keras-nightly 3.14.0.dev2026010104__py3-none-any.whl → 3.14.0.dev2026012204__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. keras/_tf_keras/keras/dtype_policies/__init__.py +3 -0
  2. keras/_tf_keras/keras/ops/__init__.py +2 -0
  3. keras/_tf_keras/keras/ops/numpy/__init__.py +2 -0
  4. keras/_tf_keras/keras/quantizers/__init__.py +1 -0
  5. keras/dtype_policies/__init__.py +3 -0
  6. keras/ops/__init__.py +2 -0
  7. keras/ops/numpy/__init__.py +2 -0
  8. keras/quantizers/__init__.py +1 -0
  9. keras/src/backend/jax/nn.py +26 -9
  10. keras/src/backend/jax/numpy.py +10 -0
  11. keras/src/backend/numpy/numpy.py +15 -0
  12. keras/src/backend/openvino/numpy.py +338 -17
  13. keras/src/backend/tensorflow/numpy.py +24 -1
  14. keras/src/backend/tensorflow/rnn.py +17 -7
  15. keras/src/backend/torch/numpy.py +26 -0
  16. keras/src/backend/torch/rnn.py +28 -11
  17. keras/src/callbacks/orbax_checkpoint.py +75 -42
  18. keras/src/dtype_policies/__init__.py +2 -0
  19. keras/src/dtype_policies/dtype_policy.py +90 -1
  20. keras/src/layers/core/dense.py +122 -6
  21. keras/src/layers/core/einsum_dense.py +151 -7
  22. keras/src/layers/core/embedding.py +1 -1
  23. keras/src/layers/core/reversible_embedding.py +10 -1
  24. keras/src/layers/layer.py +5 -0
  25. keras/src/layers/preprocessing/feature_space.py +8 -4
  26. keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +2 -2
  27. keras/src/layers/preprocessing/image_preprocessing/center_crop.py +13 -15
  28. keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +3 -3
  29. keras/src/layers/preprocessing/image_preprocessing/resizing.py +10 -0
  30. keras/src/losses/losses.py +24 -0
  31. keras/src/models/model.py +18 -9
  32. keras/src/ops/image.py +106 -93
  33. keras/src/ops/numpy.py +138 -0
  34. keras/src/quantizers/__init__.py +2 -0
  35. keras/src/quantizers/awq.py +361 -0
  36. keras/src/quantizers/awq_config.py +140 -0
  37. keras/src/quantizers/awq_core.py +217 -0
  38. keras/src/quantizers/gptq.py +1 -2
  39. keras/src/quantizers/gptq_core.py +1 -1
  40. keras/src/quantizers/quantization_config.py +14 -0
  41. keras/src/quantizers/quantizers.py +61 -52
  42. keras/src/random/seed_generator.py +2 -2
  43. keras/src/saving/orbax_util.py +50 -0
  44. keras/src/saving/saving_api.py +37 -14
  45. keras/src/utils/jax_layer.py +69 -31
  46. keras/src/utils/module_utils.py +11 -0
  47. keras/src/utils/tracking.py +5 -5
  48. keras/src/version.py +1 -1
  49. {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/METADATA +1 -1
  50. {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/RECORD +52 -48
  51. {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/WHEEL +1 -1
  52. {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/top_level.txt +0 -0
@@ -11,6 +11,7 @@ from keras.src.api_export import keras_export
11
11
  from keras.src.backend.common.variables import is_float_dtype
12
12
  from keras.src.backend.common.variables import standardize_dtype
13
13
  from keras.src.layers.layer import Layer
14
+ from keras.src.random.seed_generator import draw_seed
14
15
  from keras.src.saving import serialization_lib
15
16
  from keras.src.utils import jax_utils
16
17
  from keras.src.utils import tracking
@@ -244,15 +245,9 @@ class JaxLayer(Layer):
244
245
  f" Tensorflow backend. Current backend: {backend.backend()}"
245
246
  )
246
247
 
247
- if init_fn is None and params is None and state is None:
248
- raise ValueError(
249
- "`init_fn`, `params` and `state` cannot all be `None`."
250
- )
251
-
252
248
  super().__init__(**kwargs)
253
249
  self.call_fn = call_fn
254
250
  self.init_fn = init_fn
255
- self.seed_generator = backend.random.SeedGenerator(seed)
256
251
  self.tracked_params = self._create_variables(params, trainable=True)
257
252
  self.tracked_state = self._create_variables(state, trainable=False)
258
253
  if self.params is not None or self.state is not None:
@@ -264,7 +259,25 @@ class JaxLayer(Layer):
264
259
  {"params", "state", "rng", "inputs", "training"},
265
260
  {"inputs"},
266
261
  )
267
- self.has_state = "state" in self.call_fn_arguments
262
+ self.call_fn_has_params = "params" in self.call_fn_arguments
263
+ self.call_fn_has_state = "state" in self.call_fn_arguments
264
+ call_fn_has_rng = "rng" in self.call_fn_arguments
265
+
266
+ if call_fn_has_rng:
267
+ self.seed_generator = backend.random.SeedGenerator(seed)
268
+ else:
269
+ self.seed_generator = None
270
+
271
+ if (
272
+ init_fn is None
273
+ and params is None
274
+ and state is None
275
+ and (self.call_fn_has_params or self.call_fn_has_state)
276
+ ):
277
+ raise ValueError(
278
+ "`init_fn`, `params` and `state` cannot all be `None` when "
279
+ "`call_fn` takes a `params` or a `state` argument."
280
+ )
268
281
 
269
282
  if init_fn:
270
283
  self.init_fn_arguments = self._validate_signature(
@@ -428,37 +441,58 @@ class JaxLayer(Layer):
428
441
  flat_variables, _ = jax.tree_util.tree_flatten(variables)
429
442
  return flat_variables
430
443
 
444
+ def _get_init_seed(self):
445
+ """
446
+ Returns a single seed as a tensor of shape [2].
447
+
448
+ Call this within `_get_init_rng()` to obtain a new seed.
449
+
450
+ Returns:
451
+ A native tensor of shape [2] and the backend dtype for seeds.
452
+ """
453
+ # Use the global SeedGenerator.
454
+ return draw_seed(None)
455
+
431
456
  def _get_init_rng(self):
432
457
  """
433
- Returns a key in form of the backend array of size 2 dtype uint32
434
- to pass to `init_fn`.
458
+ Returns a seed or seeds to pass as the `rng` argument of `init_fn`.
459
+
460
+ By default, this returns a single seed. Override this to return a
461
+ different structure. Overrides should use `self._get_init_seed()` to
462
+ obtain new seeds.
463
+
464
+ Returns:
465
+ RNG key or structure of keys as tensors of shape [2] and the backend
466
+ dtype for seeds.
467
+ """
468
+ return self._get_init_seed()
469
+
470
+ def _get_call_seed(self):
471
+ """
472
+ Returns a single seed as a tensor of shape [2].
435
473
 
