keras-nightly 3.14.0.dev2026010904__py3-none-any.whl → 3.14.0.dev2026011104__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/_tf_keras/keras/ops/__init__.py +1 -0
- keras/_tf_keras/keras/ops/numpy/__init__.py +1 -0
- keras/ops/__init__.py +1 -0
- keras/ops/numpy/__init__.py +1 -0
- keras/src/backend/jax/numpy.py +5 -0
- keras/src/backend/numpy/numpy.py +4 -0
- keras/src/backend/openvino/numpy.py +44 -3
- keras/src/backend/tensorflow/numpy.py +7 -0
- keras/src/backend/torch/numpy.py +12 -0
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +2 -2
- keras/src/ops/numpy.py +68 -0
- keras/src/version.py +1 -1
- {keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/METADATA +1 -1
- {keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/RECORD +16 -16
- {keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/WHEEL +0 -0
- {keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/top_level.txt +0 -0
|
@@ -256,6 +256,7 @@ from keras.src.ops.numpy import outer as outer
|
|
|
256
256
|
from keras.src.ops.numpy import pad as pad
|
|
257
257
|
from keras.src.ops.numpy import power as power
|
|
258
258
|
from keras.src.ops.numpy import prod as prod
|
|
259
|
+
from keras.src.ops.numpy import ptp as ptp
|
|
259
260
|
from keras.src.ops.numpy import quantile as quantile
|
|
260
261
|
from keras.src.ops.numpy import ravel as ravel
|
|
261
262
|
from keras.src.ops.numpy import real as real
|
|
@@ -140,6 +140,7 @@ from keras.src.ops.numpy import outer as outer
|
|
|
140
140
|
from keras.src.ops.numpy import pad as pad
|
|
141
141
|
from keras.src.ops.numpy import power as power
|
|
142
142
|
from keras.src.ops.numpy import prod as prod
|
|
143
|
+
from keras.src.ops.numpy import ptp as ptp
|
|
143
144
|
from keras.src.ops.numpy import quantile as quantile
|
|
144
145
|
from keras.src.ops.numpy import ravel as ravel
|
|
145
146
|
from keras.src.ops.numpy import real as real
|
keras/ops/__init__.py
CHANGED
|
@@ -256,6 +256,7 @@ from keras.src.ops.numpy import outer as outer
|
|
|
256
256
|
from keras.src.ops.numpy import pad as pad
|
|
257
257
|
from keras.src.ops.numpy import power as power
|
|
258
258
|
from keras.src.ops.numpy import prod as prod
|
|
259
|
+
from keras.src.ops.numpy import ptp as ptp
|
|
259
260
|
from keras.src.ops.numpy import quantile as quantile
|
|
260
261
|
from keras.src.ops.numpy import ravel as ravel
|
|
261
262
|
from keras.src.ops.numpy import real as real
|
keras/ops/numpy/__init__.py
CHANGED
|
@@ -140,6 +140,7 @@ from keras.src.ops.numpy import outer as outer
|
|
|
140
140
|
from keras.src.ops.numpy import pad as pad
|
|
141
141
|
from keras.src.ops.numpy import power as power
|
|
142
142
|
from keras.src.ops.numpy import prod as prod
|
|
143
|
+
from keras.src.ops.numpy import ptp as ptp
|
|
143
144
|
from keras.src.ops.numpy import quantile as quantile
|
|
144
145
|
from keras.src.ops.numpy import ravel as ravel
|
|
145
146
|
from keras.src.ops.numpy import real as real
|
