keras-nightly 3.12.0.dev2025090403__py3-none-any.whl → 3.12.0.dev2025090503__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/_tf_keras/keras/ops/__init__.py +1 -0
- keras/_tf_keras/keras/ops/numpy/__init__.py +1 -0
- keras/ops/__init__.py +1 -0
- keras/ops/numpy/__init__.py +1 -0
- keras/src/backend/jax/numpy.py +6 -0
- keras/src/backend/numpy/numpy.py +7 -0
- keras/src/backend/openvino/numpy.py +4 -0
- keras/src/backend/tensorflow/numpy.py +46 -0
- keras/src/backend/torch/numpy.py +6 -0
- keras/src/ops/numpy.py +43 -0
- keras/src/version.py +1 -1
- {keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/METADATA +1 -1
- {keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/RECORD +15 -15
- {keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/WHEEL +0 -0
- {keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/top_level.txt +0 -0
@@ -208,6 +208,7 @@ from keras.src.ops.numpy import isnan as isnan
|
|
208
208
|
from keras.src.ops.numpy import isneginf as isneginf
|
209
209
|
from keras.src.ops.numpy import isposinf as isposinf
|
210
210
|
from keras.src.ops.numpy import kaiser as kaiser
|
211
|
+
from keras.src.ops.numpy import kron as kron
|
211
212
|
from keras.src.ops.numpy import left_shift as left_shift
|
212
213
|
from keras.src.ops.numpy import less as less
|
213
214
|
from keras.src.ops.numpy import less_equal as less_equal
|
@@ -96,6 +96,7 @@ from keras.src.ops.numpy import isnan as isnan
|
|
96
96
|
from keras.src.ops.numpy import isneginf as isneginf
|
97
97
|
from keras.src.ops.numpy import isposinf as isposinf
|
98
98
|
from keras.src.ops.numpy import kaiser as kaiser
|
99
|
+
from keras.src.ops.numpy import kron as kron
|
99
100
|
from keras.src.ops.numpy import left_shift as left_shift
|
100
101
|
from keras.src.ops.numpy import less as less
|
101
102
|
from keras.src.ops.numpy import less_equal as less_equal
|
keras/ops/__init__.py
CHANGED
@@ -208,6 +208,7 @@ from keras.src.ops.numpy import isnan as isnan
|
|
208
208
|
from keras.src.ops.numpy import isneginf as isneginf
|
209
209
|
from keras.src.ops.numpy import isposinf as isposinf
|
210
210
|
from keras.src.ops.numpy import kaiser as kaiser
|
211
|
+
from keras.src.ops.numpy import kron as kron
|
211
212
|
from keras.src.ops.numpy import left_shift as left_shift
|
212
213
|
from keras.src.ops.numpy import less as less
|
213
214
|
from keras.src.ops.numpy import less_equal as less_equal
|
keras/ops/numpy/__init__.py
CHANGED
@@ -96,6 +96,7 @@ from keras.src.ops.numpy import isnan as isnan
|
|
96
96
|
from keras.src.ops.numpy import isneginf as isneginf
|
97
97
|
from keras.src.ops.numpy import isposinf as isposinf
|
98
98
|
from keras.src.ops.numpy import kaiser as kaiser
|
99
|
+
from keras.src.ops.numpy import kron as kron
|
99
100
|
