3BuuqYk4nx6Sym8s4dZKb1KTqQ,272
|
|
300
300
|
keras/src/layers/activations/activation.py,sha256=c_Q5gUjCTD70a9-I1m5eEPcrWPpE-5iAlkDMt4lxRgA,1287
|
|
301
301
|
keras/src/layers/activations/elu.py,sha256=jtszCDe6Cs_L3jITK3ascKouqgYUxdbGvT60kxQbcHM,840
|
|
@@ -389,34 +389,34 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
|
|
|
389
389
|
keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
|
|
390
390
|
keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
|
|
391
391
|
keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
392
|
-
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=
|
|
392
|
+
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=Z6mpMF8QYP3gbfdeWaM6Rw6rzyBkK7MP369SJOnigCQ,11627
|
|
393
393
|
keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
|
|
394
|
-
keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=
|
|
394
|
+
keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=cn_ieMUfz884kCAmAstdZtNcaO4vtJ9n4Q7uD-TR8XA,15249
|
|
395
395
|
keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=Pi9GlYTo7kZbfZpfF1FUwkwi0y9v8PcQYQAurixHaeU,9965
|
|
396
|
-
keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=
|
|
396
|
+
keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=v3emau6I3pbOMCmaOk0k3HS3XNT2BkL9HM0sx0UT-EI,8267
|
|
397
397
|
keras/src/layers/preprocessing/image_preprocessing/equalization.py,sha256=Q6URzVSxTxcd166oNFJsVlNO3x8EUMS0plqthDwKzu4,8659
|
|
398
|
-
keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=
|
|
398
|
+
keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=szo2mxzLWbHfMDcNpKjg_7q-xPc8aZjLHRxp-DG8bEk,3938
|
|
399
399
|
keras/src/layers/preprocessing/image_preprocessing/mix_up.py,sha256=wQOq7pmMUmUPUsYyoORkCKzxEZJGRssi5kM7Y5RIwbo,6651
|
|
400
|
-
keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=
|
|
400
|
+
keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=qfxMaJeLE_7QlMSq1Mjw_1pK59bFZylWRp-GfsqFtlk,9328
|
|
401
401
|
keras/src/layers/preprocessing/image_preprocessing/random_brightness.py,sha256=Ix01T1xsbf_QknyWcSlK1SxVPvFNtHw20xmWHhuQPZI,6083
|
|
402
|
-
keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=
|
|
403
|
-
keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=
|
|
404
|
-
keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=
|
|
405
|
-
keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=
|
|
406
|
-
keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=
|
|
407
|
-
keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=
|
|
408
|
-
keras/src/layers/preprocessing/image_preprocessing/random_flip.py,sha256=
|
|
409
|
-
keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py,sha256=
|
|
410
|
-
keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py,sha256=
|
|
402
|
+
keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=okHRWZzIpcN20X19FOl4gibunk2NywRIjBKbysdloGc,5351
|
|
403
|
+
keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=gyDuZjvu0MS1czEd2UgnMr7JRBnv7pY7I4JIGlrc3Bs,9901
|
|
404
|
+
keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=tVNj7ZymKvjk8627LiohGr6D-2vqAwysD4x6R0yN2aI,5898
|
|
405
|
+
keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=sCyUCTEllkcHpMW5d2bsrCjtrXHnBTP--NDLrXbHOsw,10985
|
|
406
|
+
keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=Qr7NTxZo64qIA0eggbtdEaO5F3ZptTVb2bBd_6pncXE,10675
|
|
407
|
+
keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=SJGh_uzZ5cA8QgGCLnRWKiigwD_NZg_3LVztq4UXeBY,11658
|
|
408
|
+
keras/src/layers/preprocessing/image_preprocessing/random_flip.py,sha256=x5gmcmIaTekD2s3BcQgQA3hd2RQO8scLkxe-u9KQ2A8,8489
|
|
409
|
+
keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py,sha256=PRjcmmXeJymHip_tbs5sQOB6_2hrqWKcHrWcon-9cyA,8153
|
|
410
|
+
keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py,sha256=AQtfK7glY8n5dCId2KFlESd9zXYxxUPIG99inYh8Sh0,4956
|
|
411
411
|
keras/src/layers/preprocessing/image_preprocessing/random_hue.py,sha256=wL9Nc3sogNs-zjXtuW55jqqcVE69fTRQo8HNJ-oZpVI,6466
|
|
412
|
-
keras/src/layers/preprocessing/image_preprocessing/random_invert.py,sha256=
|
|
413
|
-
keras/src/layers/preprocessing/image_preprocessing/random_perspective.py,sha256=
|
|
414
|
-
