keras-nightly 3.12.0.dev2025082103__py3-none-any.whl → 3.12.0.dev2025082203__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/_tf_keras/keras/quantizers/__init__.py +1 -0
- keras/quantizers/__init__.py +1 -0
- keras/src/applications/convnext.py +20 -20
- keras/src/applications/densenet.py +21 -21
- keras/src/applications/efficientnet.py +16 -16
- keras/src/applications/efficientnet_v2.py +28 -28
- keras/src/applications/inception_resnet_v2.py +7 -7
- keras/src/applications/inception_v3.py +5 -5
- keras/src/applications/mobilenet_v2.py +13 -20
- keras/src/applications/mobilenet_v3.py +15 -15
- keras/src/applications/nasnet.py +7 -8
- keras/src/applications/resnet.py +32 -32
- keras/src/applications/xception.py +10 -10
- keras/src/backend/common/dtypes.py +3 -3
- keras/src/backend/common/variables.py +3 -1
- keras/src/backend/jax/export.py +1 -1
- keras/src/backend/jax/trainer.py +1 -1
- keras/src/backend/openvino/numpy.py +1 -1
- keras/src/backend/tensorflow/trainer.py +19 -1
- keras/src/backend/torch/core.py +6 -9
- keras/src/backend/torch/trainer.py +1 -1
- keras/src/callbacks/backup_and_restore.py +2 -2
- keras/src/callbacks/csv_logger.py +1 -1
- keras/src/callbacks/model_checkpoint.py +1 -1
- keras/src/callbacks/tensorboard.py +6 -6
- keras/src/datasets/boston_housing.py +1 -1
- keras/src/datasets/california_housing.py +1 -1
- keras/src/datasets/cifar10.py +1 -1
- keras/src/datasets/cifar100.py +2 -2
- keras/src/datasets/imdb.py +2 -2
- keras/src/datasets/mnist.py +1 -1
- keras/src/datasets/reuters.py +2 -2
- keras/src/dtype_policies/dtype_policy.py +1 -1
- keras/src/dtype_policies/dtype_policy_map.py +1 -1
- keras/src/export/tf2onnx_lib.py +1 -3
- keras/src/layers/input_spec.py +6 -6
- keras/src/layers/layer.py +1 -1
- keras/src/layers/preprocessing/category_encoding.py +3 -3
- keras/src/layers/preprocessing/data_layer.py +159 -0
- keras/src/layers/preprocessing/discretization.py +3 -3
- keras/src/layers/preprocessing/feature_space.py +4 -4
- keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +7 -4
- keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py +2 -2
- keras/src/layers/preprocessing/image_preprocessing/center_crop.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/cut_mix.py +6 -3
- keras/src/layers/preprocessing/image_preprocessing/equalization.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/mix_up.py +7 -4
- keras/src/layers/preprocessing/image_preprocessing/rand_augment.py +3 -1
- keras/src/layers/preprocessing/image_preprocessing/random_brightness.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_crop.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_erasing.py +6 -3
- keras/src/layers/preprocessing/image_preprocessing/random_flip.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_hue.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_invert.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_perspective.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_posterization.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_rotation.py +1 -1
- keras/src/layers/preprocessing/image_preprocessing/random_saturation.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_shear.py +3 -0
- keras/src/layers/preprocessing/image_preprocessing/random_translation.py +3 -3
- keras/src/layers/preprocessing/image_preprocessing/random_zoom.py +3 -3
- keras/src/layers/preprocessing/image_preprocessing/resizing.py +3 -3
- keras/src/layers/preprocessing/image_preprocessing/solarization.py +3 -0
- keras/src/layers/preprocessing/mel_spectrogram.py +29 -25
- keras/src/layers/preprocessing/normalization.py +5 -2
- keras/src/layers/preprocessing/rescaling.py +3 -3
