keras-nightly 3.12.0.dev2025090403__py3-none-any.whl → 3.12.0.dev2025090603__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -208,6 +208,7 @@ from keras.src.ops.numpy import isnan as isnan
208
208
  from keras.src.ops.numpy import isneginf as isneginf
209
209
  from keras.src.ops.numpy import isposinf as isposinf
210
210
  from keras.src.ops.numpy import kaiser as kaiser
211
+ from keras.src.ops.numpy import kron as kron
211
212
  from keras.src.ops.numpy import left_shift as left_shift
212
213
  from keras.src.ops.numpy import less as less
213
214
  from keras.src.ops.numpy import less_equal as less_equal
@@ -96,6 +96,7 @@ from keras.src.ops.numpy import isnan as isnan
96
96
  from keras.src.ops.numpy import isneginf as isneginf
97
97
  from keras.src.ops.numpy import isposinf as isposinf
98
98
  from keras.src.ops.numpy import kaiser as kaiser
99
+ from keras.src.ops.numpy import kron as kron
99
100
  from keras.src.ops.numpy import left_shift as left_shift
100
101
  from keras.src.ops.numpy import less as less
101
102
  from keras.src.ops.numpy import less_equal as less_equal
keras/ops/__init__.py CHANGED
@@ -208,6 +208,7 @@ from keras.src.ops.numpy import isnan as isnan
208
208
  from keras.src.ops.numpy import isneginf as isneginf
209
209
  from keras.src.ops.numpy import isposinf as isposinf
210
210
  from keras.src.ops.numpy import kaiser as kaiser
211
+ from keras.src.ops.numpy import kron as kron
211
212
  from keras.src.ops.numpy import left_shift as left_shift
212
213
  from keras.src.ops.numpy import less as less
213
214
  from keras.src.ops.numpy import less_equal as less_equal
@@ -96,6 +96,7 @@ from keras.src.ops.numpy import isnan as isnan
96
96
  from keras.src.ops.numpy import isneginf as isneginf
97
97
  from keras.src.ops.numpy import isposinf as isposinf
98
98
  from keras.src.ops.numpy import kaiser as kaiser
99
+ from keras.src.ops.numpy import kron as kron
99
100
  from keras.src.ops.numpy import left_shift as left_shift
100
101
  from keras.src.ops.numpy import less as less
101
102
  from keras.src.ops.numpy import less_equal as less_equal
@@ -809,6 +809,12 @@ def isposinf(x):
809
809
  return jnp.isposinf(x)
810
810
 
811
811
 
812
+ def kron(x1, x2):
813
+ x1 = convert_to_tensor(x1)
814
+ x2 = convert_to_tensor(x2)
815
+ return jnp.kron(x1, x2)
816
+
817
+
812
818
  def less(x1, x2):
813
819
  x1 = convert_to_tensor(x1)
814
820
  x2 = convert_to_tensor(x2)
@@ -742,6 +742,13 @@ def isposinf(x):
742
742
  return np.isposinf(x)
743
743
 
744
744
 
745
+ def kron(x1, x2):
746
+ x1 = convert_to_tensor(x1)
747
+ x2 = convert_to_tensor(x2)
748
+ dtype = dtypes.result_type(x1.dtype, x2.dtype)
749
+ return np.kron(x1, x2).astype(dtype)
750
+
751
+
745
752
  def less(x1, x2):
746
753
  return np.less(x1, x2)
747
754
 
@@ -978,6 +978,10 @@ def isposinf(x):
978
978
  )
979
979
 
980
980
 
981
+ def kron(x1, x2):
982
+ raise NotImplementedError("`kron` is not supported with openvino backend")
983
+
984
+
981
985
  def less(x1, x2):
982
986
  element_type = None
983
987
  if isinstance(x1, OpenVINOKerasTensor):
@@ -1711,6 +1711,52 @@ def isposinf(x):
1711
1711
  return tf.math.equal(x, tf.constant(float("inf"), dtype=x.dtype))
1712
1712
 