keras/src/layers/preprocessing/image_preprocessing/random_posterization.py,sha256=
|
|
415
|
-
keras/src/layers/preprocessing/image_preprocessing/random_rotation.py,sha256=
|
|
412
|
+
keras/src/layers/preprocessing/image_preprocessing/random_invert.py,sha256=6FcvSFiaydAbUoMJ-pQT1UJq5l_a9DLk8qLGsiVF7ew,4793
|
|
413
|
+
keras/src/layers/preprocessing/image_preprocessing/random_perspective.py,sha256=_mEAGNeyYOdGTI7quUZ82thlSxFdA_TsDuL9c4jqWpg,12199
|
|
414
|
+
keras/src/layers/preprocessing/image_preprocessing/random_posterization.py,sha256=riEGot-yz9BZhYjN_FsJYzKNGpLnJIZnqL8wzLlCAwM,5610
|
|
415
|
+
keras/src/layers/preprocessing/image_preprocessing/random_rotation.py,sha256=OhtkfgmOcQjFAWlGcfw7VdiACe6ovMhsY99qG0LgVUU,10079
|
|
416
416
|
keras/src/layers/preprocessing/image_preprocessing/random_saturation.py,sha256=ShsqSjkazbg9kJU8e3k6ko2ytN5ZCdAA_Ol9ku4uwOs,6105
|
|
417
|
-
keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=
|
|
418
|
-
keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=
|
|
419
|
-
keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=
|
|
417
|
+
keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=Hh7fBYdxedJdsod4y0gnFJSsuL-7AaUqzxEGwamjlhU,6583
|
|
418
|
+
keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=2KLTCjDdPc_rJvC2IQm45OMsqogp8Ep3-P_1MDtAOvc,15455
|
|
419
|
+
keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=W7ctCMjKXSl7nD7Lva6j-1brD-Drj_ZheNMq5k6UOf4,15385
|
|
420
420
|
keras/src/layers/preprocessing/image_preprocessing/random_zoom.py,sha256=DBDSep-CGk-lsWP0gwP89SQR2k8-ZjYqKKj0rf-KWWA,16472
|
|
421
421
|
keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=N3_Mw4KA-DC7R0zBNeRnCQWvzKa8Bpg1jRooUJSZLq0,12241
|
|
422
422
|
keras/src/layers/preprocessing/image_preprocessing/solarization.py,sha256=URBAHjCIRs8mlb1RCt39pHtylRgZuhxC7kFtACsGIbc,8015
|
|
@@ -504,7 +504,7 @@ keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
|
|
|
504
504
|
keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
|
|
505
505
|
keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
|
|
506
506
|
keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
|
|
507
|
-
keras/src/ops/numpy.py,sha256=
|
|
507
|
+
keras/src/ops/numpy.py,sha256=6-nCfjwd4y0oWLoL72ZTmyDu-kNLWdNlL4KDr6TsqC8,260893
|
|
508
508
|
keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
|
|
509
509
|
keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
|
|
510
510
|
keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
|
|
@@ -541,7 +541,7 @@ keras/src/random/__init__.py,sha256=BmXVYPzxbhADohoLtAEEzB3cesP7YBFDsp1qc6BWWlg,
|
|
|
541
541
|
keras/src/random/random.py,sha256=bUADZIVDuCghwIWTk0qBxXTxUdiNGWIdsRi8QJ3ePg4,17581
|
|
542
542
|
keras/src/random/seed_generator.py,sha256=-a0CQa7--Xt0g0nfdjLmUzlFElY9Y838VcCx05AcllY,5655
|
|
543
543
|
keras/src/regularizers/__init__.py,sha256=GzK9FTKL2Xxd5H55GfG9gxDqt4eZoVHFWICgb2VW8qM,1731
|
|
544
|
-
keras/src/regularizers/regularizers.py,sha256=
|
|
544
|
+
keras/src/regularizers/regularizers.py,sha256=MDtsiFjLgI1sl9z036XcQhZH9OnUmMHM74l27dspum0,11802
|
|
545
545
|
keras/src/saving/__init__.py,sha256=vnrtfvnzW7Gwtxe5COhaMoEnVYB5iDe2YlqJ-DvqFIk,614
|
|
546
546
|
keras/src/saving/file_editor.py,sha256=tsUo9mQbMa8433tHTnOKWFhDeathYwDb0CeWcDTTTBQ,32089
|
|
547
547
|
keras/src/saving/keras_saveable.py,sha256=aGIt1ajtsaamfUq18LM6ql8JEoQzi3HwzJEuwQ9bmKE,1285
|
|
@@ -618,7 +618,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
|
618
618
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
|
619
619
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
|
620
620
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
|
621
|
-
keras_nightly-3.14.0.
|
|
622
|
-
keras_nightly-3.14.0.
|
|
623
|
-
keras_nightly-3.14.0.
|
|
624
|
-
keras_nightly-3.14.0.
|
|
621
|
+
keras_nightly-3.14.0.dev2026012304.dist-info/METADATA,sha256=WLjmq7_YlxrYTWWRdBTiOboC4zCj0j5pKexkiZZ6C6Y,6339
|
|
622
|
+
keras_nightly-3.14.0.dev2026012304.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
|
|
623
|
+
keras_nightly-3.14.0.dev2026012304.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
|
624
|
+
keras_nightly-3.14.0.dev2026012304.dist-info/RECORD,,
|