keras-nightly 3.14.0.dev2026010904__py3-none-any.whl → 3.14.0.dev2026011104__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -256,6 +256,7 @@ from keras.src.ops.numpy import outer as outer
256
256
  from keras.src.ops.numpy import pad as pad
257
257
  from keras.src.ops.numpy import power as power
258
258
  from keras.src.ops.numpy import prod as prod
259
+ from keras.src.ops.numpy import ptp as ptp
259
260
  from keras.src.ops.numpy import quantile as quantile
260
261
  from keras.src.ops.numpy import ravel as ravel
261
262
  from keras.src.ops.numpy import real as real
@@ -140,6 +140,7 @@ from keras.src.ops.numpy import outer as outer
140
140
  from keras.src.ops.numpy import pad as pad
141
141
  from keras.src.ops.numpy import power as power
142
142
  from keras.src.ops.numpy import prod as prod
143
+ from keras.src.ops.numpy import ptp as ptp
143
144
  from keras.src.ops.numpy import quantile as quantile
144
145
  from keras.src.ops.numpy import ravel as ravel
145
146
  from keras.src.ops.numpy import real as real
keras/ops/__init__.py CHANGED
@@ -256,6 +256,7 @@ from keras.src.ops.numpy import outer as outer
256
256
  from keras.src.ops.numpy import pad as pad
257
257
  from keras.src.ops.numpy import power as power
258
258
  from keras.src.ops.numpy import prod as prod
259
+ from keras.src.ops.numpy import ptp as ptp
259
260
  from keras.src.ops.numpy import quantile as quantile
260
261
  from keras.src.ops.numpy import ravel as ravel
261
262
  from keras.src.ops.numpy import real as real
@@ -140,6 +140,7 @@ from keras.src.ops.numpy import outer as outer
140
140
  from keras.src.ops.numpy import pad as pad
141
141
  from keras.src.ops.numpy import power as power
142
142
  from keras.src.ops.numpy import prod as prod
143
+ from keras.src.ops.numpy import ptp as ptp
143
144
  from keras.src.ops.numpy import quantile as quantile
144
145
  from keras.src.ops.numpy import ravel as ravel
145
146
  from keras.src.ops.numpy import real as real
@@ -1063,6 +1063,11 @@ def prod(x, axis=None, keepdims=False, dtype=None):
1063
1063
  return jnp.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
1064
1064
 
1065
1065
 
1066
+ def ptp(x, axis=None, keepdims=False):
1067
+ x = convert_to_tensor(x)
1068
+ return jnp.ptp(x, axis=axis, keepdims=keepdims)
1069
+
1070
+
1066
1071
  def quantile(x, q, axis=None, method="linear", keepdims=False):
1067
1072
  x = convert_to_tensor(x)
1068
1073
  q = convert_to_tensor(q)
@@ -1018,6 +1018,10 @@ def prod(x, axis=None, keepdims=False, dtype=None):
1018
1018
  return np.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
1019
1019
 
1020
1020
 
1021
+ def ptp(x, axis=None, keepdims=False):
1022
+ return np.ptp(x, axis=axis, keepdims=keepdims)
1023
+
1024
+
1021
1025
  def quantile(x, q, axis=None, method="linear", keepdims=False):
1022
1026
  axis = standardize_axis_for_numpy(axis)
1023
1027
  x = convert_to_tensor(x)
@@ -706,7 +706,16 @@ def broadcast_to(x, shape):
706
706
 
707
707
 
708
708
  def cbrt(x):
709
- raise NotImplementedError("`cbrt` is not supported with openvino backend")
709
+ x = get_ov_output(x)
710
+ x_type = x.get_element_type()
711
+ if x_type.is_integral() or x_type == Type.boolean:
712
+ x = ov_opset.convert(x, OPENVINO_DTYPES[config.floatx()]).output(0)
713
+ sign_x = ov_opset.sign(x)
714
+ abs_x = ov_opset.absolute(x)
715
+ one_third = ov_opset.constant(1.0 / 3.0, x.get_element_type())
716
+ root_abs = ov_opset.power(abs_x, one_third)
717
+ res = ov_opset.multiply(sign_x, root_abs)
718
+ return OpenVINOKerasTensor(res.output(0))
710
719
 