keras/src/backend/jax/numpy.py
CHANGED
|
@@ -1063,6 +1063,11 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
1063
1063
|
return jnp.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
|
|
1064
1064
|
|
|
1065
1065
|
|
|
1066
|
+
def ptp(x, axis=None, keepdims=False):
|
|
1067
|
+
x = convert_to_tensor(x)
|
|
1068
|
+
return jnp.ptp(x, axis=axis, keepdims=keepdims)
|
|
1069
|
+
|
|
1070
|
+
|
|
1066
1071
|
def quantile(x, q, axis=None, method="linear", keepdims=False):
|
|
1067
1072
|
x = convert_to_tensor(x)
|
|
1068
1073
|
q = convert_to_tensor(q)
|
keras/src/backend/numpy/numpy.py
CHANGED
|
@@ -1018,6 +1018,10 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
1018
1018
|
return np.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
|
|
1019
1019
|
|
|
1020
1020
|
|
|
1021
|
+
def ptp(x, axis=None, keepdims=False):
|
|
1022
|
+
return np.ptp(x, axis=axis, keepdims=keepdims)
|
|
1023
|
+
|
|
1024
|
+
|
|
1021
1025
|
def quantile(x, q, axis=None, method="linear", keepdims=False):
|
|
1022
1026
|
axis = standardize_axis_for_numpy(axis)
|
|
1023
1027
|
x = convert_to_tensor(x)
|
|
@@ -706,7 +706,16 @@ def broadcast_to(x, shape):
|
|
|
706
706
|
|
|
707
707
|
|
|
708
708
|
def cbrt(x):
|
|
709
|
-
|
|
709
|
+
x = get_ov_output(x)
|
|
710
|
+
x_type = x.get_element_type()
|
|
711
|
+
if x_type.is_integral() or x_type == Type.boolean:
|
|
712
|
+
x = ov_opset.convert(x, OPENVINO_DTYPES[config.floatx()]).output(0)
|
|
713
|
+
sign_x = ov_opset.sign(x)
|
|
714
|
+
abs_x = ov_opset.absolute(x)
|
|
715
|
+
one_third = ov_opset.constant(1.0 / 3.0, x.get_element_type())
|
|
716
|
+
root_abs = ov_opset.power(abs_x, one_third)
|
|
717
|
+
res = ov_opset.multiply(sign_x, root_abs)
|
|
718
|
+
return OpenVINOKerasTensor(res.output(0))
|
|
710
719
|
|
|
711
720
|
|
|
712
721
|
def ceil(x):
|
|
@@ -1221,7 +1230,34 @@ def hstack(xs):
|
|
|
1221
1230
|
|
|
1222
1231
|
|
|
1223
1232
|
def hypot(x1, x2):
|
|
1224
|
-
|
|
1233
|
+
element_type = None
|
|
1234
|
+
if isinstance(x1, OpenVINOKerasTensor):
|
|
1235
|
+
element_type = x1.output.get_element_type()
|
|
1236
|
+
if isinstance(x2, OpenVINOKerasTensor):
|
|
1237
|
+
element_type = x2.output.get_element_type()
|
|
1238
|
+
x1 = get_ov_output(x1, element_type)
|
|
1239
|
+
x2 = get_ov_output(x2, element_type)
|
|
1240
|
+
x1, x2 = _align_operand_types(x1, x2, "hypot()")
|
|
1241
|
+
x_type = x1.get_element_type()
|
|
1242
|
+
if x_type.is_integral() or x_type == Type.boolean:
|
|
1243
|
+
ov_type = OPENVINO_DTYPES[config.floatx()]
|
|
1244
|
+
x1 = ov_opset.convert(x1, ov_type)
|
|
1245
|
+
x2 = ov_opset.convert(x2, ov_type)
|
|
1246
|
+
x1_abs = ov_opset.absolute(x1)
|
|
1247
|
+
x2_abs = ov_opset.absolute(x2)
|
|
1248
|
+
max_val = ov_opset.maximum(x1_abs, x2_abs)
|
|
1249
|
+
min_val = ov_opset.minimum(x1_abs, x2_abs)
|
|
1250
|
+
one = ov_opset.constant(1, max_val.get_element_type())
|
|
1251
|
+
is_zero_mask = ov_opset.equal(
|
|
1252
|
+
