keras-nightly 3.14.0.dev2026011304__py3-none-any.whl → 3.14.0.dev2026011404__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/src/backend/openvino/numpy.py +82 -5
- keras/src/version.py +1 -1
- {keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/METADATA +1 -1
- {keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/RECORD +6 -6
- {keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/WHEEL +0 -0
- {keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/top_level.txt +0 -0
|
@@ -1394,7 +1394,66 @@ def isreal(x):
|
|
|
1394
1394
|
|
|
1395
1395
|
|
|
1396
1396
|
def kron(x1, x2):
|
|
1397
|
-
|
|
1397
|
+
x1 = get_ov_output(x1)
|
|
1398
|
+
x2 = get_ov_output(x2)
|
|
1399
|
+
x1, x2 = _align_operand_types(x1, x2, "kron()")
|
|
1400
|
+
x1_shape = x1.get_partial_shape()
|
|
1401
|
+
x2_shape = x2.get_partial_shape()
|
|
1402
|
+
if x1_shape.rank.is_dynamic or x2_shape.rank.is_dynamic:
|
|
1403
|
+
raise ValueError(
|
|
1404
|
+
"`kron` does not support tensors with dynamic rank for "
|
|
1405
|
+
"the OpenVINO backend."
|
|
1406
|
+
)
|
|
1407
|
+
ndim1 = x1_shape.rank.get_length()
|
|
1408
|
+
ndim2 = x2_shape.rank.get_length()
|
|
1409
|
+
if ndim1 < ndim2:
|
|
1410
|
+
axes = ov_opset.range(
|
|
1411
|
+
ov_opset.constant(0, Type.i32),
|
|
1412
|
+
ov_opset.constant(ndim2 - ndim1, Type.i32),
|
|
1413
|
+
ov_opset.constant(1, Type.i32),
|
|
1414
|
+
)
|
|
1415
|
+
x1 = ov_opset.unsqueeze(x1, axes)
|
|
1416
|
+
ndim1 = ndim2
|
|
1417
|
+
elif ndim2 < ndim1:
|
|
1418
|
+
axes = ov_opset.range(
|
|
1419
|
+
ov_opset.constant(0, Type.i32),
|
|
1420
|
+
ov_opset.constant(ndim1 - ndim2, Type.i32),
|
|
1421
|
+
ov_opset.constant(1, Type.i32),
|
|
1422
|
+
)
|
|
1423
|
+
x2 = ov_opset.unsqueeze(x2, axes)
|
|
1424
|
+
ndim2 = ndim1
|
|
1425
|
+
shape1 = ov_opset.shape_of(x1, Type.i32)
|
|
1426
|
+
shape2 = ov_opset.shape_of(x2, Type.i32)
|
|
1427
|
+
ones = ov_opset.broadcast(
|
|
1428
|
+
ov_opset.constant(1, Type.i32), ov_opset.constant([ndim1], Type.i32)
|
|
1429
|
+
)
|
|
1430
|
+
axis = ov_opset.constant(1, Type.i32)
|
|
1431
|
+
flatten = ov_opset.constant([-1], Type.i32)
|
|
1432
|
+
unsqueezed_ones = ov_opset.unsqueeze(ones, axis)
|
|
1433
|
+
x1_new_shape = ov_opset.reshape(
|
|
1434
|
+
ov_opset.concat(
|
|
1435
|
+
[ov_opset.unsqueeze(shape1, axis), unsqueezed_ones],
|
|
1436
|
+
axis=1,
|
|
1437
|
+
),
|
|
1438
|
+
flatten,
|
|
1439
|
+
False,
|
|
1440
|
+
)
|
|
1441
|
+
x2_new_shape = ov_opset.reshape(
|
|
1442
|
+
ov_opset.concat(
|
|
1443
|
+
[unsqueezed_ones, ov_opset.unsqueeze(shape2, axis)],
|
|
1444
|
+
axis=1,
|
|
1445
|
+
),
|
|
1446
|
+
flatten,
|
|
1447
|
+
False,
|
|
1448
|
+
)
|
|
1449
|
+
result = ov_opset.multiply(
|
|
1450
|
+
ov_opset.reshape(x1, x1_new_shape, False),
|
|
1451
|
+
ov_opset.reshape(x2, x2_new_shape, False),
|
|
1452
|
+
)
|
|
1453
|
+
result = ov_opset.reshape(
|
|
1454
|
+
result, ov_opset.multiply(shape1, shape2), False
|
|
1455
|
+
).output(0)
|
|
1456
|
+
return OpenVINOKerasTensor(result)
|
|
1398
1457
|
|
|
1399
1458
|
|
|
1400
1459
|
def lcm(x1, x2):
|
|
@@ -2226,7 +2285,14 @@ def sinh(x):
|
|
|
2226
2285
|
|
|
2227
2286
|
|
|
2228
2287
|
def size(x):
|
|
2229
|
-
|
|
2288
|
+
x = get_ov_output(x)
|
|
2289
|
+
shape_tensor = ov_opset.shape_of(x, output_type=Type.i64)
|
|
2290
|
+
final_size = ov_opset.reduce_prod(
|
|