711
720
 
712
721
  def ceil(x):
@@ -1221,7 +1230,34 @@ def hstack(xs):
1221
1230
 
1222
1231
 
1223
1232
  def hypot(x1, x2):
1224
- raise NotImplementedError("`hypot` is not supported with openvino backend")
1233
+ element_type = None
1234
+ if isinstance(x1, OpenVINOKerasTensor):
1235
+ element_type = x1.output.get_element_type()
1236
+ if isinstance(x2, OpenVINOKerasTensor):
1237
+ element_type = x2.output.get_element_type()
1238
+ x1 = get_ov_output(x1, element_type)
1239
+ x2 = get_ov_output(x2, element_type)
1240
+ x1, x2 = _align_operand_types(x1, x2, "hypot()")
1241
+ x_type = x1.get_element_type()
1242
+ if x_type.is_integral() or x_type == Type.boolean:
1243
+ ov_type = OPENVINO_DTYPES[config.floatx()]
1244
+ x1 = ov_opset.convert(x1, ov_type)
1245
+ x2 = ov_opset.convert(x2, ov_type)
1246
+ x1_abs = ov_opset.absolute(x1)
1247
+ x2_abs = ov_opset.absolute(x2)
1248
+ max_val = ov_opset.maximum(x1_abs, x2_abs)
1249
+ min_val = ov_opset.minimum(x1_abs, x2_abs)
1250
+ one = ov_opset.constant(1, max_val.get_element_type())
1251
+ is_zero_mask = ov_opset.equal(
1252
+ max_val, ov_opset.constant(0, max_val.get_element_type())
1253
+ )
1254
+ safe_divisor = ov_opset.select(is_zero_mask, one, max_val)
1255
+ ratio = ov_opset.divide(min_val, safe_divisor)
1256
+ result = ov_opset.multiply(
1257
+ max_val,
1258
+ ov_opset.sqrt(ov_opset.add(one, ov_opset.multiply(ratio, ratio))),
1259
+ )
1260
+ return OpenVINOKerasTensor(result.output(0))
1225
1261
 
1226
1262
 
1227
1263
  def identity(n, dtype=None):
@@ -2050,6 +2086,10 @@ def prod(x, axis=None, keepdims=False, dtype=None):
2050
2086
  return OpenVINOKerasTensor(result)
2051
2087
 
2052
2088
 
2089
+ def ptp(x, axis=None, keepdims=False):
2090
+ raise NotImplementedError("`ptp` is not supported with openvino backend")
2091
+
2092
+
2053
2093
  def quantile(x, q, axis=None, method="linear", keepdims=False):
2054
2094
  raise NotImplementedError(
2055
2095
  "`quantile` is not supported with openvino backend"
@@ -2449,7 +2489,8 @@ def tile(x, repeats):
2449
2489
 
2450
2490
 
2451
2491
  def trace(x, offset=0, axis1=0, axis2=1):
2452
- raise NotImplementedError("`trace` is not supported with openvino backend")
2492
+ x = diagonal(x, offset=offset, axis1=axis1, axis2=axis2)
2493
+ return sum(x, axis=-1)
2453
2494
 
2454
2495
 
2455
2496
  def tri(N, M=None, k=0, dtype=None):
@@ -2215,6 +2215,13 @@ def prod(x, axis=None, keepdims=False, dtype=None):
2215
2215
  return tf.reduce_prod(x, axis=axis, keepdims=keepdims)
2216
2216
 
2217
2217
 
2218
+ def ptp(x, axis=None, keepdims=False):
2219
+ x = convert_to_tensor(x)
2220
+ return tf.reduce_max(x, axis=axis, keepdims=keepdims) - tf.reduce_min(
2221
+ x, axis=axis, keepdims=keepdims
2222
+ )
2223
+
2224
+
2218
2225
  def _quantile(x, q, axis=None, method="linear", keepdims=False):
2219
2226
  # ref: tfp.stats.percentile
2220
2227
  # float64 is needed here and below, else we get the wrong index if the array
@@ -1382,6 +1382,18 @@ def prod(x, axis=None, keepdims=False, dtype=None):
1382
1382
  return x
1383
1383
 
