keras-nightly 3.14.0.dev2026010104__py3-none-any.whl → 3.14.0.dev2026012204__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/_tf_keras/keras/dtype_policies/__init__.py +3 -0
- keras/_tf_keras/keras/ops/__init__.py +2 -0
- keras/_tf_keras/keras/ops/numpy/__init__.py +2 -0
- keras/_tf_keras/keras/quantizers/__init__.py +1 -0
- keras/dtype_policies/__init__.py +3 -0
- keras/ops/__init__.py +2 -0
- keras/ops/numpy/__init__.py +2 -0
- keras/quantizers/__init__.py +1 -0
- keras/src/backend/jax/nn.py +26 -9
- keras/src/backend/jax/numpy.py +10 -0
- keras/src/backend/numpy/numpy.py +15 -0
- keras/src/backend/openvino/numpy.py +338 -17
- keras/src/backend/tensorflow/numpy.py +24 -1
- keras/src/backend/tensorflow/rnn.py +17 -7
- keras/src/backend/torch/numpy.py +26 -0
- keras/src/backend/torch/rnn.py +28 -11
- keras/src/callbacks/orbax_checkpoint.py +75 -42
- keras/src/dtype_policies/__init__.py +2 -0
- keras/src/dtype_policies/dtype_policy.py +90 -1
- keras/src/layers/core/dense.py +122 -6
- keras/src/layers/core/einsum_dense.py +151 -7
- keras/src/layers/core/embedding.py +1 -1
- keras/src/layers/core/reversible_embedding.py +10 -1
- keras/src/layers/layer.py +5 -0
- keras/src/layers/preprocessing/feature_space.py +8 -4
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +2 -2
- keras/src/layers/preprocessing/image_preprocessing/center_crop.py +13 -15
- keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +3 -3
- keras/src/layers/preprocessing/image_preprocessing/resizing.py +10 -0
- keras/src/losses/losses.py +24 -0
- keras/src/models/model.py +18 -9
- keras/src/ops/image.py +106 -93
- keras/src/ops/numpy.py +138 -0
- keras/src/quantizers/__init__.py +2 -0
- keras/src/quantizers/awq.py +361 -0
- keras/src/quantizers/awq_config.py +140 -0
- keras/src/quantizers/awq_core.py +217 -0
- keras/src/quantizers/gptq.py +1 -2
- keras/src/quantizers/gptq_core.py +1 -1
- keras/src/quantizers/quantization_config.py +14 -0
- keras/src/quantizers/quantizers.py +61 -52
- keras/src/random/seed_generator.py +2 -2
- keras/src/saving/orbax_util.py +50 -0
- keras/src/saving/saving_api.py +37 -14
- keras/src/utils/jax_layer.py +69 -31
- keras/src/utils/module_utils.py +11 -0
- keras/src/utils/tracking.py +5 -5
- keras/src/version.py +1 -1
- {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/METADATA +1 -1
- {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/RECORD +52 -48
- {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/WHEEL +1 -1
- {keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/top_level.txt +0 -0
keras/src/utils/jax_layer.py
CHANGED
|
@@ -11,6 +11,7 @@ from keras.src.api_export import keras_export
|
|
|
11
11
|
from keras.src.backend.common.variables import is_float_dtype
|
|
12
12
|
from keras.src.backend.common.variables import standardize_dtype
|
|
13
13
|
from keras.src.layers.layer import Layer
|
|
14
|
+
from keras.src.random.seed_generator import draw_seed
|
|
14
15
|
from keras.src.saving import serialization_lib
|
|
15
16
|
from keras.src.utils import jax_utils
|
|
16
17
|
from keras.src.utils import tracking
|
|
@@ -244,15 +245,9 @@ class JaxLayer(Layer):
|
|
|
244
245
|
f" Tensorflow backend. Current backend: {backend.backend()}"
|
|
245
246
|
)
|
|
246
247
|
|
|
247
|
-
if init_fn is None and params is None and state is None:
|
|
248
|
-
raise ValueError(
|
|
249
|
-
"`init_fn`, `params` and `state` cannot all be `None`."
|
|
250
|
-
)
|
|
251
|
-
|
|
252
248
|
super().__init__(**kwargs)
|
|
253
249
|
self.call_fn = call_fn
|
|
254
250
|
self.init_fn = init_fn
|
|
255
|
-
self.seed_generator = backend.random.SeedGenerator(seed)
|
|
256
251
|
self.tracked_params = self._create_variables(params, trainable=True)
|
|
257
252
|
self.tracked_state = self._create_variables(state, trainable=False)
|
|
258
253
|
if self.params is not None or self.state is not None:
|
|
@@ -264,7 +259,25 @@ class JaxLayer(Layer):
|
|
|
264
259
|
{"params", "state", "rng", "inputs", "training"},
|
|
265
260
|
{"inputs"},
|
|
266
261
|
)
|
|
267
|
-
self.
|
|
262
|
+
self.call_fn_has_params = "params" in self.call_fn_arguments
|
|
263
|
+
self.call_fn_has_state = "state" in self.call_fn_arguments
|
|
264
|
+
call_fn_has_rng = "rng" in self.call_fn_arguments
|
|
265
|
+
|
|
266
|
+
if call_fn_has_rng:
|
|
267
|
+
self.seed_generator = backend.random.SeedGenerator(seed)
|
|
268
|
+
else:
|
|
269
|
+
self.seed_generator = None
|
|
270
|
+
|
|
271
|
+
if (
|
|
272
|
+
init_fn is None
|
|
273
|
+
and params is None
|
|
274
|
+
and state is None
|
|
275
|
+
and (self.call_fn_has_params or self.call_fn_has_state)
|
|
276
|
+
):
|
|
277
|
+
raise ValueError(
|
|
278
|
+
"`init_fn`, `params` and `state` cannot all be `None` when "
|
|
279
|
+
"`call_fn` takes a `params` or a `state` argument."
|
|
280
|
+
)
|
|
268
281
|
|
|
269
282
|
if init_fn:
|
|
270
283
|
self.init_fn_arguments = self._validate_signature(
|
|
@@ -428,37 +441,58 @@ class JaxLayer(Layer):
|
|
|
428
441
|
flat_variables, _ = jax.tree_util.tree_flatten(variables)
|
|
429
442
|
return flat_variables
|
|
430
443
|
|
|
444
|
+
def _get_init_seed(self):
|
|
445
|
+
"""
|
|
446
|
+
Returns a single seed as a tensor of shape [2].
|
|
447
|
+
|
|
448
|
+
Call this within `_get_init_rng()` to obtain a new seed.
|
|
449
|
+
|
|
450
|
+
Returns:
|
|
451
|
+
A native tensor of shape [2] and the backend dtype for seeds.
|
|
452
|
+
"""
|
|
453
|
+
# Use the global SeedGenerator.
|
|
454
|
+
return draw_seed(None)
|
|
455
|
+
|
|
431
456
|
def _get_init_rng(self):
|
|
432
457
|
"""
|
|
433
|
-
Returns a
|
|
434
|
-
|
|
458
|
+
Returns a seed or seeds to pass as the `rng` argument of `init_fn`.
|
|
459
|
+
|
|
460
|
+
By default, this returns a single seed. Override this to return a
|
|
461
|
+
different structure. Overrides should use `self._get_init_seed()` to
|
|
462
|
+
obtain new seeds.
|
|
463
|
+
|
|
464
|
+
Returns:
|
|
465
|
+
RNG key or structure of keys as tensors of shape [2] and the backend
|
|
466
|
+
dtype for seeds.