1713
1713
 
1714
+ def kron(x1, x2):
1715
+ x1 = convert_to_tensor(x1)
1716
+ x2 = convert_to_tensor(x2)
1717
+
1718
+ dtype = dtypes.result_type(x1.dtype, x2.dtype)
1719
+ x1 = tf.cast(x1, dtype)
1720
+ x2 = tf.cast(x2, dtype)
1721
+
1722
+ ndim_x1 = tf.rank(x1)
1723
+ ndim_x2 = tf.rank(x2)
1724
+
1725
+ def expand_front(x, num):
1726
+ for _ in range(num):
1727
+ x = tf.expand_dims(x, axis=0)
1728
+ return x
1729
+
1730
+ x1 = tf.cond(
1731
+ ndim_x1 < ndim_x2,
1732
+ lambda: expand_front(x1, ndim_x2 - ndim_x1),
1733
+ lambda: x1,
1734
+ )
1735
+ x2 = tf.cond(
1736
+ ndim_x2 < ndim_x1,
1737
+ lambda: expand_front(x2, ndim_x1 - ndim_x2),
1738
+ lambda: x2,
1739
+ )
1740
+
1741
+ x1_reshaped = tf.reshape(
1742
+ x1,
1743
+ tf.reshape(
1744
+ tf.stack([tf.shape(x1), tf.ones_like(tf.shape(x1))], axis=1), [-1]
1745
+ ),
1746
+ )
1747
+ x2_reshaped = tf.reshape(
1748
+ x2,
1749
+ tf.reshape(
1750
+ tf.stack([tf.ones_like(tf.shape(x2)), tf.shape(x2)], axis=1), [-1]
1751
+ ),
1752
+ )
1753
+
1754
+ out = tf.multiply(x1_reshaped, x2_reshaped)
1755
+ out_shape = tf.multiply(tf.shape(x1), tf.shape(x2))
1756
+ out = tf.reshape(out, out_shape)
1757
+ return out
1758
+
1759
+
1714
1760
  def less(x1, x2):
1715
1761
  x1 = convert_to_tensor(x1)
1716
1762
  x2 = convert_to_tensor(x2)
@@ -945,6 +945,12 @@ def isposinf(x):
945
945
  return torch.isposinf(x)
946
946
 
947
947
 
948
+ def kron(x1, x2):
949
+ x1 = convert_to_tensor(x1)
950
+ x2 = convert_to_tensor(x2)
951
+ return torch.kron(x1, x2)
952
+
953
+
948
954
  def less(x1, x2):
949
955
  x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2)
950
956
  return torch.less(x1, x2)
keras/src/ops/numpy.py CHANGED
@@ -3845,6 +3845,49 @@ def isposinf(x):
3845
3845
  return backend.numpy.isposinf(x)
3846
3846
 