436
- By default, this returns a Jax or TF array of size 2 by calling
437
- `self.seed_generator.next()`. Override this to return a different
438
- structure.
474
+ Call this within `_get_call_rng()` to obtain a new seed.
439
475
 
440
476
  Returns:
441
- a key as an Jax or TF array of size 2 dtype uint32 will be passed
442
- as the `rng` argument of `init_fn`.
477
+ A native tensor of shape [2] and the backend dtype for seeds.
443
478
  """
444
479
  return self.seed_generator.next()
445
480
 
446
481
  def _get_call_rng(self, training):
447
482
  """
448
- Returns a key in form of the backend array of size 2 dtype uint32
449
- to pass to `call_fn`.
483
+ Returns a seed or seeds to pass as the `rng` argument of `call_fn`.
450
484
 
451
- By default, this returns a Jax or TF array of size 2 by calling
452
- `self.seed_generator.next()` when `training` is `True`, and `None` when
453
- `training` is `False`. Override this to return a different structure or
454
- to pass RNGs in inference mode too.
485
+ By default, this returns a seed when `training` is `True`, and `None`
486
+ when `training` is `False`. Override this to return a different
487
+ structure or to pass seeds in inference mode too. Overrides should use
488
+ `self._get_call_seed()` to obtain seeds.
455
489
 
456
490
  Returns:
457
- a key as an Jax or TF array of size 2 dtype uint32 will be passed
458
- as the `rng` argument of `call_fn`.
491
+ RNG key or structure of keys as tensors of shape [2] and the backend
492
+ dtype for seeds.
459
493
  """
460
494
  if training:
461
- return self.seed_generator.next()
495
+ return self._get_call_seed()
462
496
  else:
463
497
  return None
464
498
 
@@ -492,7 +526,7 @@ class JaxLayer(Layer):
492
526
  init_args.append(True)
493
527
 
494
528
  init_result = self.init_fn(*init_args)
495
- if self.has_state:
529
+ if self.call_fn_has_state:
496
530
  init_params, init_state = init_result
497
531
  else:
498
532
  init_params, init_state = init_result, None
@@ -503,7 +537,11 @@ class JaxLayer(Layer):
503
537
  self.tracked_state = self._create_variables(init_state, trainable=False)
504
538
 
505
539
  def build(self, input_shape):
506
- if self.params is None and self.state is None:
540
+ if (
541
+ self.params is None
542
+ and self.state is None
543
+ and (self.call_fn_has_params or self.call_fn_has_state)
544
+ ):
507
545
  self._initialize_weights(input_shape)
508
546
 
509
547
  if backend.backend() == "tensorflow":
@@ -578,7 +616,7 @@ class JaxLayer(Layer):
578
616
  variable.assign(value)
579
617
 
580
618
  def call_with_fn(fn):
581
- if self.has_state:
619
+ if self.call_fn_has_state:
582
620
  predictions, new_state = fn(*call_args)
583
621
  jax.tree_util.tree_map(
584
622
  assign_state_to_variable, new_state, self.state
@@ -711,12 +749,12 @@ class FlaxLayer(JaxLayer):
711
749
  **kwargs,
712
750
  ):
713
751
  # Late import to only require Flax when this is used.
714
- from flax.core import scope as flax_scope
752
+ from flax.linen import DenyList
715
753
 
716
754
  self.module = module
717
755
  self.method = method
718
756
 
719
- apply_mutable = flax_scope.DenyList(["params"])
757
+ apply_mutable = DenyList(["params"])
720
758
 
721
759
  def apply_with_training(params, state, rng, inputs, training):
722
760
  return self.module.apply(
@@ -801,13 +839,13 @@ class FlaxLayer(JaxLayer):
801
839
 
802
840
  def _get_init_rng(self):
803
841
  return {
804
- "params": self.seed_generator.next(),
805
- "dropout": self.seed_generator.next(),
842
+ "params": self._get_init_seed(),
843
+ "dropout": self._get_init_seed(),
806
844
  }
807
845
 
808
846
  def _get_call_rng(self, training):
809
847
  if training:
810
- return {"dropout": self.seed_generator.next()}
848
+ return {"dropout": self._get_call_seed()}
811
849
  else:
812
850
  return {}
813
851
 
@@ -44,15 +44,26 @@ class OrbaxLazyModule(LazyModule):
44
44
  try:
45
45
  parent_module = importlib.import_module("orbax.checkpoint")
46
46
  self.module = parent_module.v1
47
+ self.parent_module = parent_module
47
48
  except ImportError:
48
49
  raise ImportError(self.import_error_msg)
49
50
 
51
+ def __getattr__(self, name):
52
+ if name == "_api_export_path":
53
+ raise AttributeError
54
+ if self.module is None:
55
+ self.initialize()
56
+ if name == "multihost":
57
+ return self.parent_module.multihost
58
+ return getattr(self.module, name)
59
+
50
60
 
51
61
  tensorflow = LazyModule("tensorflow")
52
62
  gfile = LazyModule("tensorflow.io.gfile", pip_name="tensorflow")
53
63
  tensorflow_io = LazyModule("tensorflow_io")
54
64
  scipy = LazyModule("scipy")
55
65
  jax = LazyModule("jax")
66
+ h5py = LazyModule("h5py")
56
67
  torch_xla = LazyModule(
57
68
  "torch_xla",
58
69
  import_error_msg=(
@@ -31,13 +31,13 @@ def no_automatic_dependency_tracking(fn):
31
31
  class Tracker:
32
32
  """Attribute tracker, used for e.g. Variable tracking.
33
33
 
34
- Monitors certain attribute types
35
- and put them in appropriate lists in case of a match.
34
+ Monitors certain attribute types and places matching
35
+ objects into user provided tracking collections.
36
36
 
37
37
  Also passively tracks certain mutable collections
38
- (dict, list) so that items added to them later
39
- still get tracked. This is done by wrapping these
40
- collections into an equivalent, tracking-aware object.
38
+ (e.g. dict and list) ensuring that items added after
39
+ initialization are still tracked. This is done by wrapping
40
+ these collections in tracking-aware proxy objects.
41
41
 