|
|
467
|
+
"""
|
|
468
|
+
return self._get_init_seed()
|
|
469
|
+
|
|
470
|
+
def _get_call_seed(self):
|
|
471
|
+
"""
|
|
472
|
+
Returns a single seed as a tensor of shape [2].
|
|
435
473
|
|
|
436
|
-
|
|
437
|
-
`self.seed_generator.next()`. Override this to return a different
|
|
438
|
-
structure.
|
|
474
|
+
Call this within `_get_call_rng()` to obtain a new seed.
|
|
439
475
|
|
|
440
476
|
Returns:
|
|
441
|
-
|
|
442
|
-
as the `rng` argument of `init_fn`.
|
|
477
|
+
A native tensor of shape [2] and the backend dtype for seeds.
|
|
443
478
|
"""
|
|
444
479
|
return self.seed_generator.next()
|
|
445
480
|
|
|
446
481
|
def _get_call_rng(self, training):
|
|
447
482
|
"""
|
|
448
|
-
Returns a
|
|
449
|
-
to pass to `call_fn`.
|
|
483
|
+
Returns a seed or seeds to pass as the `rng` argument of `call_fn`.
|
|
450
484
|
|
|
451
|
-
By default, this returns a
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
to
|
|
485
|
+
By default, this returns a seed when `training` is `True`, and `None`
|
|
486
|
+
when `training` is `False`. Override this to return a different
|
|
487
|
+
structure or to pass seeds in inference mode too. Overrides should use
|
|
488
|
+
`self._get_call_seed()` to obtain seeds.
|
|
455
489
|
|
|
456
490
|
Returns:
|
|
457
|
-
|
|
458
|
-
|
|
491
|
+
RNG key or structure of keys as tensors of shape [2] and the backend
|
|
492
|
+
dtype for seeds.
|
|
459
493
|
"""
|
|
460
494
|
if training:
|
|
461
|
-
return self.
|
|
495
|
+
return self._get_call_seed()
|
|
462
496
|
else:
|
|
463
497
|
return None
|
|
464
498
|
|
|
@@ -492,7 +526,7 @@ class JaxLayer(Layer):
|
|
|
492
526
|
init_args.append(True)
|
|
493
527
|
|
|
494
528
|
init_result = self.init_fn(*init_args)
|
|
495
|
-
if self.
|
|
529
|
+
if self.call_fn_has_state:
|
|
496
530
|
init_params, init_state = init_result
|
|
497
531
|
else:
|
|
498
532
|
init_params, init_state = init_result, None
|
|
@@ -503,7 +537,11 @@ class JaxLayer(Layer):
|
|
|
503
537
|
self.tracked_state = self._create_variables(init_state, trainable=False)
|
|
504
538
|
|
|
505
539
|
def build(self, input_shape):
|
|
506
|
-
if
|
|
540
|
+
if (
|
|
541
|
+
self.params is None
|
|
542
|
+
and self.state is None
|
|
543
|
+
and (self.call_fn_has_params or self.call_fn_has_state)
|
|
544
|
+
):
|
|
507
545
|
self._initialize_weights(input_shape)
|
|
508
546
|
|
|
509
547
|
if backend.backend() == "tensorflow":
|
|
@@ -578,7 +616,7 @@ class JaxLayer(Layer):
|
|
|
578
616
|
variable.assign(value)
|
|
579
617
|
|
|
580
618
|
def call_with_fn(fn):
|
|
581
|
-
if self.
|
|
619
|
+
if self.call_fn_has_state:
|
|
582
620
|
predictions, new_state = fn(*call_args)
|
|
583
621
|
jax.tree_util.tree_map(
|
|
584
622
|
assign_state_to_variable, new_state, self.state
|
|
@@ -711,12 +749,12 @@ class FlaxLayer(JaxLayer):
|
|
|
711
749
|
**kwargs,
|
|
712
750
|
):
|
|
713
751
|
# Late import to only require Flax when this is used.
|
|
714
|
-
from flax.
|
|
752
|
+
from flax.linen import DenyList
|
|
715
753
|
|
|
716
754
|
self.module = module
|
|
717
755
|
self.method = method
|
|
718
756
|
|
|
719
|
-
apply_mutable =
|
|
757
|
+
apply_mutable = DenyList(["params"])
|
|
720
758
|
|
|
721
759
|
def apply_with_training(params, state, rng, inputs, training):
|
|
722
760
|
return self.module.apply(
|
|
@@ -801,13 +839,13 @@ class FlaxLayer(JaxLayer):
|
|
|
801
839
|
|
|
802
840
|
def _get_init_rng(self):
|
|
803
841
|
return {
|
|
804
|
-
"params": self.
|
|
805
|
-
"dropout": self.
|
|
842
|
+
"params": self._get_init_seed(),
|
|
843
|
+
"dropout": self._get_init_seed(),
|
|
806
844
|
}
|
|
807
845
|
|
|
808
846
|
def _get_call_rng(self, training):
|
|
809
847
|
if training:
|
|
810
|
-
return {"dropout": self.
|
|
848
|
+
return {"dropout": self._get_call_seed()}
|
|
811
849
|
else:
|
|
812
850
|
return {}
|
|
813
851
|
|
keras/src/utils/module_utils.py
CHANGED
|
@@ -44,15 +44,26 @@ class OrbaxLazyModule(LazyModule):
|
|
|
44
44
|
try:
|
|
45
45
|
parent_module = importlib.import_module("orbax.checkpoint")
|
|
46
46
|
self.module = parent_module.v1
|
|
47
|
+
self.parent_module = parent_module
|
|
47
48
|
except ImportError:
|
|
48
49
|
raise ImportError(self.import_error_msg)
|
|
49
50
|
|
|
51
|
+
def __getattr__(self, name):
|
|
52
|
+
if name == "_api_export_path":
|
|
53
|
+
raise AttributeError
|
|
54
|
+
if self.module is None:
|
|
55
|
+
self.initialize()
|
|
56
|
+
if name == "multihost":
|
|
57
|
+
return self.parent_module.multihost
|
|
58
|
+
return getattr(self.module, name)
|
|
59
|
+
|
|
50
60
|
|
|
51
61
|
tensorflow = LazyModule("tensorflow")
|
|
52
62
|
gfile = LazyModule("tensorflow.io.gfile", pip_name="tensorflow")
|
|
53
63
|
tensorflow_io = LazyModule("tensorflow_io")
|
|
54
64
|
scipy = LazyModule("scipy")
|
|
55
65
|
jax = LazyModule("jax")
|
|
66
|
+
h5py = LazyModule("h5py")
|
|
56
67
|
torch_xla = LazyModule(
|
|
57
68
|
"torch_xla",
|
|
58
69
|
import_error_msg=(
|
keras/src/utils/tracking.py
CHANGED
|
@@ -31,13 +31,13 @@ def no_automatic_dependency_tracking(fn):
|
|
|
31
31
|
class Tracker:
|
|
32
32
|
"""Attribute tracker, used for e.g. Variable tracking.
|
|
33
33
|
|
|
34
|
-
Monitors certain attribute types
|
|
35
|
-
|
|
34
|
+
Monitors certain attribute types and places matching
|
|
35
|
+
objects into user provided tracking collections.