1384
1384
 
1385
+ def ptp(x, axis=None, keepdims=False):
1386
+ x = convert_to_tensor(x)
1387
+ if axis is None:
1388
+ return x.max() - x.min()
1389
+ elif axis == ():
1390
+ return torch.zeros_like(x)
1391
+ else:
1392
+ return torch.amax(x, dim=axis, keepdim=keepdims) - torch.amin(
1393
+ x, dim=axis, keepdim=keepdims
1394
+ )
1395
+
1396
+
1385
1397
  def quantile(x, q, axis=None, method="linear", keepdims=False):
1386
1398
  x = convert_to_tensor(x)
1387
1399
  q = convert_to_tensor(q)
@@ -316,8 +316,8 @@ class AugMix(BaseImagePreprocessingLayer):
316
316
  def get_config(self):
317
317
  config = {
318
318
  "value_range": self.value_range,
319
- "num_chains": self.chain_depth,
320
- "chain_depth": self.num_chains,
319
+ "num_chains": self.num_chains,
320
+ "chain_depth": self.chain_depth,
321
321
  "factor": self.factor,
322
322
  "alpha": self.alpha,
323
323
  "all_ops": self.all_ops,
keras/src/ops/numpy.py CHANGED
@@ -5456,6 +5456,74 @@ def prod(x, axis=None, keepdims=False, dtype=None):
5456
5456
  return backend.numpy.prod(x, axis=axis, keepdims=keepdims, dtype=dtype)
5457
5457
 