42
42
  Example:
43
43
 
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.14.0.dev2026010104"
4
+ __version__ = "3.14.0.dev2026012204"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.14.0.dev2026010104
3
+ Version: 3.14.0.dev2026012204
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -35,7 +35,7 @@ keras/_tf_keras/keras/datasets/mnist/__init__.py,sha256=tCUxwxWlcOGsTQzgysuC2kVv
35
35
  keras/_tf_keras/keras/datasets/reuters/__init__.py,sha256=aY43YfZVbCRMIRNfycxdKPDjq8BW8MZSA_fYQjonuY0,330
36
36
  keras/_tf_keras/keras/distillation/__init__.py,sha256=7pnduBNlDNCQFxm8yhGeYw8jKjOhK2l-F3iOjIFCmNk,497
37
37
  keras/_tf_keras/keras/distribution/__init__.py,sha256=sPbRKFpWd8mZypqWAId06KJzznVpkT_4Ae5QTcBJxa8,1063
38
- keras/_tf_keras/keras/dtype_policies/__init__.py,sha256=6Qd7KpNMMtqO5FV__5Vte12ig0fK0_j3jKCF6nQUarI,877
38
+ keras/_tf_keras/keras/dtype_policies/__init__.py,sha256=c8mnzGQbn3b5EQ6v6zBnrkgs9EFcrPRi5Zv4TEVcolg,969
39
39
  keras/_tf_keras/keras/export/__init__.py,sha256=Qtde9Kh4AUm-pBmKL4L90ooJxo5EFVEW8i7LYxA_mVQ,194
40
40
  keras/_tf_keras/keras/initializers/__init__.py,sha256=Bg5r2XRraWXldFSlWNu1kNnp0g1sQt9vfcT8fvmXaeg,3371
41
41
  keras/_tf_keras/keras/layers/__init__.py,sha256=w0Av9SmIfUOFvKiDXV5t7IWfpoagNwLX2hgg3C-pTSs,16237
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
45
45
  keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
46
46
  keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
47
47
  keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
48
- keras/_tf_keras/keras/ops/__init__.py,sha256=7d0c6H8jwNa0blmt29-IEeDfPgMjjey06ox0MzWE-yU,15526
48
+ keras/_tf_keras/keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
49
49
  keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
50
50
  keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
51
51
  keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
52
- keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=Q169WrV_QiEUts3bl6x4Gt02jsLgr542INWPP3EfOZQ,9588
52
+ keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
53
53
  keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
54
54
  keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
55
55
  keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -57,7 +57,7 @@ keras/_tf_keras/keras/preprocessing/__init__.py,sha256=8gjf16CnMiBJFp2E05iRJaHze
57
57
  keras/_tf_keras/keras/preprocessing/image/__init__.py,sha256=MEyK0JU7piXc1ql8ZTtHJuC907Q6DV5uOQqpivKKTn4,1656
58
58
  keras/_tf_keras/keras/preprocessing/sequence/__init__.py,sha256=TymwLKMEwqR6JhVFDhU80Hf8GVMMwg2vD6-pJqh5NuA,479
59
59
  keras/_tf_keras/keras/preprocessing/text/__init__.py,sha256=g3ej5_e86BY1AhlQwjalIQq_xgCMmCcDMtsh27diUNw,543
60
- keras/_tf_keras/keras/quantizers/__init__.py,sha256=S5jh1Gir4TVjUwFcpnQZta9gH6hxkuLlsGmVRPItRVs,1585
60
+ keras/_tf_keras/keras/quantizers/__init__.py,sha256=kDf-LP5ola_TxzeClJTqSS42k4mzF-BcP5zh7Xh7miE,1652
61
61
  keras/_tf_keras/keras/random/__init__.py,sha256=qDZQXrw0oYVNc2KTmcmcgon61lQJBOXqF-6PMInBvec,763
62
62
  keras/_tf_keras/keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b4,923
63
63
  keras/_tf_keras/keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
@@ -101,7 +101,7 @@ keras/datasets/mnist/__init__.py,sha256=tCUxwxWlcOGsTQzgysuC2kVvX01zkGOa9ABEb1Ek
101
101
  keras/datasets/reuters/__init__.py,sha256=aY43YfZVbCRMIRNfycxdKPDjq8BW8MZSA_fYQjonuY0,330
102
102
  keras/distillation/__init__.py,sha256=7pnduBNlDNCQFxm8yhGeYw8jKjOhK2l-F3iOjIFCmNk,497
103
103
  keras/distribution/__init__.py,sha256=sPbRKFpWd8mZypqWAId06KJzznVpkT_4Ae5QTcBJxa8,1063
104
- keras/dtype_policies/__init__.py,sha256=6Qd7KpNMMtqO5FV__5Vte12ig0fK0_j3jKCF6nQUarI,877
104
+ keras/dtype_policies/__init__.py,sha256=c8mnzGQbn3b5EQ6v6zBnrkgs9EFcrPRi5Zv4TEVcolg,969
105
105
  keras/export/__init__.py,sha256=Qtde9Kh4AUm-pBmKL4L90ooJxo5EFVEW8i7LYxA_mVQ,194
106
106
  keras/initializers/__init__.py,sha256=Bg5r2XRraWXldFSlWNu1kNnp0g1sQt9vfcT8fvmXaeg,3371
107
107
  keras/layers/__init__.py,sha256=mteqKdCYQq1NWH-XOYoy1B2uJFmJkG2XPHJIOnUjLOg,16069
@@ -111,24 +111,24 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
111
111
  keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
112
112
  keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
113
113
  keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
114
- keras/ops/__init__.py,sha256=7d0c6H8jwNa0blmt29-IEeDfPgMjjey06ox0MzWE-yU,15526
114
+ keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
115
115
  keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
116
116
  keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
117
117
  keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
118
- keras/ops/numpy/__init__.py,sha256=Q169WrV_QiEUts3bl6x4Gt02jsLgr542INWPP3EfOZQ,9588
118
+ keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
119
119
  keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
120
120
  keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
121
121
  keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
122
122
  keras/preprocessing/__init__.py,sha256=N-_Rr6pYag2H_kEn6imVuol_hNL3NL65YL_zvdOV1mU,580
123
123
  keras/preprocessing/image/__init__.py,sha256=AmkgEp_-MvtIefySVEXv1IQ5_LyojjBfnIlRcUvNc40,451
124
124
  keras/preprocessing/sequence/__init__.py,sha256=zTMj_m6LWipe_hVq6SjE4JPj7eYKuUOZyh45g756cFg,196
125
- keras/quantizers/__init__.py,sha256=S5jh1Gir4TVjUwFcpnQZta9gH6hxkuLlsGmVRPItRVs,1585
125
+ keras/quantizers/__init__.py,sha256=kDf-LP5ola_TxzeClJTqSS42k4mzF-BcP5zh7Xh7miE,1652
126
126
  keras/random/__init__.py,sha256=qDZQXrw0oYVNc2KTmcmcgon61lQJBOXqF-6PMInBvec,763
127
127
  keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b4,923
128
128
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
129
129
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
130
130
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
131
- keras/src/version.py,sha256=N0ASH1QtgbgwTXyqGB8RDSrVmB7O5POnjkU24zM5ho0,204
131
+ keras/src/version.py,sha256=Vic_aSfTjaFpUnuLrDlE8M6IpjKMn3-PBqqD8ygIOls,204
132
132
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
133
133
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
134
134
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,8 +170,8 @@ keras/src/backend/jax/image.py,sha256=RiYIalbIaUQdDOGpDZUBk5KNsX94Xqg7iyXGATN9V5
170
170
  keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0iw,308
171
171
  keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
172
172
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
173
- keras/src/backend/jax/nn.py,sha256=mQAKxZMedpv6H4GSU_ofmWKpdCbLukJA9Ncx3kfRuVc,59605
174
- keras/src/backend/jax/numpy.py,sha256=SMa6dH1n7v04SsnEkevCWBqmzj7Ed8TmBASOSrEQIMM,38619
173
+ keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
174
+ keras/src/backend/jax/numpy.py,sha256=5C-obBCsAdY288BhjtxDIccqXDDle5eaP2yt7jfeUy8,38869
175
175
  keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
176
176
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
177
177
  keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
186
186
  keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
187
187
  keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
188
188
  keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
189
- keras/src/backend/numpy/numpy.py,sha256=e-083c_hHLI9FwqV0bpmS8n7s7HP5QNDP59sJF7UwRg,37651
189
+ keras/src/backend/numpy/numpy.py,sha256=W2P2A1_Y54xR07xmR-T4ALrqJA_SliDwmoOALeI37P0,38070
190
190
  keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
191
191
  keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
192
192
  keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
198
198
  keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
199
199
  keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
200
200
  keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
201
- keras/src/backend/openvino/numpy.py,sha256=4VMuzxuCd2ig5QA9npSfn47bHxVAmWK920mOEvd9y-8,97883
201
+ keras/src/backend/openvino/numpy.py,sha256=Dc3tdpAEmNN78c0Q0lI5utFfDWt-hZiH4IChE52UhOU,108532
202
202
  keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
203
203
  keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
204
204
  keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
@@ -211,10 +211,10 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
211
211
  keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
212
212
  keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
213
213
  keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
214
- keras/src/backend/tensorflow/numpy.py,sha256=C-dnf4O8ES8uqa_yV0ThX6B6PXeeQrYtnP2-GORG5UU,104426
214
+ keras/src/backend/tensorflow/numpy.py,sha256=I5S0igFo2Mq3Q0SodRyNggip9F_gwWfch6TyvVbQj_E,105076
215
215
  keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
216
216
  keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
217
- keras/src/backend/tensorflow/rnn.py,sha256=99EJqbPdWddmG14zyjjhUZfU5zo9ObmslF_Mak7EmAs,34602
217
+ keras/src/backend/tensorflow/rnn.py,sha256=JbOSpt48cm612c7YwiTYOQCQsNXyI_6QeRhtUn8qEvM,34829
218
218
  keras/src/backend/tensorflow/sparse.py,sha256=a_FZcJY-wPl1x4vY0T7j-GORa4SAuMjNEToJLmK0daQ,32247
219
219
  keras/src/backend/tensorflow/tensorboard.py,sha256=e7pXicuMfQjuCmq1wOmixWhWt2EbjLMBo_JPAqCbZRk,504
220
220
  keras/src/backend/tensorflow/trackable.py,sha256=QZn0JvpBJ7Kx4e6zM2IVIWz9ADcWDB-dHN6vjoQBa9Q,1993
@@ -227,9 +227,9 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
227
227
  keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
228
228
  keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
229
229
  keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
230
- keras/src/backend/torch/numpy.py,sha256=Le-hZwyQ7cOc7jH9rJl3MiucxImDvV3q1YF7aPgKHtY,57355