from keras.src.ops.numpy import left_shift as left_shift
|
100
101
|
from keras.src.ops.numpy import less as less
|
101
102
|
from keras.src.ops.numpy import less_equal as less_equal
|
keras/src/backend/jax/numpy.py
CHANGED
@@ -809,6 +809,12 @@ def isposinf(x):
|
|
809
809
|
return jnp.isposinf(x)
|
810
810
|
|
811
811
|
|
812
|
+
def kron(x1, x2):
|
813
|
+
x1 = convert_to_tensor(x1)
|
814
|
+
x2 = convert_to_tensor(x2)
|
815
|
+
return jnp.kron(x1, x2)
|
816
|
+
|
817
|
+
|
812
818
|
def less(x1, x2):
|
813
819
|
x1 = convert_to_tensor(x1)
|
814
820
|
x2 = convert_to_tensor(x2)
|
keras/src/backend/numpy/numpy.py
CHANGED
@@ -742,6 +742,13 @@ def isposinf(x):
|
|
742
742
|
return np.isposinf(x)
|
743
743
|
|
744
744
|
|
745
|
+
def kron(x1, x2):
|
746
|
+
x1 = convert_to_tensor(x1)
|
747
|
+
x2 = convert_to_tensor(x2)
|
748
|
+
dtype = dtypes.result_type(x1.dtype, x2.dtype)
|
749
|
+
return np.kron(x1, x2).astype(dtype)
|
750
|
+
|
751
|
+
|
745
752
|
def less(x1, x2):
|
746
753
|
return np.less(x1, x2)
|
747
754
|
|
@@ -1711,6 +1711,52 @@ def isposinf(x):
|
|
1711
1711
|
return tf.math.equal(x, tf.constant(float("inf"), dtype=x.dtype))
|
1712
1712
|
|
1713
1713
|
|
1714
|
+
def kron(x1, x2):
|
1715
|
+
x1 = convert_to_tensor(x1)
|
1716
|
+
x2 = convert_to_tensor(x2)
|
1717
|
+
|
1718
|
+
dtype = dtypes.result_type(x1.dtype, x2.dtype)
|
1719
|
+
x1 = tf.cast(x1, dtype)
|
1720
|
+
x2 = tf.cast(x2, dtype)
|
1721
|
+
|
1722
|
+
ndim_x1 = tf.rank(x1)
|
1723
|
+
ndim_x2 = tf.rank(x2)
|
1724
|
+
|
1725
|
+
def expand_front(x, num):
|
1726
|
+
for _ in range(num):
|
1727
|
+
x = tf.expand_dims(x, axis=0)
|
1728
|
+
return x
|
1729
|
+
|
1730
|
+
x1 = tf.cond(
|
1731
|
+
ndim_x1 < ndim_x2,
|
1732
|
+
lambda: expand_front(x1, ndim_x2 - ndim_x1),
|
1733
|
+
lambda: x1,
|
1734
|
+
)
|
1735
|
+
x2 = tf.cond(
|
1736
|
+
ndim_x2 < ndim_x1,
|
1737
|
+
lambda: expand_front(x2, ndim_x1 - ndim_x2),
|
1738
|
+
lambda: x2,
|
1739
|
+
)
|
1740
|
+
|
1741
|
+
x1_reshaped = tf.reshape(
|
1742
|
+
x1,
|
1743
|
+
tf.reshape(
|
1744
|
+
tf.stack([tf.shape(x1), tf.ones_like(tf.shape(x1))], axis=1), [-1]
|
1745
|
+
),
|
1746
|
+
)
|
1747
|
+
x2_reshaped = tf.reshape(
|
1748
|
+
x2,
|
1749
|
+
tf.reshape(
|
1750
|
+
tf.stack([tf.ones_like(tf.shape(x2)), tf.shape(x2)], axis=1), [-1]
|
1751
|
+
),
|
1752
|
+
)
|
1753
|
+
|
1754
|
+
out = tf.multiply(x1_reshaped, x2_reshaped)
|
1755
|
+
out_shape = tf.multiply(tf.shape(x1), tf.shape(x2))
|
1756
|
+
out = tf.reshape(out, out_shape)
|
1757
|
+
return out
|
1758
|
+
|
1759
|
+
|
1714
1760
|
def less(x1, x2):
|
1715
1761
|
x1 = convert_to_tensor(x1)
|
1716
1762
|
x2 = convert_to_tensor(x2)
|
keras/src/backend/torch/numpy.py
CHANGED
@@ -945,6 +945,12 @@ def isposinf(x):
|
|
945
945
|
return torch.isposinf(x)
|
946
946
|
|
947
947
|
|
948
|
+
def kron(x1, x2):