3847
3847
 
3848
+ class Kron(Operation):
3849
+ def call(self, x1, x2):
3850
+ return backend.numpy.kron(x1, x2)
3851
+
3852
+ def compute_output_spec(self, x1, x2):
3853
+ x1_shape = getattr(x1, "shape", [])
3854
+ x2_shape = getattr(x2, "shape", [])
3855
+
3856
+ def _mul_shape_dim(a, b):
3857
+ if a is None or b is None:
3858
+ return None
3859
+ return a * b
3860
+
3861
+ output_shape = tuple(
3862
+ _mul_shape_dim(a, b) for a, b in zip(x1_shape, x2_shape)
3863
+ )
3864
+
3865
+ x1_type = backend.standardize_dtype(getattr(x1, "dtype", type(x1)))
3866
+ x2_type = backend.standardize_dtype(getattr(x2, "dtype", type(x2)))
3867
+ dtype = dtypes.result_type(x1_type, x2_type)
3868
+ return KerasTensor(output_shape, dtype=dtype)
3869
+
3870
+
3871
+ @keras_export(["keras.ops.kron", "keras.ops.numpy.kron"])
3872
+ def kron(x1, x2):
3873
+ """Kronecker product of `x1` and `x2`.
3874
+
3875
+ Computes the Kronecker product of two input tensors. If `x1` has shape
3876
+ `(a0, a1, ..., an)` and `x2` has shape `(b0, b1, ..., bn)`, then the
3877
+ output will have shape `(a0*b0, a1*b1, ..., an*bn)`.
3878
+
3879
+ Args:
3880
+ x1: First input tensor.
3881
+ x2: Second input tensor.
3882
+
3883
+ Returns:
3884
+ A tensor representing the Kronecker product of `x1` and `x2`.
3885
+ """
3886
+ if any_symbolic_tensors((x1, x2)):
3887
+ return Kron().symbolic_call(x1, x2)
3888
+ return backend.numpy.kron(x1, x2)
3889
+
3890
+
3848
3891
  class Less(Operation):
3849
3892
  def call(self, x1, x2):
3850
3893
  return backend.numpy.less(x1, x2)
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.12.0.dev2025090403"
4
+ __version__ = "3.12.0.dev2025090603"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.12.0.dev2025090403
3
+ Version: 3.12.0.dev2025090603
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -44,11 +44,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
44
44
  keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
45
45
  keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
46
46
  keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
47
- keras/_tf_keras/keras/ops/__init__.py,sha256=yQXz8CrRtgdWsn8hAnqlj598WXteZ-z_-TfgDKxV_WA,14731
47
+ keras/_tf_keras/keras/ops/__init__.py,sha256=xRJsr1GlVFl3FOzL-q80ZyKdc5p87EaphlALJIdR1SQ,14776
48
48
  keras/_tf_keras/keras/ops/image/__init__.py,sha256=K57F1fBruHn6hacx9uQFWPYO1qbdNM40VR3djvKIRq4,961
49
49
  keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=cc8apE35y2X8idUxY-kc7qYCUm3SAvY2b_StSjRB7Ro,778
50
50
  keras/_tf_keras/keras/ops/nn/__init__.py,sha256=DAloStL366PAGID_tqeSKnConPl5aB4dcyNVm8bWnUU,2802
51
- keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=PWk69Pi1Z8KLcK_ByDepAxBHvPfU5DL1vxXuvqkd3cU,9027
51
+ keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=3AL2NyuxFcski5t45CbatwY3VGa6hco-hvHcxW_WcQo,9072
52
52
  keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
53
53
  keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
54
54
  keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -109,11 +109,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
109
109
  keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
110
110
  keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
111
111
  keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
112
- keras/ops/__init__.py,sha256=yQXz8CrRtgdWsn8hAnqlj598WXteZ-z_-TfgDKxV_WA,14731
112
+ keras/ops/__init__.py,sha256=xRJsr1GlVFl3FOzL-q80ZyKdc5p87EaphlALJIdR1SQ,14776
113
113
  keras/ops/image/__init__.py,sha256=K57F1fBruHn6hacx9uQFWPYO1qbdNM40VR3djvKIRq4,961
114
114
  keras/ops/linalg/__init__.py,sha256=cc8apE35y2X8idUxY-kc7qYCUm3SAvY2b_StSjRB7Ro,778
115
115
  keras/ops/nn/__init__.py,sha256=DAloStL366PAGID_tqeSKnConPl5aB4dcyNVm8bWnUU,2802
116
- keras/ops/numpy/__init__.py,sha256=PWk69Pi1Z8KLcK_ByDepAxBHvPfU5DL1vxXuvqkd3cU,9027
116
+ keras/ops/numpy/__init__.py,sha256=3AL2NyuxFcski5t45CbatwY3VGa6hco-hvHcxW_WcQo,9072
117
117
  keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
118
118
  keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
119
119
  keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
@@ -126,7 +126,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
126
126
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
127
127
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
128
128
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
129
- keras/src/version.py,sha256=7vdIM9SpPYc0tR9Sx69WYreBdg5rhdqe-QcMNCO_39U,204
129
+ keras/src/version.py,sha256=ELthL9eucLtJhRxWi9NzOJq40f7oHEyHG97k0pbAHno,204
130
130
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
131
131
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
132
132
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -169,7 +169,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
169
169
  keras/src/backend/jax/linalg.py,sha256=dtGHRYCvoVlRX0UwbDDdunA8Vp_mA3sdqoasX4P8SbQ,2532
170
170
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
171
171
  keras/src/backend/jax/nn.py,sha256=R0a8-WB0YCl14FpRi2CQ45MFRvHCFtPTedk0Q1LfWYc,45935
172
- keras/src/backend/jax/numpy.py,sha256=S0FA9ZM0U9zYH_011-89xAoe_UCpMKeSTTskniBNAoE,36907
172