|
|
36
36
|
|
|
37
37
|
Also passively tracks certain mutable collections
|
|
38
|
-
(dict
|
|
39
|
-
still
|
|
40
|
-
collections
|
|
38
|
+
(e.g. dict and list) ensuring that items added after
|
|
39
|
+
initialization are still tracked. This is done by wrapping
|
|
40
|
+
these collections in tracking-aware proxy objects.
|
|
41
41
|
|
|
42
42
|
Example:
|
|
43
43
|
|
keras/src/version.py
CHANGED
{keras_nightly-3.14.0.dev2026010104.dist-info → keras_nightly-3.14.0.dev2026012204.dist-info}/RECORD
RENAMED
|
@@ -35,7 +35,7 @@ keras/_tf_keras/keras/datasets/mnist/__init__.py,sha256=tCUxwxWlcOGsTQzgysuC2kVv
|
|
|
35
35
|
keras/_tf_keras/keras/datasets/reuters/__init__.py,sha256=aY43YfZVbCRMIRNfycxdKPDjq8BW8MZSA_fYQjonuY0,330
|
|
36
36
|
keras/_tf_keras/keras/distillation/__init__.py,sha256=7pnduBNlDNCQFxm8yhGeYw8jKjOhK2l-F3iOjIFCmNk,497
|
|
37
37
|
keras/_tf_keras/keras/distribution/__init__.py,sha256=sPbRKFpWd8mZypqWAId06KJzznVpkT_4Ae5QTcBJxa8,1063
|
|
38
|
-
keras/_tf_keras/keras/dtype_policies/__init__.py,sha256=
|
|
38
|
+
keras/_tf_keras/keras/dtype_policies/__init__.py,sha256=c8mnzGQbn3b5EQ6v6zBnrkgs9EFcrPRi5Zv4TEVcolg,969
|
|
39
39
|
keras/_tf_keras/keras/export/__init__.py,sha256=Qtde9Kh4AUm-pBmKL4L90ooJxo5EFVEW8i7LYxA_mVQ,194
|
|
40
40
|
keras/_tf_keras/keras/initializers/__init__.py,sha256=Bg5r2XRraWXldFSlWNu1kNnp0g1sQt9vfcT8fvmXaeg,3371
|
|
41
41
|
keras/_tf_keras/keras/layers/__init__.py,sha256=w0Av9SmIfUOFvKiDXV5t7IWfpoagNwLX2hgg3C-pTSs,16237
|
|
@@ -45,11 +45,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
|
|
|
45
45
|
keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
|
|
46
46
|
keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
47
47
|
keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
48
|
-
keras/_tf_keras/keras/ops/__init__.py,sha256=
|
|
48
|
+
keras/_tf_keras/keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
|
|
49
49
|
keras/_tf_keras/keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
50
50
|
keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
51
51
|
keras/_tf_keras/keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
52
|
-
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=
|
|
52
|
+
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
|
|
53
53
|
keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
54
54
|
keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
55
55
|
keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
@@ -57,7 +57,7 @@ keras/_tf_keras/keras/preprocessing/__init__.py,sha256=8gjf16CnMiBJFp2E05iRJaHze
|
|
|
57
57
|
keras/_tf_keras/keras/preprocessing/image/__init__.py,sha256=MEyK0JU7piXc1ql8ZTtHJuC907Q6DV5uOQqpivKKTn4,1656
|
|
58
58
|
keras/_tf_keras/keras/preprocessing/sequence/__init__.py,sha256=TymwLKMEwqR6JhVFDhU80Hf8GVMMwg2vD6-pJqh5NuA,479
|
|
59
59
|
keras/_tf_keras/keras/preprocessing/text/__init__.py,sha256=g3ej5_e86BY1AhlQwjalIQq_xgCMmCcDMtsh27diUNw,543
|
|
60
|
-
keras/_tf_keras/keras/quantizers/__init__.py,sha256=
|
|
60
|
+
keras/_tf_keras/keras/quantizers/__init__.py,sha256=kDf-LP5ola_TxzeClJTqSS42k4mzF-BcP5zh7Xh7miE,1652
|
|
61
61
|
keras/_tf_keras/keras/random/__init__.py,sha256=qDZQXrw0oYVNc2KTmcmcgon61lQJBOXqF-6PMInBvec,763
|
|
62
62
|
keras/_tf_keras/keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b4,923
|
|
63
63
|
keras/_tf_keras/keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
@@ -101,7 +101,7 @@ keras/datasets/mnist/__init__.py,sha256=tCUxwxWlcOGsTQzgysuC2kVvX01zkGOa9ABEb1Ek
|
|
|
101
101
|
keras/datasets/reuters/__init__.py,sha256=aY43YfZVbCRMIRNfycxdKPDjq8BW8MZSA_fYQjonuY0,330
|
|
102
102
|
keras/distillation/__init__.py,sha256=7pnduBNlDNCQFxm8yhGeYw8jKjOhK2l-F3iOjIFCmNk,497
|
|
103
103
|
keras/distribution/__init__.py,sha256=sPbRKFpWd8mZypqWAId06KJzznVpkT_4Ae5QTcBJxa8,1063
|
|
104
|
-
keras/dtype_policies/__init__.py,sha256=
|
|
104
|
+
keras/dtype_policies/__init__.py,sha256=c8mnzGQbn3b5EQ6v6zBnrkgs9EFcrPRi5Zv4TEVcolg,969
|
|
105
105
|
keras/export/__init__.py,sha256=Qtde9Kh4AUm-pBmKL4L90ooJxo5EFVEW8i7LYxA_mVQ,194
|
|
106
106
|
keras/initializers/__init__.py,sha256=Bg5r2XRraWXldFSlWNu1kNnp0g1sQt9vfcT8fvmXaeg,3371
|
|
107
107
|
keras/layers/__init__.py,sha256=mteqKdCYQq1NWH-XOYoy1B2uJFmJkG2XPHJIOnUjLOg,16069
|
|
@@ -111,24 +111,24 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
|
|
|
111
111
|
keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
|
|
112
112
|
keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
|
113
113
|
keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
|
114
|
-
keras/ops/__init__.py,sha256=
|
|
114
|
+
keras/ops/__init__.py,sha256=b95A91bWrAp3S61ui69zIwEJUMsFYVi90E5TfIX7MpE,15618
|
|
115
115
|
keras/ops/image/__init__.py,sha256=oM_PLh5Jk9OGfi1bbJcfWkjoq0Ye5JQG9a7v_KzDfoc,1034
|
|
116
116
|
keras/ops/linalg/__init__.py,sha256=0ab6icK3yuIm4khSfAksGRFLEAJhaOu6gGgarau4iEQ,822
|
|
117
117
|
keras/ops/nn/__init__.py,sha256=2eD8IlkfBrsmJjHpzsxMM3_058oGeZVgohdBd27iDnI,2992