|
949
|
+
x1 = convert_to_tensor(x1)
|
950
|
+
x2 = convert_to_tensor(x2)
|
951
|
+
return torch.kron(x1, x2)
|
952
|
+
|
953
|
+
|
948
954
|
def less(x1, x2):
|
949
955
|
x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2)
|
950
956
|
return torch.less(x1, x2)
|
keras/src/ops/numpy.py
CHANGED
@@ -3845,6 +3845,49 @@ def isposinf(x):
|
|
3845
3845
|
return backend.numpy.isposinf(x)
|
3846
3846
|
|
3847
3847
|
|
3848
|
+
class Kron(Operation):
|
3849
|
+
def call(self, x1, x2):
|
3850
|
+
return backend.numpy.kron(x1, x2)
|
3851
|
+
|
3852
|
+
def compute_output_spec(self, x1, x2):
|
3853
|
+
x1_shape = getattr(x1, "shape", [])
|
3854
|
+
x2_shape = getattr(x2, "shape", [])
|
3855
|
+
|
3856
|
+
def _mul_shape_dim(a, b):
|
3857
|
+
if a is None or b is None:
|
3858
|
+
return None
|
3859
|
+
return a * b
|
3860
|
+
|
3861
|
+
output_shape = tuple(
|
3862
|
+
_mul_shape_dim(a, b) for a, b in zip(x1_shape, x2_shape)
|
3863
|
+
)
|
3864
|
+
|
3865
|
+
x1_type = backend.standardize_dtype(getattr(x1, "dtype", type(x1)))
|
3866
|
+
x2_type = backend.standardize_dtype(getattr(x2, "dtype", type(x2)))
|
3867
|
+
dtype = dtypes.result_type(x1_type, x2_type)
|
3868
|
+
return KerasTensor(output_shape, dtype=dtype)
|
3869
|
+
|
3870
|
+
|
3871
|
+
@keras_export(["keras.ops.kron", "keras.ops.numpy.kron"])
|
3872
|
+
def kron(x1, x2):
|
3873
|
+
"""Kronecker product of `x1` and `x2`.
|
3874
|
+
|
3875
|
+
Computes the Kronecker product of two input tensors. If `x1` has shape
|
3876
|
+
`(a0, a1, ..., an)` and `x2` has shape `(b0, b1, ..., bn)`, then the
|
3877
|
+
output will have shape `(a0*b0, a1*b1, ..., an*bn)`.
|
3878
|
+
|
3879
|
+
Args:
|
3880
|
+
x1: First input tensor.
|
3881
|
+
x2: Second input tensor.
|
3882
|
+
|
3883
|
+
Returns:
|
3884
|
+
A tensor representing the Kronecker product of `x1` and `x2`.
|
3885
|
+
"""
|
3886
|
+
if any_symbolic_tensors((x1, x2)):
|
3887
|
+
return Kron().symbolic_call(x1, x2)
|
3888
|
+
return backend.numpy.kron(x1, x2)
|
3889
|
+
|
3890
|
+
|
3848
3891
|
class Less(Operation):
|
3849
3892
|
def call(self, x1, x2):
|
3850
3893
|
return backend.numpy.less(x1, x2)
|
keras/src/version.py
CHANGED
{keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/RECORD
RENAMED
@@ -44,11 +44,11 @@ keras/_tf_keras/keras/losses/__init__.py,sha256=xBc_KOtSLwp3h3CKQ0EnCuIy-Bsak2SP
|
|
44
44
|
keras/_tf_keras/keras/metrics/__init__.py,sha256=_wF31PTvua5ahF9JEW4Hx1UVNjVCLqVI8J5JNrZCBf8,6546
|
45
45
|
keras/_tf_keras/keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
46
46
|
keras/_tf_keras/keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
47
|
-
keras/_tf_keras/keras/ops/__init__.py,sha256=
|
47
|
+
keras/_tf_keras/keras/ops/__init__.py,sha256=xRJsr1GlVFl3FOzL-q80ZyKdc5p87EaphlALJIdR1SQ,14776
|
48
48
|