230
+ keras/src/backend/torch/numpy.py,sha256=zZDkUDmph1c_D0VOsSzkYjAj4TKln7laDxypVRBsZ6o,58072
231
231
  keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
232
- keras/src/backend/torch/rnn.py,sha256=J0vg7ikxBiv1FzEavgwT8IVCs0ceBcEv5LYyM5C2suA,25545
232
+ keras/src/backend/torch/rnn.py,sha256=MJIVbHKsUA2dZm4Gu2NvRxlrFCWeWSxSZRmFxSsC3Zg,26041
233
233
  keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
234
234
  keras/src/backend/torch/optimizers/__init__.py,sha256=yvqiyKgMEh-nGpacssdpsMySujyYB6lPy-Wil3onXvo,78
235
235
  keras/src/backend/torch/optimizers/torch_adadelta.py,sha256=iPjGHvD7q_VD0WaMNxuNcvz8uIWd0smRyEMzMqryUD4,1672
@@ -254,7 +254,7 @@ keras/src/callbacks/lambda_callback.py,sha256=q-nNr_k7MyYRP3HIetFsutcLkq78cUYxDD
254
254
  keras/src/callbacks/learning_rate_scheduler.py,sha256=II0SLxltUX3omRbGTYffd9KTWLRKtzW57SDRe70_t7E,2965
255
255
  keras/src/callbacks/model_checkpoint.py,sha256=Jt2mMKHKx0isrQnhiHADDOmwu72J594m93PBHy-zpV8,18570
256
256
  keras/src/callbacks/monitor_callback.py,sha256=-QBKqkKJ7Rg6L40Q80IScpvybmLoodLWcJoAgnTe_c4,4184
257
- keras/src/callbacks/orbax_checkpoint.py,sha256=cJCC620Ok8t0gyjt2U69wP8EXM9zdqYuf7L1oDxLOK0,11285
257
+ keras/src/callbacks/orbax_checkpoint.py,sha256=hG_OClsm4lYQVTyCLWLJqgdYl6OXtFjz0J6z5eUtsmY,12529
258
258
  keras/src/callbacks/progbar_logger.py,sha256=BqddKoOyc8vxxtKriq5QD3n5JhVPUxkuWF2u1UlCriQ,3104
259
259
  keras/src/callbacks/reduce_lr_on_plateau.py,sha256=isJ9EzVo8jIu-_kWTFHpM_gaI5PbHTcUBM0keR9FRHA,4766
260
260
  keras/src/callbacks/remote_monitor.py,sha256=VDbNzCdddCDe_ZoeVvwV50oJkwOehhT_IDDYD8LzFOg,2727
@@ -278,8 +278,8 @@ keras/src/distillation/distillation_loss.py,sha256=3hhDKWhNHoLMa-EaBbJfa0flS6QoU
278
278
  keras/src/distillation/distiller.py,sha256=GI_yJ5RTgdXPEZoQwNe4Ds04UXP7obB0tJTqmUbTOa4,22984
279
279
  keras/src/distribution/__init__.py,sha256=pseLHx387oTmXROr95tU7kNWjPL8-JB4kZs8nUHsOiU,718
280
280
  keras/src/distribution/distribution_lib.py,sha256=zZbKxdL0sHJXSJNCd02qG3sVrq1F3x_JPota9Jlk6iM,34542
281
- keras/src/dtype_policies/__init__.py,sha256=BxFBq8xa6Cb-LndCZhIACX1ubym7Ky8tUQ8rxIVdeKg,3632
282
- keras/src/dtype_policies/dtype_policy.py,sha256=0gE6tGKUDRcrNCi-4_UU2sMFO_zMc8QGd3gzPBI-Rfs,16005
281
+ keras/src/dtype_policies/__init__.py,sha256=8Ju8ICwTDdBfBrSoL6kmMzrcgMwMg6dPa1UPMDZKTqc,3717
282
+ keras/src/dtype_policies/dtype_policy.py,sha256=3e2J589g0NUALz0LycSb3anh47g5LWIgn0jKR26B-Cs,19143
283
283
  keras/src/dtype_policies/dtype_policy_map.py,sha256=DqDYlssUGSiTqawPpaVRvR6ljYD8DJrFERCxXVVFvBE,10840
284
284
  keras/src/export/__init__.py,sha256=wQfjXEPN1YO2n0gz-7Eme0y_vq86s3SEWkZgs534sns,366
285
285
  keras/src/export/export_utils.py,sha256=DpfA5yI37gaMjyESxGTlf7aQ8FhYp0u8LQKxyKiFaoU,5585
@@ -295,7 +295,7 @@ keras/src/initializers/initializer.py,sha256=kNAyRA8CzBdtknT6ZUt5XIO2_Z9NzpN119C
295
295
  keras/src/initializers/random_initializers.py,sha256=AuUeQ3YZGakDKTCs8njQLhozE6iWYHwP6-VstnEMOaQ,23631
296
296
  keras/src/layers/__init__.py,sha256=s7jrOesk0YMUKCxe5BTdQ5cxqrnkYbA-GWRoCXuqpsg,12103
297
297
  keras/src/layers/input_spec.py,sha256=cjBUBmgdneJfhvbI-WLqSapJInCsxliWBygyfMWgkj4,10010
298
- keras/src/layers/layer.py,sha256=KOgSWAzj4fe3_ohIKPFStMw3r20ED9vzqYTq_e-SeLw,79436
298
+ keras/src/layers/layer.py,sha256=Nbs9ke8ecAhTffiHyZ2cJUIt-3yaJb5fcjXKJAnOCHE,79634
299
299
  keras/src/layers/activations/__init__.py,sha256=MhPBye8WWLSf_iDel3BuuqYk4nx6Sym8s4dZKb1KTqQ,272
300
300
  keras/src/layers/activations/activation.py,sha256=c_Q5gUjCTD70a9-I1m5eEPcrWPpE-5iAlkDMt4lxRgA,1287
301
301
  keras/src/layers/activations/elu.py,sha256=jtszCDe6Cs_L3jITK3ascKouqgYUxdbGvT60kxQbcHM,840
@@ -324,14 +324,14 @@ keras/src/layers/convolutional/depthwise_conv2d.py,sha256=rnCd_S3UVeNdVotjKW1Wlo
324
324
  keras/src/layers/convolutional/separable_conv1d.py,sha256=vL5qzdaSOOTgyn1A6y9IZZbQOEeB6FedPk9JJI5wqSY,6452
325
325
  keras/src/layers/convolutional/separable_conv2d.py,sha256=ZkLOnA6l5UV3GuJufwlOHMOm1S-xkt6sdF-qmP4PDjw,6533
326
326
  keras/src/layers/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
327
- keras/src/layers/core/dense.py,sha256=pCNxqIhUFZpAGicg7ls8fN2FunM-RP02CwSsCO22MfA,36378
328
- keras/src/layers/core/einsum_dense.py,sha256=tOvrYyRWSGh1JxIxpPgCFRydqdIht82WUznM9BEqe08,64507
329
- keras/src/layers/core/embedding.py,sha256=V-ZiIsL0uMpuv9nBqF4PwilU0ajsjnuN3XbBjy29kFM,22639
327
+ keras/src/layers/core/dense.py,sha256=oe0vpcYAMeulF39TrQAeSm-PrNafrpqj6GPlOFQ-eq4,40477
328
+ keras/src/layers/core/einsum_dense.py,sha256=XM58eGQjLSSPIbOdzFmcehJ12eBSGPdRnZ04Qjzwvqs,69554
329
+ keras/src/layers/core/embedding.py,sha256=88x_dkaDlGD-3WtGJf58Us68q2ub8SY36ln9Cz3G75Q,22646
330
330
  keras/src/layers/core/identity.py,sha256=o0gLHlXL7eNJEbXIgIsgBsZX97K6jN9n3qPXprkXQ9Y,848
331
331
  keras/src/layers/core/input_layer.py,sha256=RQn1KHtUd6fPBPL9rs46X8KHmr1eGo7moLg8U5tlVl0,8168