|
|
118
|
-
keras/ops/numpy/__init__.py,sha256=
|
|
118
|
+
keras/ops/numpy/__init__.py,sha256=jiEp6-gAl22y9Qzz1HS4T3VzDBlw4VViiXti65xkeAM,9680
|
|
119
119
|
keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
|
120
120
|
keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
|
121
121
|
keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
|
122
122
|
keras/preprocessing/__init__.py,sha256=N-_Rr6pYag2H_kEn6imVuol_hNL3NL65YL_zvdOV1mU,580
|
|
123
123
|
keras/preprocessing/image/__init__.py,sha256=AmkgEp_-MvtIefySVEXv1IQ5_LyojjBfnIlRcUvNc40,451
|
|
124
124
|
keras/preprocessing/sequence/__init__.py,sha256=zTMj_m6LWipe_hVq6SjE4JPj7eYKuUOZyh45g756cFg,196
|
|
125
|
-
keras/quantizers/__init__.py,sha256=
|
|
125
|
+
keras/quantizers/__init__.py,sha256=kDf-LP5ola_TxzeClJTqSS42k4mzF-BcP5zh7Xh7miE,1652
|
|
126
126
|
keras/random/__init__.py,sha256=qDZQXrw0oYVNc2KTmcmcgon61lQJBOXqF-6PMInBvec,763
|
|
127
127
|
keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b4,923
|
|
128
128
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
|
129
129
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
|
130
130
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
|
131
|
-
keras/src/version.py,sha256=
|
|
131
|
+
keras/src/version.py,sha256=Vic_aSfTjaFpUnuLrDlE8M6IpjKMn3-PBqqD8ygIOls,204
|
|
132
132
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
|
133
133
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
|
134
134
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -170,8 +170,8 @@ keras/src/backend/jax/image.py,sha256=RiYIalbIaUQdDOGpDZUBk5KNsX94Xqg7iyXGATN9V5
|
|
|
170
170
|
keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0iw,308
|
|
171
171
|
keras/src/backend/jax/linalg.py,sha256=LDaLZYz49ChE2kJR3YpaM9xuwusvd3krV7nNAAazTWA,2642
|
|
172
172
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
|
173
|
-
keras/src/backend/jax/nn.py,sha256=
|
|
174
|
-
keras/src/backend/jax/numpy.py,sha256=
|
|
173
|
+
keras/src/backend/jax/nn.py,sha256=mrRawNvf9EWe8rdTwK_Auz6xdLkVG6hH0nIAP7hyUDE,60271
|
|
174
|
+
keras/src/backend/jax/numpy.py,sha256=5C-obBCsAdY288BhjtxDIccqXDDle5eaP2yt7jfeUy8,38869
|
|
175
175
|
keras/src/backend/jax/optimizer.py,sha256=5DeXQHcYmUI6F9i1m1VHn3sBt4LEStOeBXnKdESevLM,4134
|
|
176
176
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
|
177
177
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
|
@@ -186,7 +186,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
|
|
|
186
186
|
keras/src/backend/numpy/linalg.py,sha256=uzLTxEyuX_gDcnoA5Q59GdTg33py0WooKK5T6T9Td6c,2543
|
|
187
187
|
keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
|
|
188
188
|
keras/src/backend/numpy/nn.py,sha256=P9JAnTlwSTI7bVv8WIv1pDQJHpjML_WJ0RsJWy-LJMc,46200
|
|
189
|
-
keras/src/backend/numpy/numpy.py,sha256=
|
|
189
|
+
keras/src/backend/numpy/numpy.py,sha256=W2P2A1_Y54xR07xmR-T4ALrqJA_SliDwmoOALeI37P0,38070
|
|
190
190
|
keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
|
|
191
191
|
keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
|
|
192
192
|
keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
|
|
@@ -198,7 +198,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
|
198
198
|
keras/src/backend/openvino/linalg.py,sha256=L6a4MFGND2wWzPVCh44cwuOgkcC4wJTo8Xy3HwW04lg,1614
|
|
199
199
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
|
200
200
|
keras/src/backend/openvino/nn.py,sha256=zULPxdwVO7JDZUUtsuoEEPCLQ09ew8z8T6G_i_NEqrM,23741
|
|
201
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
|
201
|
+
keras/src/backend/openvino/numpy.py,sha256=Dc3tdpAEmNN78c0Q0lI5utFfDWt-hZiH4IChE52UhOU,108532
|
|
202
202
|
keras/src/backend/openvino/random.py,sha256=4hRUtIP6qJxO3Qy9uH1x6jSuJna3nWPdUf4x2QU8-ew,5575
|
|
203
203
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
|
204
204
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
|
@@ -211,10 +211,10 @@ keras/src/backend/tensorflow/layer.py,sha256=69d40LwL4HhKRsCjj1VRpjfrQXXF8VV3vh0
|
|
|
211
211
|
keras/src/backend/tensorflow/linalg.py,sha256=_lZVfdY1tFvrN7xwbt3INGoTR0yC5v-kI1Q0XppVibY,8773
|
|
212
212
|
keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
|
|
213
213
|
keras/src/backend/tensorflow/nn.py,sha256=6vtZHzUED6_blUPE1Tnc3GAxPpJ2ebxoaiMn80tTL9k,51328
|
|
214
|
-
keras/src/backend/tensorflow/numpy.py,sha256=
|
|
214
|
+
keras/src/backend/tensorflow/numpy.py,sha256=I5S0igFo2Mq3Q0SodRyNggip9F_gwWfch6TyvVbQj_E,105076
|
|
215
215
|
keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
|
|
216
216
|
keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
|
|
217
|
-
keras/src/backend/tensorflow/rnn.py,sha256=
|
|
217
|
+
keras/src/backend/tensorflow/rnn.py,sha256=JbOSpt48cm612c7YwiTYOQCQsNXyI_6QeRhtUn8qEvM,34829
|
|
218
218
|
keras/src/backend/tensorflow/sparse.py,sha256=a_FZcJY-wPl1x4vY0T7j-GORa4SAuMjNEToJLmK0daQ,32247
|
|
219
219
|
keras/src/backend/tensorflow/tensorboard.py,sha256=e7pXicuMfQjuCmq1wOmixWhWt2EbjLMBo_JPAqCbZRk,504