max_val, ov_opset.constant(0, max_val.get_element_type())
|
|
1253
|
+
)
|
|
1254
|
+
safe_divisor = ov_opset.select(is_zero_mask, one, max_val)
|
|
1255
|
+
ratio = ov_opset.divide(min_val, safe_divisor)
|
|
1256
|
+
result = ov_opset.multiply(
|
|
1257
|
+
max_val,
|
|
1258
|
+
ov_opset.sqrt(ov_opset.add(one, ov_opset.multiply(ratio, ratio))),
|
|
1259
|
+
)
|
|
1260
|
+
return OpenVINOKerasTensor(result.output(0))
|
|
1225
1261
|
|
|
1226
1262
|
|
|
1227
1263
|
def identity(n, dtype=None):
|
|
@@ -2050,6 +2086,10 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
2050
2086
|
return OpenVINOKerasTensor(result)
|
|
2051
2087
|
|
|
2052
2088
|
|
|
2089
|
+
def ptp(x, axis=None, keepdims=False):
|
|
2090
|
+
raise NotImplementedError("`ptp` is not supported with openvino backend")
|
|
2091
|
+
|
|
2092
|
+
|
|
2053
2093
|
def quantile(x, q, axis=None, method="linear", keepdims=False):
|
|
2054
2094
|
raise NotImplementedError(
|
|
2055
2095
|
"`quantile` is not supported with openvino backend"
|
|
@@ -2449,7 +2489,8 @@ def tile(x, repeats):
|
|
|
2449
2489
|
|
|
2450
2490
|
|
|
2451
2491
|
def trace(x, offset=0, axis1=0, axis2=1):
|
|
2452
|
-
|
|
2492
|
+
x = diagonal(x, offset=offset, axis1=axis1, axis2=axis2)
|
|
2493
|
+
return sum(x, axis=-1)
|
|
2453
2494
|
|
|
2454
2495
|
|
|
2455
2496
|
def tri(N, M=None, k=0, dtype=None):
|
|
@@ -2215,6 +2215,13 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
2215
2215
|
return tf.reduce_prod(x, axis=axis, keepdims=keepdims)
|
|
2216
2216
|
|
|
2217
2217
|
|
|
2218
|
+
def ptp(x, axis=None, keepdims=False):
|
|
2219
|
+
x = convert_to_tensor(x)
|
|
2220
|
+
return tf.reduce_max(x, axis=axis, keepdims=keepdims) - tf.reduce_min(
|
|
2221
|
+
x, axis=axis, keepdims=keepdims
|
|
2222
|
+
)
|
|
2223
|
+
|
|
2224
|
+
|
|
2218
2225
|
def _quantile(x, q, axis=None, method="linear", keepdims=False):
|
|
2219
2226
|
# ref: tfp.stats.percentile
|
|
2220
2227
|
# float64 is needed here and below, else we get the wrong index if the array
|
keras/src/backend/torch/numpy.py
CHANGED
|
@@ -1382,6 +1382,18 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
1382
1382
|
return x
|
|
1383
1383
|
|
|
1384
1384
|
|
|
1385
|
+
def ptp(x, axis=None, keepdims=False):
|
|
1386
|
+
x = convert_to_tensor(x)
|
|
1387
|
+
if axis is None:
|
|
1388
|
+
return x.max() - x.min()
|
|
1389
|
+
elif axis == ():
|
|
1390
|
+
return torch.zeros_like(x)
|
|
1391
|
+
else:
|
|
1392
|
+
return torch.amax(x, dim=axis, keepdim=keepdims) - torch.amin(
|
|
1393
|
+
x, dim=axis, keepdim=keepdims
|
|
1394
|
+
)
|
|
1395
|
+
|
|
1396
|
+
|
|
1385
1397
|
def quantile(x, q, axis=None, method="linear", keepdims=False):
|
|
1386
1398
|
x = convert_to_tensor(x)
|
|
1387
1399
|
q = convert_to_tensor(q)
|
|
@@ -316,8 +316,8 @@ class AugMix(BaseImagePreprocessingLayer):
|
|
|
316
316
|
def get_config(self):
|
|
317
317
|
config = {
|
|
318
318
|
"value_range": self.value_range,
|
|
319
|
-
"num_chains": self.