keras/_tf_keras/keras/ops/image/__init__.py,sha256=K57F1fBruHn6hacx9uQFWPYO1qbdNM40VR3djvKIRq4,961
|
49
49
|
keras/_tf_keras/keras/ops/linalg/__init__.py,sha256=cc8apE35y2X8idUxY-kc7qYCUm3SAvY2b_StSjRB7Ro,778
|
50
50
|
keras/_tf_keras/keras/ops/nn/__init__.py,sha256=DAloStL366PAGID_tqeSKnConPl5aB4dcyNVm8bWnUU,2802
|
51
|
-
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=
|
51
|
+
keras/_tf_keras/keras/ops/numpy/__init__.py,sha256=3AL2NyuxFcski5t45CbatwY3VGa6hco-hvHcxW_WcQo,9072
|
52
52
|
keras/_tf_keras/keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
53
53
|
keras/_tf_keras/keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
54
54
|
keras/_tf_keras/keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
@@ -109,11 +109,11 @@ keras/losses/__init__.py,sha256=VIXBHQFNdLUPZ7JuwtIKj_4E-xf2yvNyrmdklvjr_xM,3667
|
|
109
109
|
keras/metrics/__init__.py,sha256=qeEwtqpSCAaCr8BMUv1eVaqJl2Zb83OB5K0BG3JB0nI,6245
|
110
110
|
keras/mixed_precision/__init__.py,sha256=AM51CzHqzcY75tqdpQiuVcTRUEpUzBqeb-EfLeSDSV8,727
|
111
111
|
keras/models/__init__.py,sha256=83pyA0pzytqin8JLV6FEbPreCb-V64ToebxFGrHsVdQ,501
|
112
|
-
keras/ops/__init__.py,sha256=
|
112
|
+
keras/ops/__init__.py,sha256=xRJsr1GlVFl3FOzL-q80ZyKdc5p87EaphlALJIdR1SQ,14776
|
113
113
|
keras/ops/image/__init__.py,sha256=K57F1fBruHn6hacx9uQFWPYO1qbdNM40VR3djvKIRq4,961
|
114
114
|
keras/ops/linalg/__init__.py,sha256=cc8apE35y2X8idUxY-kc7qYCUm3SAvY2b_StSjRB7Ro,778
|
115
115
|
keras/ops/nn/__init__.py,sha256=DAloStL366PAGID_tqeSKnConPl5aB4dcyNVm8bWnUU,2802
|
116
|
-
keras/ops/numpy/__init__.py,sha256=
|
116
|
+
keras/ops/numpy/__init__.py,sha256=3AL2NyuxFcski5t45CbatwY3VGa6hco-hvHcxW_WcQo,9072
|
117
117
|
keras/optimizers/__init__.py,sha256=1fx0vEB-oGu-9dumxoIvX4qVHdgJvf74OLyYoBkE2y0,1267
|
118
118
|
keras/optimizers/legacy/__init__.py,sha256=uIMQESCV80Q0FY-9ikQUjXYPyZqmTfAM3dfohQ5DzYs,516
|
119
119
|
keras/optimizers/schedules/__init__.py,sha256=pQF3rQiAPuUSTUdflTr-fpL77oyGIv9xzGdjae3M3kw,1120
|
@@ -126,7 +126,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
126
126
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
127
127
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
128
128
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
129
|
-
keras/src/version.py,sha256=
|
129
|
+
keras/src/version.py,sha256=f4wgAnvTNADitPmga3-jCHgq7Iz24bPZA31q1dURAJE,204
|
130
130
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
131
131
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
132
132
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -169,7 +169,7 @@ keras/src/backend/jax/layer.py,sha256=o6CicT06udwamTRQIjNSDLZLyYHFzBXNbxewXgWe0i
|
|
169
169
|
keras/src/backend/jax/linalg.py,sha256=dtGHRYCvoVlRX0UwbDDdunA8Vp_mA3sdqoasX4P8SbQ,2532
|
170
170
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