|
|
220
220
|
keras/src/backend/tensorflow/trackable.py,sha256=QZn0JvpBJ7Kx4e6zM2IVIWz9ADcWDB-dHN6vjoQBa9Q,1993
|
|
@@ -227,9 +227,9 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
|
|
|
227
227
|
keras/src/backend/torch/linalg.py,sha256=wgPCfnscp5HOBmX9_-m-57lzxs1ttLNzmHqj2VYYq7k,2108
|
|
228
228
|
keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
|
|
229
229
|
keras/src/backend/torch/nn.py,sha256=zmEzXEuwD7fVRDm145zsxzUDmqNmRgZS4LmeIx4Nbus,37498
|
|
230
|
-
keras/src/backend/torch/numpy.py,sha256=
|
|
230
|
+
keras/src/backend/torch/numpy.py,sha256=zZDkUDmph1c_D0VOsSzkYjAj4TKln7laDxypVRBsZ6o,58072
|
|
231
231
|
keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
|
|
232
|
-
keras/src/backend/torch/rnn.py,sha256=
|
|
232
|
+
keras/src/backend/torch/rnn.py,sha256=MJIVbHKsUA2dZm4Gu2NvRxlrFCWeWSxSZRmFxSsC3Zg,26041
|
|
233
233
|
keras/src/backend/torch/trainer.py,sha256=dcikz1c5O0FHNzRKSi6WhIHsHfLV2HDlrXPElSd1cgE,17985
|
|
234
234
|
keras/src/backend/torch/optimizers/__init__.py,sha256=yvqiyKgMEh-nGpacssdpsMySujyYB6lPy-Wil3onXvo,78
|
|
235
235
|
keras/src/backend/torch/optimizers/torch_adadelta.py,sha256=iPjGHvD7q_VD0WaMNxuNcvz8uIWd0smRyEMzMqryUD4,1672
|
|
@@ -254,7 +254,7 @@ keras/src/callbacks/lambda_callback.py,sha256=q-nNr_k7MyYRP3HIetFsutcLkq78cUYxDD
|
|
|
254
254
|
keras/src/callbacks/learning_rate_scheduler.py,sha256=II0SLxltUX3omRbGTYffd9KTWLRKtzW57SDRe70_t7E,2965
|
|
255
255
|
keras/src/callbacks/model_checkpoint.py,sha256=Jt2mMKHKx0isrQnhiHADDOmwu72J594m93PBHy-zpV8,18570
|
|
256
256
|
keras/src/callbacks/monitor_callback.py,sha256=-QBKqkKJ7Rg6L40Q80IScpvybmLoodLWcJoAgnTe_c4,4184
|
|
257
|
-
keras/src/callbacks/orbax_checkpoint.py,sha256=
|
|
257
|
+
keras/src/callbacks/orbax_checkpoint.py,sha256=hG_OClsm4lYQVTyCLWLJqgdYl6OXtFjz0J6z5eUtsmY,12529
|
|
258
258
|
keras/src/callbacks/progbar_logger.py,sha256=BqddKoOyc8vxxtKriq5QD3n5JhVPUxkuWF2u1UlCriQ,3104
|
|
259
259
|
keras/src/callbacks/reduce_lr_on_plateau.py,sha256=isJ9EzVo8jIu-_kWTFHpM_gaI5PbHTcUBM0keR9FRHA,4766
|
|
260
260
|
keras/src/callbacks/remote_monitor.py,sha256=VDbNzCdddCDe_ZoeVvwV50oJkwOehhT_IDDYD8LzFOg,2727
|
|
@@ -278,8 +278,8 @@ keras/src/distillation/distillation_loss.py,sha256=3hhDKWhNHoLMa-EaBbJfa0flS6QoU
|
|
|
278
278
|
keras/src/distillation/distiller.py,sha256=GI_yJ5RTgdXPEZoQwNe4Ds04UXP7obB0tJTqmUbTOa4,22984
|
|
279
279
|
keras/src/distribution/__init__.py,sha256=pseLHx387oTmXROr95tU7kNWjPL8-JB4kZs8nUHsOiU,718
|
|
280
280
|
keras/src/distribution/distribution_lib.py,sha256=zZbKxdL0sHJXSJNCd02qG3sVrq1F3x_JPota9Jlk6iM,34542
|
|
281
|
-
keras/src/dtype_policies/__init__.py,sha256=
|
|
282
|
-
keras/src/dtype_policies/dtype_policy.py,sha256=
|
|
281
|
+
keras/src/dtype_policies/__init__.py,sha256=8Ju8ICwTDdBfBrSoL6kmMzrcgMwMg6dPa1UPMDZKTqc,3717
|
|
282
|
+
keras/src/dtype_policies/dtype_policy.py,sha256=3e2J589g0NUALz0LycSb3anh47g5LWIgn0jKR26B-Cs,19143
|
|
283
283
|
keras/src/dtype_policies/dtype_policy_map.py,sha256=DqDYlssUGSiTqawPpaVRvR6ljYD8DJrFERCxXVVFvBE,10840
|
|
284
284
|
keras/src/export/__init__.py,sha256=wQfjXEPN1YO2n0gz-7Eme0y_vq86s3SEWkZgs534sns,366
|
|
285
285
|
keras/src/export/export_utils.py,sha256=DpfA5yI37gaMjyESxGTlf7aQ8FhYp0u8LQKxyKiFaoU,5585
|
|
@@ -295,7 +295,7 @@ keras/src/initializers/initializer.py,sha256=kNAyRA8CzBdtknT6ZUt5XIO2_Z9NzpN119C
|
|
|
295
295
|
keras/src/initializers/random_initializers.py,sha256=AuUeQ3YZGakDKTCs8njQLhozE6iWYHwP6-VstnEMOaQ,23631
|
|
296
296
|
keras/src/layers/__init__.py,sha256=s7jrOesk0YMUKCxe5BTdQ5cxqrnkYbA-GWRoCXuqpsg,12103
|
|
297
297
|
keras/src/layers/input_spec.py,sha256=cjBUBmgdneJfhvbI-WLqSapJInCsxliWBygyfMWgkj4,10010
|
|
298
|
-
keras/src/layers/layer.py,sha256=
|
|
298
|
+
keras/src/layers/layer.py,sha256=Nbs9ke8ecAhTffiHyZ2cJUIt-3yaJb5fcjXKJAnOCHE,79634
|
|
299
299
|
keras/src/layers/activations/__init__.py,sha256=MhPBye8WWLSf_iDel3BuuqYk4nx6Sym8s4dZKb1KTqQ,272
|
|
300
300
|
keras/src/layers/activations/activation.py,sha256=c_Q5gUjCTD70a9-I1m5eEPcrWPpE-5iAlkDMt4lxRgA,1287
|
|
301
301
|
keras/src/layers/activations/elu.py,sha256=jtszCDe6Cs_L3jITK3ascKouqgYUxdbGvT60kxQbcHM,840
|
|
@@ -324,14 +324,14 @@ keras/src/layers/convolutional/depthwise_conv2d.py,sha256=rnCd_S3UVeNdVotjKW1Wlo
|
|
|
324
324
|
keras/src/layers/convolutional/separable_conv1d.py,sha256=vL5qzdaSOOTgyn1A6y9IZZbQOEeB6FedPk9JJI5wqSY,6452
|
|
325
325
|
keras/src/layers/convolutional/separable_conv2d.py,sha256=ZkLOnA6l5UV3GuJufwlOHMOm1S-xkt6sdF-qmP4PDjw,6533
|
|
326
326
|
keras/src/layers/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
327
|
-
keras/src/layers/core/dense.py,sha256=
|
|
328
|
-
keras/src/layers/core/einsum_dense.py,sha256=
|
|
329
|
-
keras/src/layers/core/embedding.py,sha256=
|
|
327
|
+
keras/src/layers/core/dense.py,sha256=oe0vpcYAMeulF39TrQAeSm-PrNafrpqj6GPlOFQ-eq4,40477
|
|
328
|
+
keras/src/layers/core/einsum_dense.py,sha256=XM58eGQjLSSPIbOdzFmcehJ12eBSGPdRnZ04Qjzwvqs,69554
|
|
329
|