|
|
320
|
-
"chain_depth": self.
|
|
319
|
+
"num_chains": self.num_chains,
|
|
320
|
+
"chain_depth": self.chain_depth,
|
|
321
321
|
"factor": self.factor,
|
|
322
322
|
"alpha": self.alpha,
|
|
323
323
|
"all_ops": self.all_ops,
|
keras/src/ops/numpy.py
CHANGED
|
@@ -5456,6 +5456,74 @@ def prod(x, axis=None, keepdims=False, dtype=None):
|
|
|
5456
5456
|
return backend.numpy.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
|
|
5457
5457
|
|
|
5458
5458
|
|
|
5459
|
+
class Ptp(Operation):
|
|
5460
|
+
def __init__(self, axis=None, keepdims=False, *, name=None):
|
|
5461
|
+
super().__init__(name=name)
|
|
5462
|
+
self.axis = axis
|
|
5463
|
+
self.keepdims = keepdims
|
|
5464
|
+
|
|
5465
|
+
def call(self, x):
|
|
5466
|
+
return backend.numpy.ptp(
|
|
5467
|
+
x,
|
|
5468
|
+
axis=self.axis,
|
|
5469
|
+
keepdims=self.keepdims,
|
|
5470
|
+
)
|
|
5471
|
+
|
|
5472
|
+
def compute_output_spec(self, x):
|
|
5473
|
+
dtype = backend.standardize_dtype(x.dtype)
|
|
5474
|
+
return KerasTensor(
|
|
5475
|
+
reduce_shape(x.shape, axis=self.axis, keepdims=self.keepdims),
|
|
5476
|
+
dtype=dtype,
|
|
5477
|
+
)
|
|
5478
|
+
|
|
5479
|
+
|
|
5480
|
+
@keras_export(["keras.ops.ptp", "keras.ops.numpy.ptp"])
|
|
5481
|
+
def ptp(x, axis=None, keepdims=False):
|
|
5482
|
+
"""Return the peak-to-peak (max - min) value of tensor elements
|
|
5483
|
+
over a given axis.
|
|
5484
|
+
|
|
5485
|
+
The peak-to-peak value is defined as the difference between the
|
|
5486
|
+
maximum and minimum values along the specified axis.
|
|
5487
|
+
|
|
5488
|
+
Args:
|
|
5489
|
+
x: Input tensor.
|
|
5490
|
+
axis: Axis or axes along which the peak-to-peak value is computed.
|
|
5491
|
+
The default, `axis=None`, will compute the peak-to-peak value
|
|
5492
|
+
over all elements in the input tensor.
|
|
5493
|
+
keepdims: If this is set to `True`, the axes which are reduced
|
|
5494
|
+
are left in the result as dimensions with size one.
|
|
5495
|
+
|
|
5496
|
+
Returns:
|
|
5497
|
+
A tensor containing the peak-to-peak values of `x` over the
|
|
5498
|
+
given axis or axes.
|
|
5499
|
+
|
|
5500
|
+
Examples:
|
|
5501
|
+
>>> x = keras.ops.array([[1., 3., 2.],
|
|
5502
|
+
... [4., 0., 5.]])