171
171
|
keras/src/backend/jax/nn.py,sha256=R0a8-WB0YCl14FpRi2CQ45MFRvHCFtPTedk0Q1LfWYc,45935
|
172
|
-
keras/src/backend/jax/numpy.py,sha256=
|
172
|
+
keras/src/backend/jax/numpy.py,sha256=24u0ypCCjvlnpr0diBlGAP373XnzYNjFK3kuv9N_Oro,37017
|
173
173
|
keras/src/backend/jax/optimizer.py,sha256=JSKRkBteb7u-He5rtHwU6Wy5p8IjSsZf-IIL4-eQfsE,4102
|
174
174
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
175
175
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
@@ -184,7 +184,7 @@ keras/src/backend/numpy/layer.py,sha256=dTk7W7ql7vRgll7JbOXK5PlIhQw5VHdpSjKciHd8
|
|
184
184
|
keras/src/backend/numpy/linalg.py,sha256=H8Bdu8LG6OlzXqx8uVxLmTKKE8s9lMoZHMsM2tW4e04,2417
|
185
185
|
keras/src/backend/numpy/math.py,sha256=HdkEA5ro7dtQBTP78GFIgqTFLgNQ49PXHhqI1vLRGfo,10169
|
186
186
|
keras/src/backend/numpy/nn.py,sha256=wTh4s2ZvL4PjPjz4VE6tMrFkRMaQiqpdBeNb6RY5kyE,36623
|
187
|
-
keras/src/backend/numpy/numpy.py,sha256=
|
187
|
+
keras/src/backend/numpy/numpy.py,sha256=KfzmeN5WO1u8lhZJSiewWO3psln7p9XL3Id-Zglijos,35582
|
188
188
|
keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZO8SA,3961
|
189
189
|
keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
|
190
190
|
keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
|
@@ -196,7 +196,7 @@ keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5b
|
|
196
196
|
keras/src/backend/openvino/linalg.py,sha256=Q09iv7fcE-xtNOop_hTG_RADkI0CHhjfrcOHqdWCmIY,1486
|
197
197
|
keras/src/backend/openvino/math.py,sha256=qw9kX2sJ2qr0dBJF12Ey0E2GcwixPUqoev6UcNra4NI,3944
|
198
198
|
keras/src/backend/openvino/nn.py,sha256=FUjNvBOcwP-A1BHffaCIZ-bl6na6xM_v91dcaTP4Q4U,15121
|
199
|
-
keras/src/backend/openvino/numpy.py,sha256=
|
199
|
+
keras/src/backend/openvino/numpy.py,sha256=LmVuPzBjgYZ9RAuw2JeRfKcaLJSw-BOADXfvszC2F8w,65812
|
200
200
|
keras/src/backend/openvino/random.py,sha256=bR7BYdfYHsBi5rYgCKmpFf310fa1q7JT48Z29XxhwmA,5851
|
201
201
|
keras/src/backend/openvino/rnn.py,sha256=ErmuZLPSgG9qU-NfYPPvBZ6Ysy8k-fA4g19Vhqq7OVQ,866
|
202
202
|
keras/src/backend/openvino/trainer.py,sha256=bMmtSALqydqdS6ke-5sYW5fgxZDshDH810p_C0xCRTg,9087
|
@@ -209,7 +209,7 @@ keras/src/backend/tensorflow/layer.py,sha256=iE6XYSZENEoTpNhoXrEOm7gnIOHwOjETZd_
|
|
209
209
|
keras/src/backend/tensorflow/linalg.py,sha256=fpzxql1ycXIAks9AvS753aiSoaVqAuM6xbv671BulhQ,8038
|
210
210
|
keras/src/backend/tensorflow/math.py,sha256=zTu_7Ff6B2Ro862z_xH0OCmIWbV74DjsO5UnfjYuOUQ,12370
|
211
211
|
keras/src/backend/tensorflow/nn.py,sha256=oS7sngoA2C2SFfKQdYWvSZe7HCFfG29t4glbE6yv9CM,34616
|
212
|
-
keras/src/backend/tensorflow/numpy.py,sha256=
|
212
|
+
keras/src/backend/tensorflow/numpy.py,sha256=dDJwshRZcG8jRJg82B3YbGZV-uyfHJXARPKRtha-XAs,97185
|
213
213
|
keras/src/backend/tensorflow/optimizer.py,sha256=kFlyEOnGjEYdLpd8mpwhUeku78__xBfZbbrDWpJrq60,9307