+
keras/src/layers/core/embedding.py,sha256=88x_dkaDlGD-3WtGJf58Us68q2ub8SY36ln9Cz3G75Q,22646
|
|
330
330
|
keras/src/layers/core/identity.py,sha256=o0gLHlXL7eNJEbXIgIsgBsZX97K6jN9n3qPXprkXQ9Y,848
|
|
331
331
|
keras/src/layers/core/input_layer.py,sha256=RQn1KHtUd6fPBPL9rs46X8KHmr1eGo7moLg8U5tlVl0,8168
|
|
332
332
|
keras/src/layers/core/lambda_layer.py,sha256=Wplek4hOwh_rwXz4_bpz0pXzKe26ywz52glh5uD0l4w,9272
|
|
333
333
|
keras/src/layers/core/masking.py,sha256=g-RrZ_P50Surh_KGlZQwy2kPNLsop0F8voU4SG2MQkw,2856
|
|
334
|
-
keras/src/layers/core/reversible_embedding.py,sha256=
|
|
334
|
+
keras/src/layers/core/reversible_embedding.py,sha256=nDQ7b-xi9YlHxYZv0Vif0qr3bfu3LAWR_d1KrDsMawI,16155
|
|
335
335
|
keras/src/layers/core/wrapper.py,sha256=KIdDBuk24V9rAn97-HUUKQ0JMx9Eyd0q9W4qQFaYNt8,1509
|
|
336
336
|
keras/src/layers/merging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
337
337
|
keras/src/layers/merging/add.py,sha256=icbh3RwZ3QUP3bFNCi7GbrHj2hFdKu1Dsv8djSa13co,2150
|
|
@@ -376,7 +376,7 @@ keras/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5
|
|
|
376
376
|
keras/src/layers/preprocessing/category_encoding.py,sha256=RjgVkFi9og1hHNmDu2DuKVQOO2Yd-LSXKJDSSzG876M,6927
|
|
377
377
|
keras/src/layers/preprocessing/data_layer.py,sha256=5bO2Pjs-mOzn4z5OnwBbbF3shOczLmimYVym9UL0Mcc,5766
|
|
378
378
|
keras/src/layers/preprocessing/discretization.py,sha256=vsBQbIqlore_NlU0LvtqiDriCXguD_CZH7tK91LBhGM,14056
|
|
379
|
-
keras/src/layers/preprocessing/feature_space.py,sha256
|
|
379
|
+
keras/src/layers/preprocessing/feature_space.py,sha256=YcHzD8C5eqUDRF8khLapwc8qCmbJSfix16KyzqEu1II,30568
|
|
380
380
|
keras/src/layers/preprocessing/hashed_crossing.py,sha256=uwOTKPsv2UweHuGiF4V5HFRgYnjP8N0_S6qT3JP5KeQ,8481
|
|
381
381
|
keras/src/layers/preprocessing/hashing.py,sha256=3k1L_2d_bROHxZNjDbfURRBSFzFBIHFj0tEXCobcS8w,11188
|
|
382
382
|
keras/src/layers/preprocessing/index_lookup.py,sha256=JPtnH-dbzLW72F8T5sZqsc3_aQ9Ml79RWQzTjhpbXq4,42991
|
|
@@ -389,10 +389,10 @@ keras/src/layers/preprocessing/stft_spectrogram.py,sha256=D92Gsbx4chANl2xLPXBCSK
|
|
|
389
389
|
keras/src/layers/preprocessing/string_lookup.py,sha256=OIkPV7DZbX8rMf2J95bPBoFcaxso7_1yDnpjBJFIZ4M,18495
|
|
390
390
|
keras/src/layers/preprocessing/text_vectorization.py,sha256=p1uubjplFyPo5yOnNJXtG9Vg0GJMQTJucUGljf3FROM,28161
|
|
391
391
|
keras/src/layers/preprocessing/image_preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
392
|
-
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=
|
|
392
|
+
keras/src/layers/preprocessing/image_preprocessing/aug_mix.py,sha256=spvWYUG6GcPrYZgedaE8LIwTbYE2yvPg2Hwao9UAang,11221
|
|
393
393
|
keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py,sha256=gY7hmXXVTO15dswR8ISf9h_gox4zDSDih2owjzb7WmE,3930
|
|
394
394
|
keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py,sha256=Ga1Wewc0Pl9uLGUp3x6dxS2j4Lh-1o7TaOtxxo9kf5o,13853
|
|
395
|
-
keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=
|
|
395
|
+
keras/src/layers/preprocessing/image_preprocessing/center_crop.py,sha256=Pi9GlYTo7kZbfZpfF1FUwkwi0y9v8PcQYQAurixHaeU,9965
|
|
396
396
|
keras/src/layers/preprocessing/image_preprocessing/cut_mix.py,sha256=reDSKzm15J7TR5TLrx92mWE-os2H6X0jY2Pd_ra_i_E,7877
|
|
397
397
|
keras/src/layers/preprocessing/image_preprocessing/equalization.py,sha256=Q6URzVSxTxcd166oNFJsVlNO3x8EUMS0plqthDwKzu4,8659
|
|
398
398
|
keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py,sha256=BTQaWjx-bMnwtsQDQLmeohs_VQECu1WZzPmi2PkDYHs,3435
|
|
@@ -401,7 +401,7 @@ keras/src/layers/preprocessing/image_preprocessing/rand_augment.py,sha256=upDdEg
|
|
|
401
401
|
keras/src/layers/preprocessing/image_preprocessing/random_brightness.py,sha256=Ix01T1xsbf_QknyWcSlK1SxVPvFNtHw20xmWHhuQPZI,6083
|
|
402
402
|
keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py,sha256=N6rCXPhWCEh-xWqC9ETYwrbJ2f6lIqyCR9Z18uV3xd0,4896
|
|
403
403
|
keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py,sha256=rbQvLhCPPXyAaYfcMiVzyN0yvfFrcfbRbkVruO9o38U,9464
|
|
404
|
-
keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=
|
|
404
|
+
keras/src/layers/preprocessing/image_preprocessing/random_contrast.py,sha256=eJ7aakES1YfSv1JXjv8ZT3ltTqgG6Oo1_XU6BopKDng,5470
|
|
405
405
|
keras/src/layers/preprocessing/image_preprocessing/random_crop.py,sha256=y2iHw-xbSV11uK4D34VT9QEkpvKOk-D-TmVSCZUjDn0,10553
|
|
406
406
|
keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py,sha256=fIfPe-906LUhTUDpiuPwM5oEOJ_1UQ9BhMHBFpItcGM,10208
|
|
407
407
|
keras/src/layers/preprocessing/image_preprocessing/random_erasing.py,sha256=O7f44V805Wta9RMZyks4sl-LViglTCdp7_n-qj_nWbI,11233
|
|
@@ -418,7 +418,7 @@ keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py,sha256=4R
|
|
|
418
418
|
keras/src/layers/preprocessing/image_preprocessing/random_shear.py,sha256=uEr1iCCAHdpIhAVz2VZh7u82NEYtiM9eMIhvvIQyA9A,15020
|
|
419
419
|
keras/src/layers/preprocessing/image_preprocessing/random_translation.py,sha256=1l1Oufpsu54SunSrrBb-nq6cM9ANehgHJxWx40sTPig,14932