5458
5458
 
5459
+ class Ptp(Operation):
5460
+ def __init__(self, axis=None, keepdims=False, *, name=None):
5461
+ super().__init__(name=name)
5462
+ self.axis = axis
5463
+ self.keepdims = keepdims
5464
+
5465
+ def call(self, x):
5466
+ return backend.numpy.ptp(
5467
+ x,
5468
+ axis=self.axis,
5469
+ keepdims=self.keepdims,
5470
+ )
5471
+
5472
+ def compute_output_spec(self, x):
5473
+ dtype = backend.standardize_dtype(x.dtype)
5474
+ return KerasTensor(
5475
+ reduce_shape(x.shape, axis=self.axis, keepdims=self.keepdims),
5476
+ dtype=dtype,
5477
+ )
5478
+
5479
+
5480
+ @keras_export(["keras.ops.ptp", "keras.ops.numpy.ptp"])
5481
+ def ptp(x, axis=None, keepdims=False):
5482
+ """Return the peak-to-peak (max - min) value of tensor elements
5483
+ over a given axis.
5484
+
5485
+ The peak-to-peak value is defined as the difference between the
5486
+ maximum and minimum values along the specified axis.
5487
+
5488
+ Args:
5489
+ x: Input tensor.
5490
+ axis: Axis or axes along which the peak-to-peak value is computed.
5491
+ The default, `axis=None`, will compute the peak-to-peak value
5492
+ over all elements in the input tensor.
5493
+ keepdims: If this is set to `True`, the axes which are reduced
5494
+ are left in the result as dimensions with size one.
5495
+
5496
+ Returns:
5497
+ A tensor containing the peak-to-peak values of `x` over the
5498
+ given axis or axes.
5499
+
5500
+ Examples:
5501
+ >>> x = keras.ops.array([[1., 3., 2.],
5502
+ ... [4., 0., 5.]])
5503
+
5504
+ >>> # Peak-to-peak over all elements
5505
+ >>> keras.ops.ptp(x)
5506
+ 5.0
5507
+
5508
+ >>> # Peak-to-peak along axis 1
5509
+ >>> keras.ops.ptp(x, axis=1)
5510
+ array([2., 5.], dtype=float32)
5511
+
5512
+ >>> # Peak-to-peak over multiple axes
5513
+ >>> x = keras.ops.reshape(x, (1, 2, 3))
5514
+ >>> keras.ops.ptp(x, axis=(1, 2))
5515
+ array([5.], dtype=float32)
5516
+
5517
+ >>> # Keep reduced dimensions
5518
+ >>> keras.ops.ptp(x, axis=2, keepdims=True)
5519
+ array([[[2.],
5520
+ [5.]]], dtype=float32)
5521
+ """
5522
+ if any_symbolic_tensors((x,)):
5523
+ return Ptp(axis=axis, keepdims=keepdims).symbolic_call(x)
5524
+ return backend.numpy.ptp(x, axis=axis, keepdims=keepdims)
5525
+
5526
+
5459
5527
  class Quantile(Operation):
5460
5528
  def __init__(
5461
5529
  self, axis=None, method="linear", keepdims=False, *, name=None
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.14.0.dev2026010904"
4
+ __version__ = "3.14.0.dev2026011104"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.14.0.dev2026010904
3
+ Version: 3.14.0.dev2026011104
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
45
45
  keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
46
46
  keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
47
47
  keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
48
- keras/_tf_keras/keras/ops/__init__.py,sha256=7d0c6H8jwNa0blmt29-IEeDfPgMjjey06ox0MzWE-yU,15526
48
+ keras/_tf_keras/keras/ops/__init__.py,sha256=-ywp71gN-DpkhtlIzzXpK0CG0CDIYW7L3TRnI1Tondo,15569
49
49
  keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
50
50
  keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
51
51
  keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
52
- keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=Q169WrV_QiEUts3bl6x4Gt02jsLgr542INWPP3EfOZQ,9588
52
+ keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=mIZ_5ZA-QOALvz9jkMwOTDw8iu2NxCGqwmZyJPA3vy4,9631
53
53
  keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
54
54
  keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
55
55
  keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -111,11 +111,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
111
111
  keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
112
112
  keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
113
113
  keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
114
- keras/ops/__init__.py,sha256=7d0c6H8jwNa0blmt29-IEeDfPgMjjey06ox0MzWE-yU,15526
114
+ keras/ops/__init__.py,sha256=-ywp71gN-DpkhtlIzzXpK0CG0CDIYW7L3TRnI1Tondo,15569
115
115
  keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
116
116
  keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
117
117
  keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
118
- keras/ops/numpy/__init__.py,sha256=Q169WrV_QiEUts3bl6x4Gt02jsLgr542INWPP3EfOZQ,9588
118
+ keras/ops/numpy/__init__.py,sha256=mIZ_5ZA-QOALvz9jkMwOTDw8iu2NxCGqwmZyJPA3vy4,9631
119
119
  keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
120
120
  keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
121
121
  keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
128
128
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
129
129
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
130
130
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
131
- keras/src/version.py,sha256=tsNR6gy4hHDPQuoyu3iW82PXsuS-DmxF7az_JYjvQfE,204
131
+ keras/src/version.py,sha256=3Hkuz1OUmn0PSndor9FgydHEB801BxkmY4jmwL90J_4,204
132
132
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
133
133
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
134
134
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -171,7 +171,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
171
171
  keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
172
172
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
173
173
  keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