- keras/src/layers/rnn/bidirectional.py +4 -4
- keras/src/legacy/backend.py +9 -23
- keras/src/legacy/preprocessing/image.py +11 -22
- keras/src/legacy/preprocessing/text.py +1 -1
- keras/src/models/functional.py +2 -2
- keras/src/models/model.py +21 -3
- keras/src/ops/function.py +1 -1
- keras/src/ops/numpy.py +5 -5
- keras/src/ops/operation.py +3 -2
- keras/src/optimizers/base_optimizer.py +3 -4
- keras/src/quantizers/gptq.py +350 -0
- keras/src/quantizers/gptq_config.py +169 -0
- keras/src/quantizers/gptq_core.py +335 -0
- keras/src/quantizers/gptq_quant.py +133 -0
- keras/src/saving/file_editor.py +22 -20
- keras/src/saving/object_registration.py +1 -1
- keras/src/saving/saving_lib.py +4 -4
- keras/src/saving/serialization_lib.py +3 -5
- keras/src/trainers/compile_utils.py +1 -1
- keras/src/trainers/data_adapters/array_data_adapter.py +9 -3
- keras/src/trainers/data_adapters/data_adapter_utils.py +15 -5
- keras/src/trainers/data_adapters/generator_data_adapter.py +2 -0
- keras/src/trainers/data_adapters/grain_dataset_adapter.py +8 -2
- keras/src/trainers/data_adapters/tf_dataset_adapter.py +4 -2
- keras/src/trainers/data_adapters/torch_data_loader_adapter.py +3 -1
- keras/src/tree/dmtree_impl.py +19 -3
- keras/src/tree/optree_impl.py +3 -3
- keras/src/tree/tree_api.py +5 -2
- keras/src/utils/file_utils.py +13 -5
- keras/src/utils/io_utils.py +1 -1
- keras/src/utils/model_visualization.py +1 -1
- keras/src/utils/progbar.py +5 -5
- keras/src/utils/summary_utils.py +4 -4
- keras/src/version.py +1 -1
- {keras_nightly-3.12.0.dev2025082103.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/METADATA +1 -1
- {keras_nightly-3.12.0.dev2025082103.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/RECORD +113 -109
- keras/src/layers/preprocessing/tf_data_layer.py +0 -78
- {keras_nightly-3.12.0.dev2025082103.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/WHEEL +0 -0
- {keras_nightly-3.12.0.dev2025082103.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/top_level.txt +0 -0
@@ -13,6 +13,9 @@ class RandomSaturation(BaseImagePreprocessingLayer):
|
|
13
13
|
This layer will randomly increase/reduce the saturation for the input RGB
|
14
14
|
images.
|
15
15
|
|
16
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
17
|
+
(independently of which backend you're using).
|
18
|
+
|
16
19
|
Args:
|
17
20
|
factor: A tuple of two floats or a single float.
|
18
21
|
`factor` controls the extent to which the image saturation
|
@@ -13,6 +13,9 @@ class RandomSharpness(BaseImagePreprocessingLayer):
|
|
13
13
|
original image and the processed image. This operation adjusts the clarity
|
14
14
|
of the edges in an image, ranging from blurred to enhanced sharpness.
|
15
15
|
|
16
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
17
|
+
(independently of which backend you're using).
|
18
|
+
|
16
19
|
Args:
|
17
20
|
factor: A tuple of two floats or a single float.
|
18
21
|
`factor` controls the extent to which the image sharpness
|
@@ -23,6 +23,9 @@ class RandomShear(BaseImagePreprocessingLayer):
|
|
23
23
|
regions created during the transformation are filled according to the
|
24
24
|
`fill_mode` and `fill_value` parameters.
|
25
25
|
|
26
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
27
|
+
(independently of which backend you're using).
|
28
|
+
|
26
29
|
Args:
|
27
30
|
x_factor: A tuple of two floats. For each augmented image, a value
|
28
31
|
is sampled from the provided range. If a float is passed, the
|
@@ -23,6 +23,9 @@ class RandomTranslation(BaseImagePreprocessingLayer):
|
|
23
23
|
of integer or floating point dtype. By default, the layer will output
|
24
24
|
floats.