2291
|
+
shape_tensor,
|
|
2292
|
+
ov_opset.constant([0], Type.i64),
|
|
2293
|
+
keep_dims=False,
|
|
2294
|
+
)
|
|
2295
|
+
return OpenVINOKerasTensor(final_size.output(0))
|
|
2230
2296
|
|
|
2231
2297
|
|
|
2232
2298
|
def sort(x, axis=-1):
|
|
@@ -2368,9 +2434,20 @@ def std(x, axis=None, keepdims=False):
|
|
|
2368
2434
|
|
|
2369
2435
|
|
|
2370
2436
|
def swapaxes(x, axis1, axis2):
|
|
2371
|
-
|
|
2372
|
-
|
|
2373
|
-
|
|
2437
|
+
x = get_ov_output(x)
|
|
2438
|
+
x_shape = x.get_partial_shape()
|
|
2439
|
+
if x_shape.rank.is_dynamic:
|
|
2440
|
+
raise ValueError(
|
|
2441
|
+
"`swapaxes` does not support tensors with dynamic rank for the "
|
|
2442
|
+
"OpenVINO backend."
|
|
2443
|
+
)
|
|
2444
|
+
rank = x_shape.rank.get_length()
|
|
2445
|
+
axis1 = canonicalize_axis(axis1, rank)
|
|
2446
|
+
axis2 = canonicalize_axis(axis2, rank)
|
|
2447
|
+
axes = list(range(rank))
|
|
2448
|
+
axes[axis1], axes[axis2] = axes[axis2], axes[axis1]
|
|
2449
|
+
result = ov_opset.transpose(x, ov_opset.constant(axes, Type.i32))
|
|
2450
|
+
return OpenVINOKerasTensor(result.output(0))
|
|
2374
2451
|
|
|
2375
2452
|
|
|
2376
2453
|
def take(x, indices, axis=None):
|
keras/src/version.py
CHANGED
{keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/RECORD
RENAMED
|
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
|
128
128
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
129
129
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
|
130
130
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
|
131
|
-
keras/src/version.py,sha256=
|
|
131
|
+
keras/src/version.py,sha256=w8F4qXHXwmNxkt7YJdj-CSjcFul2E8ddmb8Thwa2k5c,204
|
|
132
132
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
|
133
133
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
|
134
134
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
|
198
198
|
keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
|
|
199
199
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
|
200
200
|
keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
|
|
201
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
|
201
|
+
keras/src/backend/openvino/numpy.py,sha256=iRzcXqc8Aq_sLh5TgFiLCtgHLfotvI-S29KGwocIN68,103924
|
|
202
202
|
keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
|
|
203
203
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
|
204
204
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
|
@@ -615,7 +615,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
|
615
615
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
|
616
616
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
|
617
617
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
|
618
|
-
keras_nightly-3.14.0.
|
|
619
|
-
keras_nightly-3.14.0.
|
|
620
|
-
keras_nightly-3.14.0.
|
|
621
|
-
keras_nightly-3.14.0.
|
|
618
|
+
keras_nightly-3.14.0.dev2026011404.dist-info/METADATA,sha256=kQdBx6UVd9ve6T2k1-rLnycFlcoNFSJWmzXOerCw39g,6339
|
|
619
|
+
keras_nightly-3.14.0.dev2026011404.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
620
|
+
keras_nightly-3.14.0.dev2026011404.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
|
621
|
+
keras_nightly-3.14.0.dev2026011404.dist-info/RECORD,,
|
{keras_nightly-3.14.0.dev2026011304.dist-info → keras_nightly-3.14.0.dev2026011404.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|