+ keras/src/backend/jax/numpy.py,sha256=24u0ypCCjvlnpr0diBlGAP373XnzYNjFK3kuv9N_Oro,37017
173
173
  keras/src/backend/jax/optimizer.py,sha256=JSKRkBteb7u-He5rtHwU6Wy5p8IjSsZf-IIL4-eQfsE,4102
174
174
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
175
175
  keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
@@ -184,7 +184,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
184
184
  keras/src/backend/numpy/linalg.py,sha256=H8Bdu8LG6OlzXqx8uVxLmTKKE8s9lMoZHMsM2tW4e04,2417
185
185
  keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
186
186
  keras/src/backend/numpy/nn.py,sha256=wTh4s2ZvL4PjPjz4VE6tMrFkRMaQiqpdBeNb6RY5kyE,36623
187
- keras/src/backend/numpy/numpy.py,sha256=gr2kiDR9bbFFDOkM-q0h1Ke6o2b-GFS33Cw0Cab8cnk,35408
187
+ keras/src/backend/numpy/numpy.py,sha256=KfzmeN5WO1u8lhZJSiewWO3psln7p9XL3Id-Zglijos,35582
188
188
  keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
189
189
  keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
190
190
  keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
@@ -196,7 +196,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
196
196
  keras/src/backend/openvino/linalg.py,sha256=Q09iv7fcE-xtNOop_hTG_RADkI0CHhjfrcOHqdWCmIY,1486
197
197
  keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
198
198
  keras/src/backend/openvino/nn.py,sha256=FUjNvBOcwP-A1BHffaCIZ-bl6na6xM_v91dcaTP4Q4U,15121
199
- keras/src/backend/openvino/numpy.py,sha256=XYXmWh7i-3jsPq0Dpzw8bwcspgKUoIzKa1_wa_EX5fg,65713
199
+ keras/src/backend/openvino/numpy.py,sha256=LmVuPzBjgYZ9RAuw2JeRfKcaLJSw-BOADXfvszC2F8w,65812
200
200
  keras/src/backend/openvino/random.py,sha256=bR7BYdfYHsBi5rYgCKmpFf310fa1q7JT48Z29XxhwmA,5851
201
201
  keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
202
202
  keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
@@ -209,7 +209,7 @@ keras/src/backend/tensorflow/layer.py,sha256=iE6XYSZENEoTpNhoXrEOm7gnIOHwOjETZd_
209
209
  keras/src/backend/tensorflow/linalg.py,sha256=fpzxql1ycXIAks9AvS753aiSoaVqAuM6xbv671BulhQ,8038
210
210
  keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
211
211
  keras/src/backend/tensorflow/nn.py,sha256=oS7sngoA2C2SFfKQdYWvSZe7HCFfG29t4glbE6yv9CM,34616
212
- keras/src/backend/tensorflow/numpy.py,sha256=3KqOBtVfMf8qQ9YEqpLSZLbv5oWftvBOjNjVE8j67o0,96100
212
+ keras/src/backend/tensorflow/numpy.py,sha256=dDJwshRZcG8jRJg82B3YbGZV-uyfHJXARPKRtha-XAs,97185
213
213
  keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
214
214
  keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
215
215
  keras/src/backend/tensorflow/rnn.py,sha256=99EJqbPdWddmG14zyjjhUZfU5zo9ObmslF_Mak7EmAs,34602
@@ -225,7 +225,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
225
225
  keras/src/backend/torch/linalg.py,sha256=2GUb107BufiHEK2zJ_fkFREo8Y8mo0OqUZLkwNNgOv4,1991
226
226
  keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
227
227
  keras/src/backend/torch/nn.py,sha256=8sqbeYU1siImRRyF4J-7JEE_CvcVeGnQ4D9aGijAyxo,33379
228
- keras/src/backend/torch/numpy.py,sha256=8kQfqtbMwDoi9Ra8I1ykphf2ZY0-RYlMC61MfwDeBU4,55098
228
+ keras/src/backend/torch/numpy.py,sha256=t_JTibPexzQcZ-_x27Y26cGdSDzF6k_KzggnlRAXhE4,55210
229
229
  keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
230
230
  keras/src/backend/torch/rnn.py,sha256=J0vg7ikxBiv1FzEavgwT8IVCs0ceBcEv5LYyM5C2suA,25545
231
231
  keras/src/backend/torch/trainer.py,sha256=TCnq0Tl9W0OUYesGGaSTWtGMnPiz-s6jrR5AC2F-TTg,17837
@@ -489,7 +489,7 @@ keras/src/ops/linalg.py,sha256=1Z6my5X0e0uoTYPGJ0I0s2hiKbxYFmdyvoifBcZJEsc,22636
489
489
  keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
490
490
  keras/src/ops/nn.py,sha256=1BC-zmnpsUhqG5lSE4VvV5PsBf81wN0ZGg4kU-R8TJY,95259
491
491
  keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
492
- keras/src/ops/numpy.py,sha256=ovWnm3XHDIzjiwjm_GjM0oVZHCGige7Ek95cX4qCAvk,236694
492
+ keras/src/ops/numpy.py,sha256=xA4ozOEzgEzWlS28OnMMG6W0euvaN5lRWSL-fT65R5Y,238034
493
493
  keras/src/ops/operation.py,sha256=dpPI6bQsdBk6j0EUNygoLRHngrMTDoqT2Z55mgq6hbE,15520
494
494
  keras/src/ops/operation_utils.py,sha256=BSarr5DZF5dr-URdXNzawwZlFx6R7VRjh6P2DGwgrT4,14457
495
495
  keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
@@ -596,7 +596,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
596
596
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
597
597
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
598
598
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
599
- keras_nightly-3.12.0.dev2025090403.dist-info/METADATA,sha256=cEhICjKAML22jqL3yo9btobI1G2M9ARh1SpNDrIAniA,5970
600
- keras_nightly-3.12.0.dev2025090403.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
601
- keras_nightly-3.12.0.dev2025090403.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
602
- keras_nightly-3.12.0.dev2025090403.dist-info/RECORD,,
599
+ keras_nightly-3.12.0.dev2025090603.dist-info/METADATA,sha256=LGZ5_VYCdAQYjKxL2Rl30PCxugeHn1nF_bbmSX5xvGE,5970
600
+ keras_nightly-3.12.0.dev2025090603.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
601
+ keras_nightly-3.12.0.dev2025090603.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
602
+ keras_nightly-3.12.0.dev2025090603.dist-info/RECORD,,