332
332
  keras/src/layers/core/lambda_layer.py,sha256=Wplek4hOwh_rwXz4_bpz0pXzKe26ywz52glh5uD0l4w,9272
333
333
  keras/src/layers/core/masking.py,sha256=g-RrZ_P50Surh_KGlZQwy2kPNLsop0F8voU4SG2MQkw,2856
334
- keras/src/layers/core/reversible_embedding.py,sha256=vHQYejplZs7o-1D8Jcc1hSQKmIwNZub2-ZQKRHEbnJA,15810
334
+ keras/src/layers/core/reversible_embedding.py,sha256=nDQ7b-xi9YlHxYZv0Vif0qr3bfu3LAWR_d1KrDsMawI,16155
335
335
  keras/src/layers/core/wrapper.py,sha256=KIdDBuk24V9rAn97-HUUKQ0JMx9Eyd0q9W4qQFaYNt8,1509
336
336
  keras/src/layers/merging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
337
337
  keras/src/layers/merging/add.py,sha256=icbh3RwZ3QUP3bFNCi7GbrHj2hFdKu1Dsv8djSa13co,2150
@@ -376,7 +376,7 @@ keras/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5
376
376
  keras/src/layers/preprocessing/category_encoding.py,sha256=RjgVkFi9og1hHNmDu2DuKVQOO2Yd-LSXKJDSSzG876M,6927
377
377
  keras/src/layers/preprocessing/data_layer.py,sha256=5bO2Pjs-mOzn4z5OnwBbbF3shOczLmimYVym9UL0Mcc,5766
378
378
  keras/src/layers/preprocessing/discretization.py,sha256=vsBQbIqlore_NlU0LvtqiDriCXguD_CZH7tK91LBhGM,14056
379
- keras/src/layers/preprocessing/feature_space.py,sha256=-cB4tpfk2RovCUJ3AXMsNPtVfUvfqvExqMPyOa6W3aA,30373
379
+ keras/src/layers/preprocessing/feature_space.py,sha256=YcHzD8C5eqUDRF8khLapwc8qCmbJSfix16KyzqEu1II,30568
380
380
  keras/src/layers/preprocessing/hashed_crossing.py,sha256=uwOTKPsv2UweHuGiF4V5HFRgYnjP8N0_S6qT3JP5KeQ,8481
381
381
  keras/src/layers/preprocessing/hashing.py,sha256=3k1L_2d_bROHxZNjDbfURRBSFzFBIHFj0tEXCobcS8w,11188
382
382
  keras/src/layers/preprocessing/index_lookup.py,sha256=JPtnH-dbzLW72F8T5sZqsc3_aQ9Ml79RWQzTjhpbXq4,42991
@@ -389,10 +389,10 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
389
389
  keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
390
390
  keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
391
391
  keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
392
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=74a--OGdbonqwdEpErAZ8EnS6aGNyktRcPYheTvTbvg,11221
392
+ keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=spvWYUG6GcPrYZgedaE8LIwTbYE2yvPg2Hwao9UAang,11221
393
393
  keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
394
394
  keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=Ga1Wewc0Pl9uLGUp3x6dxS2j4Lh-1o7TaOtxxo9kf5o,13853
395
- keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=4v8SeerBR5GMmoFpVA0mI_LPQ-GkcI-7a0JFWAMe5VY,10033
395
+ keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=Pi9GlYTo7kZbfZpfF1FUwkwi0y9v8PcQYQAurixHaeU,9965
396
396
  keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=reDSKzm15J7TR5TLrx92mWE-os2H6X0jY2Pd_ra_i_E,7877
397
397
  keras/src/layers/preprocessing/image_preprocessing/equalization.py,sha256=Q6URzVSxTxcd166oNFJsVlNO3x8EUMS0plqthDwKzu4,8659
398
398
  keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=BTQaWjx-bMnwtsQDQLmeohs_VQECu1WZzPmi2PkDYHs,3435
@@ -401,7 +401,7 @@ keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=upDdEg
401
401
  keras/src/layers/preprocessing/image_preprocessing/random_brightness.py,sha256=Ix01T1xsbf_QknyWcSlK1SxVPvFNtHw20xmWHhuQPZI,6083
402
402
  keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=N6rCXPhWCEh-xWqC9ETYwrbJ2f6lIqyCR9Z18uV3xd0,4896
403
403
  keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=rbQvLhCPPXyAaYfcMiVzyN0yvfFrcfbRbkVruO9o38U,9464
404
- keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=GvB5iQngY-4v99mGS9dXOlGTX4GB6Z7ZvDqW1TKJR5A,5474
404
+ keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=eJ7aakES1YfSv1JXjv8ZT3ltTqgG6Oo1_XU6BopKDng,5470
405
405
  keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=y2iHw-xbSV11uK4D34VT9QEkpvKOk-D-TmVSCZUjDn0,10553
406
406
  keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=fIfPe-906LUhTUDpiuPwM5oEOJ_1UQ9BhMHBFpItcGM,10208
407
407
  keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=O7f44V805Wta9RMZyks4sl-LViglTCdp7_n-qj_nWbI,11233
@@ -418,7 +418,7 @@ keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=4R
418
418
  keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=uEr1iCCAHdpIhAVz2VZh7u82NEYtiM9eMIhvvIQyA9A,15020
419
419
  keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=1l1Oufpsu54SunSrrBb-nq6cM9ANehgHJxWx40sTPig,14932
420
420
  keras/src/layers/preprocessing/image_preprocessing/random_zoom.py,sha256=DBDSep-CGk-lsWP0gwP89SQR2k8-ZjYqKKj0rf-KWWA,16472
421
- keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=7aNl_4UENFadtTPehP9KxjJk2FD7TRLeTiL27FZ6muQ,11968
421
+ keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=N3_Mw4KA-DC7R0zBNeRnCQWvzKa8Bpg1jRooUJSZLq0,12241
422
422
  keras/src/layers/preprocessing/image_preprocessing/solarization.py,sha256=URBAHjCIRs8mlb1RCt39pHtylRgZuhxC7kFtACsGIbc,8015
423
423
  keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
424
424
  keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/bounding_box.py,sha256=GVnRIE2NRecj8aKtslg26GIp1I1rTHurFFUEvfd_e-0,16260
@@ -476,7 +476,7 @@ keras/src/legacy/saving/saving_utils.py,sha256=8Sa2rmBGnTv86Tix20OgwF5vTLTpUYbfG
476
476
  keras/src/legacy/saving/serialization.py,sha256=hiwqO3Il861pkfm0Egaeph2XbhOlQQobmZjbZZgK32c,21368
477
477
  keras/src/losses/__init__.py,sha256=rt63Ye0f7YdAR0eV0EOj2J61DI6xNdp2ojonx6rB3wE,6595
478
478
  keras/src/losses/loss.py,sha256=8dCOv64yj9QC_GbcKT9M8YEC_Jr01wWuo-BBqFbfg0Q,8783
479
- keras/src/losses/losses.py,sha256=lVAuX3K4IzeRVvjvnejlieiuxtPRMvXtvmCrLZGsT9s,99534
479
+ keras/src/losses/losses.py,sha256=MeFB4X3YLiTCw8sOEKpFUrSD4yv8E7hte91Gg-v04ok,100169
480
480
  keras/src/metrics/__init__.py,sha256=CydJsY38PR2lRN4irhO_wnlvgruTEAgSHp8eUYE0lwY,7410
481
481
  keras/src/metrics/accuracy_metrics.py,sha256=i_7ObnlyyE_UKDj8Nk5h5skakqpMlkMiphJ20eqcYho,18274
482
482
  keras/src/metrics/confusion_metrics.py,sha256=EKN1JGndT7pVesg_YAh8mGiM2wieAbGzXlw1ftuUGu4,62640
@@ -492,19 +492,19 @@ keras/src/metrics/regression_metrics.py,sha256=eLacV_8CKtzA26BJDJuncUDATuL1x8O6S
492
492
  keras/src/models/__init__.py,sha256=DPbBPSfIGgsufTfJH5U5xJOeN_Ef4FMadT7KKYg3Kjg,143
493
493
  keras/src/models/cloning.py,sha256=P0gMH3H9nyz6SMsdt4BQO05rXFa4qiqZk44rFpEnHsM,15945
494
494
  keras/src/models/functional.py,sha256=uD-qH9WwAUhaBrAEWAKnsVvKo0tvdHxa1M0dbBOE96Y,34086
495
- keras/src/models/model.py,sha256=BctaWtaNzMEK4ro14Lm1vDcK2ermkzBF2hMA_LlFGvk,41971
495
+ keras/src/models/model.py,sha256=szseM7sjfNkdOGytF25nijhjERBu_66WPSYaJ719VBY,42408
496
496
  keras/src/models/sequential.py,sha256=CC9Q1BNB9m7TkgMHRyjOzhQvneng576wJpmdgHrACKY,14352
497
497
  keras/src/models/variable_mapping.py,sha256=FVtcgjBRqOxtvkzOE6kjG9SpcB9keDg2gS5LOTlXvG0,2181
498
498
  keras/src/ops/__init__.py,sha256=aORlvnrqY_eQl0EFLWdpHsXHnQ6JLSw1qhwJMr-VXJ0,644
499
499
  keras/src/ops/core.py,sha256=t06-MvptYb6ZVwmNj083JyUtzU4M6UTVXOT2vVHtKyU,42781
500
500
  keras/src/ops/einops.py,sha256=-pxW0_AzDQNsR7t2TJrzvYXBJpmLYA3fJoO0U_U96PY,6268
501
501
  keras/src/ops/function.py,sha256=QV9n1-xeTPDK_FJ3sjlHDWVH2sqDj96R6YQnJueMOlA,17821
502
- keras/src/ops/image.py,sha256=NAf68cwEmR2LJuPGF_N2mXFVUR1LjQLMFeq8rLKEtLw,66864
502
+ keras/src/ops/image.py,sha256=Drfouun3Gaod0LNgG5nxrKkgIJ4STjWQWvzbTIjKOxs,67251
503
503
  keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
504
504
  keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
505
505
  keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
506
506
  keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
507
- keras/src/ops/numpy.py,sha256=1Oh4-is73XoFZZNmRkXMsw-WzhIHf2A77lHevE38Q8Y,254763
507
+ keras/src/ops/numpy.py,sha256=c5jXbWiE5jrGh1AteL3XsSgs1wNrpNUKxmTdThpNh-0,259129
508
508
  keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
509
509
  keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
510
510
  keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
@@ -527,23 +527,27 @@ keras/src/optimizers/rmsprop.py,sha256=DCbmmViUnYCHMCO9YCtC2wGzPXxNPBJhkpwAmROOz
527
527
  keras/src/optimizers/sgd.py,sha256=_3xanWOI0s2dISxEVT7i_tehsWakQQz2y480Iwkonas,4396
528
528
  keras/src/optimizers/schedules/__init__.py,sha256=vuUuHNTev8sD2-swsuq7zqyYbmaOhDyiIE6F3dGGSZU,546
529
529
  keras/src/optimizers/schedules/learning_rate_schedule.py,sha256=WI5QuaWFsEFJhRfLy0KCmkxKwGBMnmgMLYsWC_4YbCo,35828
530
- keras/src/quantizers/__init__.py,sha256=P5AJBRuL-4K75JGeONRb0WxQpJxEA6dCGdQgst_GBoc,2390
531
- keras/src/quantizers/gptq.py,sha256=fKrmT_pxpTCMXhNt34m9K4NWGdUXX-1SUX6I4buE2Vg,20175
530
+ keras/src/quantizers/__init__.py,sha256=3LlZ1Z5G5mYVdrZ2xnoFgW28OFneYc_Ys2dzuJ3S0nk,2459
531
+ keras/src/quantizers/awq.py,sha256=i7loWty9LEzfP04_FAyrRbKEXShkoQeScLNSuxRVKu8,13334
532
+ keras/src/quantizers/awq_config.py,sha256=jPD8-SRmWn_uHd1YtUEfI6V8fxmylOF8btUJMerVaEs,5701
533
+ keras/src/quantizers/awq_core.py,sha256=AJgbySMvSwENM1u-e08qb00mX5ub3egUrs677UdYKeQ,7640
534
+ keras/src/quantizers/gptq.py,sha256=ph6e-mzjxD0gGn98KiDS48muiScnfFvLnKFCbo1Ik7o,20123
532
535
  keras/src/quantizers/gptq_config.py,sha256=zpPWsbfAdYZArhk_alSnFK-nBj92bdJZBzkSM1MKl5g,8925
533
- keras/src/quantizers/gptq_core.py,sha256=u-kb58KfmcYg4-TNFPqvBJ9z8a7Yqgu6Qz87tvsOEgI,16935
534
- keras/src/quantizers/quantization_config.py,sha256=9bxhF9EwG9Q49rpMiHh8PLwMF0Gxc5JyNCNKPwLx5uQ,7631
535
- keras/src/quantizers/quantizers.py,sha256=BDD3vi_15lmOY_ybI7oQDgINYlM9CF0QSQuP6kzjXH4,35964
536
+ keras/src/quantizers/gptq_core.py,sha256=EKhdTXZQ1uo45KYJcO0h9bMTbVZH4pmqs4irQy9r47o,16945
537
+ keras/src/quantizers/quantization_config.py,sha256=8jGV1lzLC-gk37U4By2ol0QJ9T3LNuMynet40xWlxjg,8117
538
+ keras/src/quantizers/quantizers.py,sha256=QzImbGjVaa6pISxhOJPwq7seQC4s_EToI5JHKp0gbkk,36698
536
539