174
- keras/src/backend/jax/numpy.py,sha256=SMa6dH1n7v04SsnEkevCWBqmzj7Ed8TmBASOSrEQIMM,38619
174
+ keras/src/backend/jax/numpy.py,sha256=_WCCYgFddNSs_1vd_65hxHgomKR3NHOsmbvTsfcddzc,38741
175
175
  keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
176
176
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
177
177
  keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
186
186
  keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
187
187
  keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
188
188
  keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
189
- keras/src/backend/numpy/numpy.py,sha256=e-083c_hHLI9FwqV0bpmS8n7s7HP5QNDP59sJF7UwRg,37651
189
+ keras/src/backend/numpy/numpy.py,sha256=Qu6Ia_EasEVt4UDOmvi6mx9HmFO2eva_E8NxSMnzr5E,37743
190
190
  keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
191
191
  keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
192
192
  keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
198
198
  keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
199
199
  keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
200
200
  keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
201
- keras/src/backend/openvino/numpy.py,sha256=oMKzAuAK0zRA5vgUiyttCm-fW4zvH450Hb8-hiEgSnY,99683
201
+ keras/src/backend/openvino/numpy.py,sha256=vntuKwGOeBnIw24ocaEE6rDfzTaqvw_EKDHgDvMkSeI,101312
202
202
  keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
203
203
  keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
204
204
  keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
@@ -211,7 +211,7 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
211
211
  keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
212
212
  keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
213
213
  keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
214
- keras/src/backend/tensorflow/numpy.py,sha256=C-dnf4O8ES8uqa_yV0ThX6B6PXeeQrYtnP2-GORG5UU,104426
214
+ keras/src/backend/tensorflow/numpy.py,sha256=wIfpnlqab7HudnV-XPUG4MLBIKUQhrxj92yLgiw1ZKI,104617
215
215
  keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
216
216
  keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
217
217
  keras/src/backend/tensorflow/rnn.py,sha256=99EJqbPdWddmG14zyjjhUZfU5zo9ObmslF_Mak7EmAs,34602
@@ -227,7 +227,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
227
227
  keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
228
228
  keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
229
229
  keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
230
- keras/src/backend/torch/numpy.py,sha256=Le-hZwyQ7cOc7jH9rJl3MiucxImDvV3q1YF7aPgKHtY,57355
230
+ keras/src/backend/torch/numpy.py,sha256=gvHviedkAoEaTax89wDqUrjbUSX1ndjxicHy-PLv2Nc,57668
231
231
  keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
232
232
  keras/src/backend/torch/rnn.py,sha256=J0vg7ikxBiv1FzEavgwT8IVCs0ceBcEv5LYyM5C2suA,25545
233
233
  keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
@@ -389,7 +389,7 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
389
389
  keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
390
390
  keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
391
391
  keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
392
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=74a--OGdbonqwdEpErAZ8EnS6aGNyktRcPYheTvTbvg,11221
392
+ keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=spvWYUG6GcPrYZgedaE8LIwTbYE2yvPg2Hwao9UAang,11221
393
393
  keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
394
394
  keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=Ga1Wewc0Pl9uLGUp3x6dxS2j4Lh-1o7TaOtxxo9kf5o,13853
395
395
  keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=4v8SeerBR5GMmoFpVA0mI_LPQ-GkcI-7a0JFWAMe5VY,10033
@@ -504,7 +504,7 @@ keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
504
504
  keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
505
505
  keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
506
506
  keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
507
- keras/src/ops/numpy.py,sha256=1Oh4-is73XoFZZNmRkXMsw-WzhIHf2A77lHevE38Q8Y,254763
507
+ keras/src/ops/numpy.py,sha256=H-OdMMkMsbVTfha0zceIMGQN8Nr2S5iNAT0oKwLjB10,256861
508
508
  keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
509
509
  keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
510
510
  keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
@@ -614,7 +614,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
614
614
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
615
615
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
616
616
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
617
- keras_nightly-3.14.0.dev2026010904.dist-info/METADATA,sha256=MiIhNCNtSh5ZoFKjqLL2KGw6W89x5-YG_QgIZDRPDp8,6339
618
- keras_nightly-3.14.0.dev2026010904.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
619
- keras_nightly-3.14.0.dev2026010904.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
620
- keras_nightly-3.14.0.dev2026010904.dist-info/RECORD,,
617
+ keras_nightly-3.14.0.dev2026011104.dist-info/METADATA,sha256=3xRReeKWXYi1l3DaBmHz-tEYVFvLF8_Zw2uTwhZ5-L0,6339
618
+ keras_nightly-3.14.0.dev2026011104.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
619
+ keras_nightly-3.14.0.dev2026011104.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
620
+ keras_nightly-3.14.0.dev2026011104.dist-info/RECORD,,