|
|
420
420
|
keras/src/layers/preprocessing/image_preprocessing/random_zoom.py,sha256=DBDSep-CGk-lsWP0gwP89SQR2k8-ZjYqKKj0rf-KWWA,16472
|
|
421
|
-
keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=
|
|
421
|
+
keras/src/layers/preprocessing/image_preprocessing/resizing.py,sha256=N3_Mw4KA-DC7R0zBNeRnCQWvzKa8Bpg1jRooUJSZLq0,12241
|
|
422
422
|
keras/src/layers/preprocessing/image_preprocessing/solarization.py,sha256=URBAHjCIRs8mlb1RCt39pHtylRgZuhxC7kFtACsGIbc,8015
|
|
423
423
|
keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
424
424
|
keras/src/layers/preprocessing/image_preprocessing/bounding_boxes/bounding_box.py,sha256=GVnRIE2NRecj8aKtslg26GIp1I1rTHurFFUEvfd_e-0,16260
|
|
@@ -476,7 +476,7 @@ keras/src/legacy/saving/saving_utils.py,sha256=8Sa2rmBGnTv86Tix20OgwF5vTLTpUYbfG
|
|
|
476
476
|
keras/src/legacy/saving/serialization.py,sha256=hiwqO3Il861pkfm0Egaeph2XbhOlQQobmZjbZZgK32c,21368
|
|
477
477
|
keras/src/losses/__init__.py,sha256=rt63Ye0f7YdAR0eV0EOj2J61DI6xNdp2ojonx6rB3wE,6595
|
|
478
478
|
keras/src/losses/loss.py,sha256=8dCOv64yj9QC_GbcKT9M8YEC_Jr01wWuo-BBqFbfg0Q,8783
|
|
479
|
-
keras/src/losses/losses.py,sha256=
|
|
479
|
+
keras/src/losses/losses.py,sha256=MeFB4X3YLiTCw8sOEKpFUrSD4yv8E7hte91Gg-v04ok,100169
|
|
480
480
|
keras/src/metrics/__init__.py,sha256=CydJsY38PR2lRN4irhO_wnlvgruTEAgSHp8eUYE0lwY,7410
|
|
481
481
|
keras/src/metrics/accuracy_metrics.py,sha256=i_7ObnlyyE_UKDj8Nk5h5skakqpMlkMiphJ20eqcYho,18274
|
|
482
482
|
keras/src/metrics/confusion_metrics.py,sha256=EKN1JGndT7pVesg_YAh8mGiM2wieAbGzXlw1ftuUGu4,62640
|
|
@@ -492,19 +492,19 @@ keras/src/metrics/regression_metrics.py,sha256=eLacV_8CKtzA26BJDJuncUDATuL1x8O6S
|
|
|
492
492
|
keras/src/models/__init__.py,sha256=DPbBPSfIGgsufTfJH5U5xJOeN_Ef4FMadT7KKYg3Kjg,143
|
|
493
493
|
keras/src/models/cloning.py,sha256=P0gMH3H9nyz6SMsdt4BQO05rXFa4qiqZk44rFpEnHsM,15945
|
|
494
494
|
keras/src/models/functional.py,sha256=uD-qH9WwAUhaBrAEWAKnsVvKo0tvdHxa1M0dbBOE96Y,34086
|
|
495
|
-
keras/src/models/model.py,sha256=
|
|
495
|
+
keras/src/models/model.py,sha256=szseM7sjfNkdOGytF25nijhjERBu_66WPSYaJ719VBY,42408
|
|
496
496
|
keras/src/models/sequential.py,sha256=CC9Q1BNB9m7TkgMHRyjOzhQvneng576wJpmdgHrACKY,14352
|
|
497
497
|
keras/src/models/variable_mapping.py,sha256=FVtcgjBRqOxtvkzOE6kjG9SpcB9keDg2gS5LOTlXvG0,2181
|
|
498
498
|
keras/src/ops/__init__.py,sha256=aORlvnrqY_eQl0EFLWdpHsXHnQ6JLSw1qhwJMr-VXJ0,644
|
|
499
499
|
keras/src/ops/core.py,sha256=t06-MvptYb6ZVwmNj083JyUtzU4M6UTVXOT2vVHtKyU,42781
|
|
500
500
|
keras/src/ops/einops.py,sha256=-pxW0_AzDQNsR7t2TJrzvYXBJpmLYA3fJoO0U_U96PY,6268
|
|
501
501
|
keras/src/ops/function.py,sha256=QV9n1-xeTPDK_FJ3sjlHDWVH2sqDj96R6YQnJueMOlA,17821
|
|
502
|
-
keras/src/ops/image.py,sha256=
|
|
502
|
+
keras/src/ops/image.py,sha256=Drfouun3Gaod0LNgG5nxrKkgIJ4STjWQWvzbTIjKOxs,67251
|
|
503
503
|
keras/src/ops/linalg.py,sha256=3V8S_cgNxZZCIFcFj-FBHTdRqWNbimDtumMvfoc0f30,26736
|
|
504
504
|
keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
|
|
505
505
|
keras/src/ops/nn.py,sha256=04gjHB2BWusy4tWm59EO5Ns1paJC5umDNGwNCKzaJWQ,104658
|
|
506
506
|
keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
|
|
507
|
-
keras/src/ops/numpy.py,sha256=
|
|
507
|
+
keras/src/ops/numpy.py,sha256=c5jXbWiE5jrGh1AteL3XsSgs1wNrpNUKxmTdThpNh-0,259129
|
|
508
508
|
keras/src/ops/operation.py,sha256=A7sh9Hi6kZb7wkeMmhrDQIq770ofANXuP-Qg-kwCM3o,15485
|
|
509
509
|
keras/src/ops/operation_utils.py,sha256=C6eThl-haKzlDH0fC1rn5-P1P-pCfIfXs-fy-ADR534,14523
|
|
510
510
|
keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
|
|
@@ -527,23 +527,27 @@ keras/src/optimizers/rmsprop.py,sha256=DCbmmViUnYCHMCO9YCtC2wGzPXxNPBJhkpwAmROOz
|
|
|
527
527
|
keras/src/optimizers/sgd.py,sha256=_3xanWOI0s2dISxEVT7i_tehsWakQQz2y480Iwkonas,4396
|
|
528
528
|
keras/src/optimizers/schedules/__init__.py,sha256=vuUuHNTev8sD2-swsuq7zqyYbmaOhDyiIE6F3dGGSZU,546
|
|
529
529
|
keras/src/optimizers/schedules/learning_rate_schedule.py,sha256=WI5QuaWFsEFJhRfLy0KCmkxKwGBMnmgMLYsWC_4YbCo,35828
|
|
530
|
-
keras/src/quantizers/__init__.py,sha256=
|
|
531
|
-
keras/src/quantizers/
|
|
530
|
+
keras/src/quantizers/__init__.py,sha256=3LlZ1Z5G5mYVdrZ2xnoFgW28OFneYc_Ys2dzuJ3S0nk,2459
|
|
531
|
+
keras/src/quantizers/awq.py,sha256=i7loWty9LEzfP04_FAyrRbKEXShkoQeScLNSuxRVKu8,13334
|
|
532
|
+
keras/src/quantizers/awq_config.py,sha256=jPD8-SRmWn_uHd1YtUEfI6V8fxmylOF8btUJMerVaEs,5701
|
|
533
|
+
keras/src/quantizers/awq_core.py,sha256=AJgbySMvSwENM1u-e08qb00mX5ub3egUrs677UdYKeQ,7640
|
|
534
|
+
keras/src/quantizers/gptq.py,sha256=ph6e-mzjxD0gGn98KiDS48muiScnfFvLnKFCbo1Ik7o,20123
|
|
532
535
|
keras/src/quantizers/gptq_config.py,sha256=zpPWsbfAdYZArhk_alSnFK-nBj92bdJZBzkSM1MKl5g,8925
|
|
533
|
-
keras/src/quantizers/gptq_core.py,sha256=
|
|
534
|
-
keras/src/quantizers/quantization_config.py,sha256=
|
|
535
|
-