  keras/src/quantizers/utils.py,sha256=i6e5MobXrQeKA6zFenjzUNoDDWRGL9bcfgdbE_-0IeM,672
537
540
  keras/src/random/__init__.py,sha256=BmXVYPzxbhADohoLtAEEzB3cesP7YBFDsp1qc6BWWlg,420
538
541
  keras/src/random/random.py,sha256=bUADZIVDuCghwIWTk0qBxXTxUdiNGWIdsRi8QJ3ePg4,17581
539
- keras/src/random/seed_generator.py,sha256=Iyx_YbLSaYusmCm2rOOOiDNU57x9-sU-xDf8U_YVpTE,5635
542
+ keras/src/random/seed_generator.py,sha256=-a0CQa7--Xt0g0nfdjLmUzlFElY9Y838VcCx05AcllY,5655
540
543
  keras/src/regularizers/__init__.py,sha256=GzK9FTKL2Xxd5H55GfG9gxDqt4eZoVHFWICgb2VW8qM,1731
541
544
  keras/src/regularizers/regularizers.py,sha256=urXNmMGuqHT7lOmS-yQPl3At3Ny-37Xlo389ErCg84A,11799
542
545
  keras/src/saving/__init__.py,sha256=vnrtfvnzW7Gwtxe5COhaMoEnVYB5iDe2YlqJ-DvqFIk,614
543
546
  keras/src/saving/file_editor.py,sha256=tsUo9mQbMa8433tHTnOKWFhDeathYwDb0CeWcDTTTBQ,32089
544
547
  keras/src/saving/keras_saveable.py,sha256=aGIt1ajtsaamfUq18LM6ql8JEoQzi3HwzJEuwQ9bmKE,1285
545
548
  keras/src/saving/object_registration.py,sha256=OOO-7-SNfPoFkFsR_c5jzE6aSIDIlHlnMcm9IlI_Gbs,7357
546
- keras/src/saving/saving_api.py,sha256=hYMr0g_4zboDHUA4Dop7PVSPsGB0FBN7d29W4RhNPNI,11655
549
+ keras/src/saving/orbax_util.py,sha256=ArJI9hQODUyyvzCiXt8AS3VH6E4SL0vF02-RHBk30gU,1621
550
+ keras/src/saving/saving_api.py,sha256=PMkxXhtNNKX8GlwIsCP8-Plt19M012wNEk7i8BhxWzo,12670
547
551
  keras/src/saving/saving_lib.py,sha256=-uSXsojqzSl19FtW5FogCclvnu_nnVU3S-Si293DNq0,58723
548
552
  keras/src/saving/serialization_lib.py,sha256=yzCTm8hin__MGA2N5M5F-8Zbts5ZJVmINbrH4wEtIwI,30334
549
553
  keras/src/testing/__init__.py,sha256=7vVsV7Rn3rG99DdURgnH8ncpxagRwIE0uhH-R4qDyok,315
@@ -581,10 +585,10 @@ keras/src/utils/grain_utils.py,sha256=Wfwv12E3UrNZjJjTEk2JVV6_YEUav35UJ6bV1UAPEI
581
585
  keras/src/utils/image_dataset_utils.py,sha256=0lOzD1CiXwZOe1wW-5uvFKuIgot9PWUC9KJJA0NVuP8,24017
582
586
  keras/src/utils/image_utils.py,sha256=lGe4iKYQkQ6j15CbHoqpSMC6JEvCrekYBuYGoMClcpo,17051
583
587
  keras/src/utils/io_utils.py,sha256=Riv9TCCnz6xQLUvR1QC-UOCoGZ_KiNTwQVvLY6dKcX8,4432
584
- keras/src/utils/jax_layer.py,sha256=ytws8NcxWzJ4kViBy3bc-Pk3st3_3L8RqXxgq9sYp1k,32912
588
+ keras/src/utils/jax_layer.py,sha256=xwUkk-yp5lieC_uJesn4T4Lkw1bdjtSY5Q-bK8PuHH0,34027
585
589
  keras/src/utils/jax_utils.py,sha256=vY3P4S9mfWEjdirLd81ocKqeCm-UVfgQ1yTi6UHdBiM,322
586
590
  keras/src/utils/model_visualization.py,sha256=0ENeiq8q-qbyGjfcRixyyInb3aTxfcKCooKhZ1hSuI0,17794
587
- keras/src/utils/module_utils.py,sha256=r878q2qMRiudcfWw_OBFodM9g_qMtRkCX7xsWHB4uns,2531
591
+ keras/src/utils/module_utils.py,sha256=FTZPMRLurURchLPX1tu-h3b-UoPW28faNOlDzpYDW6A,2894
588
592
  keras/src/utils/naming.py,sha256=bPowKBlgiVP_6XtVlNVHxrxheKuJy2c0e-oEM8ocZQY,1776
589
593
  keras/src/utils/numerical_utils.py,sha256=Uqe5nu1HXmiZuh5-MznomtDSVSO9FgFaltdDtGnN61o,7205
590
594
  keras/src/utils/progbar.py,sha256=Yg2Vp1xzqU7HnfDEGSeZsmOKAKYKA4oEHv7yAMaucYw,10358
@@ -597,7 +601,7 @@ keras/src/utils/tf_utils.py,sha256=FTunWC5kdyjsK0TyxQxiHGaYNaAyUxhMX52Zee_Rz9c,4
597
601
  keras/src/utils/timeseries_dataset_utils.py,sha256=rVxSuqlYLpzw_dVo8Ym5HSE2jFmndS8MAv4Uewycojo,9842
598
602
  keras/src/utils/torch_utils.py,sha256=n0CAb7NFnK3CcfxY9VgA2kcZp_8SU05Ddg-KY0-qnoc,6619
599
603
  keras/src/utils/traceback_utils.py,sha256=VI8VJ8QjTDc3-cx3xfR9H7g68D2KVH7VknHi_JrVMuU,8997
600
- keras/src/utils/tracking.py,sha256=KUTZdgBzVJ0gzgra5ieGNLW2D8wjnnPRpwk78d9NWGs,10761
604
+ keras/src/utils/tracking.py,sha256=rH6X-W8C4UG1ni6lzPB7EnOvYU9MsDUaQb1ox3zs2ms,10787
601
605
  keras/src/visualization/__init__.py,sha256=bDdV3eLKeLKoUwUDBFuZxMO560OyFZND0zBn8vaG6rg,111
602
606
  keras/src/visualization/draw_bounding_boxes.py,sha256=Gs7gNburpgwXr8CahiyQgZWhBD5ffVeoUG7kzIFL92g,6649
603
607
  keras/src/visualization/draw_segmentation_masks.py,sha256=CAqZ0gNM-ufuL3sFtoDpzZfsGKxn7WcqmkjmWnvaGdA,4741
@@ -614,7 +618,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
614
618
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
615
619
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
616
620
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
617
- keras_nightly-3.14.0.dev2026010104.dist-info/METADATA,sha256=ZtVvePb5VE48ZbOMhIKB2djeuwdw1pqrK4IQyJPJq_I,6339
618
- keras_nightly-3.14.0.dev2026010104.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
619
- keras_nightly-3.14.0.dev2026010104.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
620
- keras_nightly-3.14.0.dev2026010104.dist-info/RECORD,,
621
+ keras_nightly-3.14.0.dev2026012204.dist-info/METADATA,sha256=FPFm1FPTR_fMzfJqiBWR_IOX_YMPs8xoUhjn4gCxO_I,6339
622
+ keras_nightly-3.14.0.dev2026012204.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
623
+ keras_nightly-3.14.0.dev2026012204.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
624
+ keras_nightly-3.14.0.dev2026012204.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5