|
214
214
|
keras/src/backend/tensorflow/random.py,sha256=iO8V_soaDXZm9ewyAVbjudhsMj08C348c9Bz64nxXC4,6475
|
215
215
|
keras/src/backend/tensorflow/rnn.py,sha256=99EJqbPdWddmG14zyjjhUZfU5zo9ObmslF_Mak7EmAs,34602
|
@@ -225,7 +225,7 @@ keras/src/backend/torch/layer.py,sha256=htECdpv9ioHWM8_zqQkEdxgDsgLu8XJi5yXgnLl-
|
|
225
225
|
keras/src/backend/torch/linalg.py,sha256=2GUb107BufiHEK2zJ_fkFREo8Y8mo0OqUZLkwNNgOv4,1991
|
226
226
|
keras/src/backend/torch/math.py,sha256=g-ElDii2Y_o1-t6BAu2nbS7JH-aPqVS5Fqds8aYzIlg,14324
|
227
227
|
keras/src/backend/torch/nn.py,sha256=8sqbeYU1siImRRyF4J-7JEE_CvcVeGnQ4D9aGijAyxo,33379
|
228
|
-
keras/src/backend/torch/numpy.py,sha256=
|
228
|
+
keras/src/backend/torch/numpy.py,sha256=t_JTibPexzQcZ-_x27Y26cGdSDzF6k_KzggnlRAXhE4,55210
|
229
229
|
keras/src/backend/torch/random.py,sha256=YhLfC7qkGpzlU_i6gGPVormo3BMSo7OUA3TC3GCehrA,8292
|
230
230
|
keras/src/backend/torch/rnn.py,sha256=J0vg7ikxBiv1FzEavgwT8IVCs0ceBcEv5LYyM5C2suA,25545
|
231
231
|
keras/src/backend/torch/trainer.py,sha256=TCnq0Tl9W0OUYesGGaSTWtGMnPiz-s6jrR5AC2F-TTg,17837
|
@@ -489,7 +489,7 @@ keras/src/ops/linalg.py,sha256=1Z6my5X0e0uoTYPGJ0I0s2hiKbxYFmdyvoifBcZJEsc,22636
|
|
489
489
|
keras/src/ops/math.py,sha256=4qYMJ5qAPmeSyeF63YWoGbUkQt6f4_VX0enOChU4mXU,37233
|
490
490
|
keras/src/ops/nn.py,sha256=1BC-zmnpsUhqG5lSE4VvV5PsBf81wN0ZGg4kU-R8TJY,95259
|
491
491
|
keras/src/ops/node.py,sha256=aJgn9D-GkteE--Bbt2cZ9JjVxb2W2uS1OWEKoeLsl3Y,5583
|
492
|
-
keras/src/ops/numpy.py,sha256=
|
492
|
+
keras/src/ops/numpy.py,sha256=xA4ozOEzgEzWlS28OnMMG6W0euvaN5lRWSL-fT65R5Y,238034
|
493
493
|
keras/src/ops/operation.py,sha256=dpPI6bQsdBk6j0EUNygoLRHngrMTDoqT2Z55mgq6hbE,15520
|
494
494
|
keras/src/ops/operation_utils.py,sha256=BSarr5DZF5dr-URdXNzawwZlFx6R7VRjh6P2DGwgrT4,14457
|
495
495
|
keras/src/ops/symbolic_arguments.py,sha256=MKwXxZYkyouD9BPmQ1uUNxILdcwPvTayAqXaUV3P3o4,1628
|
@@ -596,7 +596,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
596
596
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
597
597
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
598
598
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
599
|
-
keras_nightly-3.12.0.
|
600
|
-
keras_nightly-3.12.0.
|
601
|
-
keras_nightly-3.12.0.
|
602
|
-
keras_nightly-3.12.0.
|
599
|
+
keras_nightly-3.12.0.dev2025090503.dist-info/METADATA,sha256=e94GtM-StE3GqZVta2RoPZGBYV6hQeS_ZFSlUJWJRbE,5970
|
600
|
+
keras_nightly-3.12.0.dev2025090503.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
601
|
+
keras_nightly-3.12.0.dev2025090503.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
602
|
+
keras_nightly-3.12.0.dev2025090503.dist-info/RECORD,,
|
{keras_nightly-3.12.0.dev2025090403.dist-info → keras_nightly-3.12.0.dev2025090503.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|