|
|
5503
|
+
|
|
5504
|
+
>>> # Peak-to-peak over all elements
|
|
5505
|
+
>>> keras.ops.ptp(x)
|
|
5506
|
+
5.0
|
|
5507
|
+
|
|
5508
|
+
>>> # Peak-to-peak along axis 1
|
|
5509
|
+
>>> keras.ops.ptp(x, axis=1)
|
|
5510
|
+
array([2., 5.], dtype=float32)
|
|
5511
|
+
|
|
5512
|
+
>>> # Peak-to-peak over multiple axes
|
|
5513
|
+
>>> x = keras.ops.reshape(x, (1, 2, 3))
|
|
5514
|
+
>>> keras.ops.ptp(x, axis=(1, 2))
|
|
5515
|
+
array([5.], dtype=float32)
|
|
5516
|
+
|
|
5517
|
+
>>> # Keep reduced dimensions
|
|
5518
|
+
>>> keras.ops.ptp(x, axis=2, keepdims=True)
|
|
5519
|
+
array([[[2.],
|
|
5520
|
+
[5.]]], dtype=float32)
|
|
5521
|
+
"""
|
|
5522
|
+
if any_symbolic_tensors((x,)):
|
|
5523
|
+
return Ptp(axis=axis, keepdims=keepdims).symbolic_call(x)
|
|
5524
|
+
return backend.numpy.ptp(x, axis=axis, keepdims=keepdims)
|
|
5525
|
+
|
|
5526
|
+
|
|
5459
5527
|
class Quantile(Operation):
|
|
5460
5528
|
def __init__(
|
|
5461
5529
|
self, axis=None, method="linear", keepdims=False, *, name=None
|
keras/src/version.py
CHANGED
{keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/RECORD
RENAMED
|
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
|
|
|
45
45
|
keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
|
|
46
46
|
keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
47
47
|
keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
48
|
-
keras/_tf_keras/keras/ops/__init__.py,sha256
|
|
48
|
+
keras/_tf_keras/keras/ops/__init__.py,sha256=-ywp71gN-DpkhtlIzzXpK0CG0CDIYW7L3TRnI1Tondo,15569
|
|
49
49
|
keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
50
50
|
keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
51
51
|
keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
52
|
-
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=
|
|
52
|
+
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=mIZ_5ZA-QOALvz9jkMwOTDw8iu2NxCGqwmZyJPA3vy4,9631
|
|
53
53
|
keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
54
54
|
keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
55
55
|
keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
@@ -111,11 +111,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
|
|
|
111
111
|
keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
|
|
112
112
|
keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
113
113
|
keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
114
|
-
keras/ops/__init__.py,sha256
|
|
114
|
+
keras/ops/__init__.py,sha256=-ywp71gN-DpkhtlIzzXpK0CG0CDIYW7L3TRnI1Tondo,15569
|
|
115
115
|
keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
116
116
|
keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
117
117
|
keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
118
|
-
keras/ops/numpy/__init__.py,sha256=
|
|
118
|
+
keras/ops/numpy/__init__.py,sha256=mIZ_5ZA-QOALvz9jkMwOTDw8iu2NxCGqwmZyJPA3vy4,9631
|
|
119
119
|
keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
120
120
|
keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
121
121
|
keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
|
128
128
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
129
129
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
|
130
130
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
|
131
|
-
keras/src/version.py,sha256=
|
|
131
|
+
keras/src/version.py,sha256=3Hkuz1OUmn0PSndor9FgydHEB801BxkmY4jmwL90J_4,204
|
|
132
132
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
|
133
133
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
|
134
134
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -171,7 +171,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
|
|
|
171
171
|
keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
|
|
172
172
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
|
173
173
|
keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
|
|
174
|
-
keras/src/backend/jax/numpy.py,sha256=
|
|
174
|
+
keras/src/backend/jax/numpy.py,sha256=_WCCYgFddNSs_1vd_65hxHgomKR3NHOsmbvTsfcddzc,38741
|
|
175
175
|
keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
|
|
176
176
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
|
177
177
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
|
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
|
|
|
186
186
|
keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
|
|
187
187
|
keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
|
|
188
188
|
keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
|
|
189
|
-
keras/src/backend/numpy/numpy.py,sha256=
|
|
189
|
+
keras/src/backend/numpy/numpy.py,sha256=Qu6Ia_EasEVt4UDOmvi6mx9HmFO2eva_E8NxSMnzr5E,37743
