keras-nightly 3.14.0.dev2026010204__py3-none-any.whl → 3.14.0.dev2026010304__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1471,25 +1471,42 @@ def _can_use_flash_attention(query, key, value, bias, raise_error=False):
1471
1471
  # Only support at least Ampere
1472
1472
  if not check_compute_capability("8.0"):
1473
1473
  raise RuntimeError("Require at least Ampere arch to run")
1474
- # Check inputs layout
1474
+
1475
+ # Inspect inputs of `check_layout`
1475
1476
  check_layout_params = list(
1476
1477
  inspect.signature(check_layout).parameters.keys()
1477
1478
  )
1478
1479
  for known_param in ("query", "key", "value", "bias", "layout"):
1479
1480
  check_layout_params.remove(known_param)
1480
1481
  # Defaults to `None` when not specified.
1481
- kwargs = {key: None for key in check_layout_params}
1482
+ check_layout_kwargs = {key: None for key in check_layout_params}
1482
1483
  check_layout(
1483
- query, key, value, bias, layout=_normalize_layout("BTNH"), **kwargs
1484
- )
1485
- check_is_flash_attention(
1486
1484
  query,
1487
1485
  key,
1488
- _normalize_layout("BTNH"),
1489
- cudnn_version,
1490
- bias is not None,
1491
- is_training=False,
1486
+ value,
1487
+ bias,
1488
+ layout=_normalize_layout("BTNH"),
1489
+ **check_layout_kwargs,
1492
1490
  )
1491
+
1492
+ # Inspect inputs of `check_is_flash_attention`
1493
+ check_is_flash_attention_params = inspect.signature(
1494
+ check_is_flash_attention
1495
+ ).parameters
1496
+ check_is_flash_attention_kwargs = {
1497
+ "query": query,
1498
+ "key": key,
1499
+ "value": value,
1500
+ "layout": _normalize_layout("BTNH"),
1501
+ "cudnn_version": cudnn_version,
1502
+ "has_bias": bias is not None,
1503
+ "is_training": False,
1504
+ }
1505
+ # Remove unsupported arguments
1506
+ for param in list(check_is_flash_attention_kwargs.keys()):
1507
+ if param not in check_is_flash_attention_params:
1508
+ check_is_flash_attention_kwargs.pop(param)
1509
+ check_is_flash_attention(**check_is_flash_attention_kwargs)
1493
1510
  return True
1494
1511
  except:
1495
1512
  if raise_error:
@@ -29,7 +29,7 @@ class SeedGenerator:
29
29
  a local `StateGenerator` with either a deterministic or random initial
30
30
  state.
31
31
 
32
- Remark concerning the JAX backen: Note that the use of a local
32
+ Remark concerning the JAX backend: Note that the use of a local
33
33
  `StateGenerator` as seed argument is required for JIT compilation of
34
34
  RNG with the JAX backend, because the use of global state is not
35
35
  supported.
@@ -111,7 +111,7 @@ class SeedGenerator:
111
111
  return new_seed_value
112
112
 
113
113
  def get_config(self):
114
- return {"seed": self._initial_seed}
114
+ return {"seed": self._initial_seed, "name": self.name}
115
115
 
116
116
  @classmethod
117
117
  def from_config(cls, config):
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.14.0.dev2026010204"
4
+ __version__ = "3.14.0.dev2026010304"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.14.0.dev2026010204
3
+ Version: 3.14.0.dev2026010304
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -128,7 +128,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
128
128
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
129
129
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
130
130
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
131
- keras/src/version.py,sha256=qy2X7ZAxdvBc9hNdvShnkuP-3oxQHJY7Wac1BCYm_Hs,204
131
+ keras/src/version.py,sha256=g0zaAy91Gg1cY-Ey6cBCCgMseDoEXzoyCPMqyyGWO-g,204
132
132
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
133
133
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
134
134
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,7 +170,7 @@ keras/src/backend/jax/image.py,sha256=RiYIalbIaUQdDOGpDZUBk5KNsX94Xqg7iyXGATN9V5
170
170
  keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0iw,308
171
171
  keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
172
172
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
173
- keras/src/backend/jax/nn.py,sha256=mQAKxZMedpv6H4GSU_ofmWKpdCbLukJA9Ncx3kfRuVc,59605
173
+ keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
174
174
  keras/src/backend/jax/numpy.py,sha256=SMa6dH1n7v04SsnEkevCWBqmzj7Ed8TmBASOSrEQIMM,38619
175
175
  keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
176
176
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
@@ -536,7 +536,7 @@ keras/src/quantizers/quantizers.py,sha256=BDD3vi_15lmOY_ybI7oQDgINYlM9CF0QSQuP6k
536
536
  keras/src/quantizers/utils.py,sha256=i6e5MobXrQeKA6zFenjzUNoDDWRGL9bcfgdbE_-0IeM,672
537
537
  keras/src/random/__init__.py,sha256=BmXVYPzxbhADohoLtAEEzB3cesP7YBFDsp1qc6BWWlg,420
538
538
  keras/src/random/random.py,sha256=bUADZIVDuCghwIWTk0qBxXTxUdiNGWIdsRi8QJ3ePg4,17581
539
- keras/src/random/seed_generator.py,sha256=Iyx_YbLSaYusmCm2rOOOiDNU57x9-sU-xDf8U_YVpTE,5635
539
+ keras/src/random/seed_generator.py,sha256=-a0CQa7--Xt0g0nfdjLmUzlFElY9Y838VcCx05AcllY,5655
540
540
  keras/src/regularizers/__init__.py,sha256=GzK9FTKL2Xxd5H55GfG9gxDqt4eZoVHFWICgb2VW8qM,1731
541
541
  keras/src/regularizers/regularizers.py,sha256=urXNmMGuqHT7lOmS-yQPl3At3Ny-37Xlo389ErCg84A,11799
542
542
  keras/src/saving/__init__.py,sha256=vnrtfvnzW7Gwtxe5COhaMoEnVYB5iDe2YlqJ-DvqFIk,614
@@ -614,7 +614,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
614
614
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
615
615
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
616
616
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
617
- keras_nightly-3.14.0.dev2026010204.dist-info/METADATA,sha256=K8uCZBLeOjNnygheaY4ZM3Q076vdcfFxYlFTQpBvgSc,6339
618
- keras_nightly-3.14.0.dev2026010204.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
619
- keras_nightly-3.14.0.dev2026010204.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
620
- keras_nightly-3.14.0.dev2026010204.dist-info/RECORD,,
617
+ keras_nightly-3.14.0.dev2026010304.dist-info/METADATA,sha256=TRFo4Hl7iWbmC4VRcNIC6z3OZn-UvvN1VOu_XgjYt7I,6339
618
+ keras_nightly-3.14.0.dev2026010304.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
619
+ keras_nightly-3.14.0.dev2026010304.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
620
+ keras_nightly-3.14.0.dev2026010304.dist-info/RECORD,,