keras/src/quantizers/quantizers.py,sha256=
|
|
536
|
+
keras/src/quantizers/gptq_core.py,sha256=EKhdTXZQ1uo45KYJcO0h9bMTbVZH4pmqs4irQy9r47o,16945
|
|
537
|
+
keras/src/quantizers/quantization_config.py,sha256=8jGV1lzLC-gk37U4By2ol0QJ9T3LNuMynet40xWlxjg,8117
|
|
538
|
+
keras/src/quantizers/quantizers.py,sha256=QzImbGjVaa6pISxhOJPwq7seQC4s_EToI5JHKp0gbkk,36698
|
|
536
539
|
keras/src/quantizers/utils.py,sha256=i6e5MobXrQeKA6zFenjzUNoDDWRGL9bcfgdbE_-0IeM,672
|
|
537
540
|
keras/src/random/__init__.py,sha256=BmXVYPzxbhADohoLtAEEzB3cesP7YBFDsp1qc6BWWlg,420
|
|
538
541
|
keras/src/random/random.py,sha256=bUADZIVDuCghwIWTk0qBxXTxUdiNGWIdsRi8QJ3ePg4,17581
|
|
539
|
-
keras/src/random/seed_generator.py,sha256
|
|
542
|
+
keras/src/random/seed_generator.py,sha256=-a0CQa7--Xt0g0nfdjLmUzlFElY9Y838VcCx05AcllY,5655
|
|
540
543
|
keras/src/regularizers/__init__.py,sha256=GzK9FTKL2Xxd5H55GfG9gxDqt4eZoVHFWICgb2VW8qM,1731
|
|
541
544
|
keras/src/regularizers/regularizers.py,sha256=urXNmMGuqHT7lOmS-yQPl3At3Ny-37Xlo389ErCg84A,11799
|
|
542
545
|
keras/src/saving/__init__.py,sha256=vnrtfvnzW7Gwtxe5COhaMoEnVYB5iDe2YlqJ-DvqFIk,614
|
|
543
546
|
keras/src/saving/file_editor.py,sha256=tsUo9mQbMa8433tHTnOKWFhDeathYwDb0CeWcDTTTBQ,32089
|
|
544
547
|
keras/src/saving/keras_saveable.py,sha256=aGIt1ajtsaamfUq18LM6ql8JEoQzi3HwzJEuwQ9bmKE,1285
|
|
545
548
|
keras/src/saving/object_registration.py,sha256=OOO-7-SNfPoFkFsR_c5jzE6aSIDIlHlnMcm9IlI_Gbs,7357
|
|
546
|
-
keras/src/saving/
|
|
549
|
+
keras/src/saving/orbax_util.py,sha256=ArJI9hQODUyyvzCiXt8AS3VH6E4SL0vF02-RHBk30gU,1621
|
|
550
|
+
keras/src/saving/saving_api.py,sha256=PMkxXhtNNKX8GlwIsCP8-Plt19M012wNEk7i8BhxWzo,12670
|
|
547
551
|
keras/src/saving/saving_lib.py,sha256=-uSXsojqzSl19FtW5FogCclvnu_nnVU3S-Si293DNq0,58723
|
|
548
552
|
keras/src/saving/serialization_lib.py,sha256=yzCTm8hin__MGA2N5M5F-8Zbts5ZJVmINbrH4wEtIwI,30334
|
|
549
553
|
keras/src/testing/__init__.py,sha256=7vVsV7Rn3rG99DdURgnH8ncpxagRwIE0uhH-R4qDyok,315
|
|
@@ -581,10 +585,10 @@ keras/src/utils/grain_utils.py,sha256=Wfwv12E3UrNZjJjTEk2JVV6_YEUav35UJ6bV1UAPEI
|
|
|
581
585
|
keras/src/utils/image_dataset_utils.py,sha256=0lOzD1CiXwZOe1wW-5uvFKuIgot9PWUC9KJJA0NVuP8,24017
|
|
582
586
|
keras/src/utils/image_utils.py,sha256=lGe4iKYQkQ6j15CbHoqpSMC6JEvCrekYBuYGoMClcpo,17051
|
|
583
587
|
keras/src/utils/io_utils.py,sha256=Riv9TCCnz6xQLUvR1QC-UOCoGZ_KiNTwQVvLY6dKcX8,4432
|
|
584
|
-
keras/src/utils/jax_layer.py,sha256=
|
|
588
|
+
keras/src/utils/jax_layer.py,sha256=xwUkk-yp5lieC_uJesn4T4Lkw1bdjtSY5Q-bK8PuHH0,34027
|
|
585
589
|
keras/src/utils/jax_utils.py,sha256=vY3P4S9mfWEjdirLd81ocKqeCm-UVfgQ1yTi6UHdBiM,322
|
|
586
590
|
keras/src/utils/model_visualization.py,sha256=0ENeiq8q-qbyGjfcRixyyInb3aTxfcKCooKhZ1hSuI0,17794
|
|
587
|
-
keras/src/utils/module_utils.py,sha256=
|
|
591
|
+
keras/src/utils/module_utils.py,sha256=FTZPMRLurURchLPX1tu-h3b-UoPW28faNOlDzpYDW6A,2894
|
|
588
592
|
keras/src/utils/naming.py,sha256=bPowKBlgiVP_6XtVlNVHxrxheKuJy2c0e-oEM8ocZQY,1776
|
|
589
593
|
keras/src/utils/numerical_utils.py,sha256=Uqe5nu1HXmiZuh5-MznomtDSVSO9FgFaltdDtGnN61o,7205
|
|
590
594
|
keras/src/utils/progbar.py,sha256=Yg2Vp1xzqU7HnfDEGSeZsmOKAKYKA4oEHv7yAMaucYw,10358
|
|
@@ -597,7 +601,7 @@ keras/src/utils/tf_utils.py,sha256=FTunWC5kdyjsK0TyxQxiHGaYNaAyUxhMX52Zee_Rz9c,4
|
|
|
597
601
|
keras/src/utils/timeseries_dataset_utils.py,sha256=rVxSuqlYLpzw_dVo8Ym5HSE2jFmndS8MAv4Uewycojo,9842
|
|
598
602
|
keras/src/utils/torch_utils.py,sha256=n0CAb7NFnK3CcfxY9VgA2kcZp_8SU05Ddg-KY0-qnoc,6619
|
|
599
603
|
keras/src/utils/traceback_utils.py,sha256=VI8VJ8QjTDc3-cx3xfR9H7g68D2KVH7VknHi_JrVMuU,8997
|
|
600
|
-
keras/src/utils/tracking.py,sha256=
|
|
604
|
+
keras/src/utils/tracking.py,sha256=rH6X-W8C4UG1ni6lzPB7EnOvYU9MsDUaQb1ox3zs2ms,10787
|
|
601
605
|
keras/src/visualization/__init__.py,sha256=bDdV3eLKeLKoUwUDBFuZxMO560OyFZND0zBn8vaG6rg,111
|
|
602
606
|
keras/src/visualization/draw_bounding_boxes.py,sha256=Gs7gNburpgwXr8CahiyQgZWhBD5ffVeoUG7kzIFL92g,6649
|
|
603
607
|
keras/src/visualization/draw_segmentation_masks.py,sha256=CAqZ0gNM-ufuL3sFtoDpzZfsGKxn7WcqmkjmWnvaGdA,4741
|
|
@@ -614,7 +618,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
|
614
618
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
|
615
619
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
|
616
620
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
|
617
|
-
keras_nightly-3.14.0.
|
|
618
|
-
keras_nightly-3.14.0.
|
|
619
|
-
keras_nightly-3.14.0.
|
|
620
|
-
keras_nightly-3.14.0.
|
|
621
|
+
keras_nightly-3.14.0.dev2026012204.dist-info/METADATA,sha256=FPFm1FPTR_fMzfJqiBWR_IOX_YMPs8xoUhjn4gCxO_I,6339
|
|
622
|
+
keras_nightly-3.14.0.dev2026012204.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
|
|
623
|
+
keras_nightly-3.14.0.dev2026012204.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
|
624
|
+
keras_nightly-3.14.0.dev2026012204.dist-info/RECORD,,
|
|
File without changes
|