|
|
190
190
|
keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
|
|
191
191
|
keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
|
|
192
192
|
keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
|
|
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
|
198
198
|
keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
|
|
199
199
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
|
200
200
|
keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
|
|
201
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
|
201
|
+
keras/src/backend/openvino/numpy.py,sha256=vntuKwGOeBnIw24ocaEE6rDfzTaqvw_EKDHgDvMkSeI,101312
|
|
202
202
|
keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
|
|
203
203
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
|
204
204
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
|
@@ -211,7 +211,7 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
|
|
|
211
211
|
keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
|
|
212
212
|
keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
|
|
213
213
|
keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
|
|
214
|
-
keras/src/backend/tensorflow/numpy.py,sha256=
|
|
214
|
+
keras/src/backend/tensorflow/numpy.py,sha256=wIfpnlqab7HudnV-XPUG4MLBIKUQhrxj92yLgiw1ZKI,104617
|
|
215
215
|
keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
|
|
216
216
|
keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
|
|
217
217
|
keras/src/backend/tensorflow/rnn.py,sha256=99EJqbPdWddmG14zyjjhUZfU5zo9ObmslF_Mak7EmAs,34602
|
|
@@ -227,7 +227,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
|
|
|
227
227
|
keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
|
|
228
228
|
keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
|
|
229
229
|
keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
|
|
230
|
-
keras/src/backend/torch/numpy.py,sha256=
|
|
230
|
+
keras/src/backend/torch/numpy.py,sha256=gvHviedkAoEaTax89wDqUrjbUSX1ndjxicHy-PLv2Nc,57668
|
|
231
231
|
keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
|
|
232
232
|
keras/src/backend/torch/rnn.py,sha256=J0vg7ikxBiv1FzEavgwT8IVCs0ceBcEv5LYyM5C2suA,25545
|
|
233
233
|
keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
|
|
@@ -389,7 +389,7 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
|
|
|
389
389
|
keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
|
|
390
390
|
keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
|
|
391
391
|
keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
392
|
-
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=
|
|
392
|
+
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=spvWYUG6GcPrYZgedaE8LIwTbYE2yvPg2Hwao9UAang,11221
|
|
393
393
|
keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
|
|
394
394
|
keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=Ga1Wewc0Pl9uLGUp3x6dxS2j4Lh-1o7TaOtxxo9kf5o,13853
|
|
395
395
|
keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=4v8SeerBR5GMmoFpVA0mI_LPQ-GkcI-7a0JFWAMe5VY,10033
|
|
@@ -504,7 +504,7 @@ keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
|
|
|
504
504
|
keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
|
|
505
505
|
keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
|
|
506
506
|
keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
|
|
507
|
-
keras/src/ops/numpy.py,sha256=
|
|
507
|
+
keras/src/ops/numpy.py,sha256=H-OdMMkMsbVTfha0zceIMGQN8Nr2S5iNAT0oKwLjB10,256861
|
|
508
508
|
keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
|
|
509
509
|
keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
|
|
510
510
|
keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
|
|
@@ -614,7 +614,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
|
614
614
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
|
615
615
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
|
616
616
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
|
617
|
-
keras_nightly-3.14.0.
|
|
618
|
-
keras_nightly-3.14.0.
|
|
619
|
-
keras_nightly-3.14.0.
|
|
620
|
-
keras_nightly-3.14.0.
|
|
617
|
+
keras_nightly-3.14.0.dev2026011104.dist-info/METADATA,sha256=3xRReeKWXYi1l3DaBmHz-tEYVFvLF8_Zw2uTwhZ5-L0,6339
|
|
618
|
+
keras_nightly-3.14.0.dev2026011104.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
619
|
+
keras_nightly-3.14.0.dev2026011104.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
|
620
|
+
keras_nightly-3.14.0.dev2026011104.dist-info/RECORD,,
|
{keras_nightly-3.14.0.dev2026010904.dist-info → keras_nightly-3.14.0.dev2026011104.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|