|
25
25
|
|
26
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
27
|
+
(independently of which backend you're using).
|
28
|
+
|
26
29
|
Input shape:
|
27
30
|
3D (unbatched) or 4D (batched) tensor with shape:
|
28
31
|
`(..., height, width, channels)`, in `"channels_last"` format,
|
@@ -34,9 +37,6 @@ class RandomTranslation(BaseImagePreprocessingLayer):
|
|
34
37
|
or `(..., channels, target_height, target_width)`,
|
35
38
|
in `"channels_first"` format.
|
36
39
|
|
37
|
-
**Note:** This layer is safe to use inside a `tf.data` pipeline
|
38
|
-
(independently of which backend you're using).
|
39
|
-
|
40
40
|
Args:
|
41
41
|
height_factor: a float represented as fraction of value, or a tuple of
|
42
42
|
size 2 representing lower and upper bound for shifting vertically. A
|
@@ -24,6 +24,9 @@ class RandomZoom(BaseImagePreprocessingLayer):
|
|
24
24
|
of integer or floating point dtype.
|
25
25
|
By default, the layer will output floats.
|
26
26
|
|
27
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
28
|
+
(independently of which backend you're using).
|
29
|
+
|
27
30
|
Input shape:
|
28
31
|
3D (unbatched) or 4D (batched) tensor with shape:
|
29
32
|
`(..., height, width, channels)`, in `"channels_last"` format,
|
@@ -35,9 +38,6 @@ class RandomZoom(BaseImagePreprocessingLayer):
|
|
35
38
|
or `(..., channels, target_height, target_width)`,
|
36
39
|
in `"channels_first"` format.
|
37
40
|
|
38
|
-
**Note:** This layer is safe to use inside a `tf.data` pipeline
|
39
|
-
(independently of which backend you're using).
|
40
|
-
|
41
41
|
Args:
|
42
42
|
height_factor: a float represented as fraction of value, or a tuple of
|
43
43
|
size 2 representing lower and upper bound for zooming vertically.
|
@@ -21,6 +21,9 @@ class Resizing(BaseImagePreprocessingLayer):
|
|
21
21
|
format. Input pixel values can be of any range
|
22
22
|
(e.g. `[0., 1.)` or `[0, 255]`).
|
23
23
|
|
24
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
25
|
+
(independently of which backend you're using).
|
26
|
+
|
24
27
|
Input shape:
|
25
28
|
3D (unbatched) or 4D (batched) tensor with shape:
|
26
29
|
`(..., height, width, channels)`, in `"channels_last"` format,
|
@@ -32,9 +35,6 @@ class Resizing(BaseImagePreprocessingLayer):
|
|
32
35
|
or `(..., channels, target_height, target_width)`,
|
33
36
|
in `"channels_first"` format.
|
34
37
|
|
35
|
-
**Note:** This layer is safe to use inside a `tf.data` pipeline
|
36
|
-
(independently of which backend you're using).
|
37
|
-
|
38
38
|
Args:
|
39
39
|
height: Integer, the height of the output shape.
|
40
40
|
width: Integer, the width of the output shape.
|
@@ -15,6 +15,9 @@ class Solarization(BaseImagePreprocessingLayer):
|
|
15
15
|
to all values. When created with specified `threshold` the layer only
|
16
16
|
augments pixels that are above the `threshold` value.
|
17
17
|
|
18
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
19
|
+
(independently of which backend you're using).
|
20
|
+
|
18
21
|
Args:
|
19
22
|
addition_factor: (Optional) A tuple of two floats or a single float,
|
20
23
|
between 0 and 1.
|
@@ -1,5 +1,5 @@
|
|
1
1
|
from keras.src.api_export import keras_export
|
2
|
-
from keras.src.layers.preprocessing.
|
2
|
+
from keras.src.layers.preprocessing.data_layer import DataLayer
|
3
3
|
|
4
4
|
# mel spectrum constants.
|
5
5
|
_MEL_BREAK_FREQUENCY_HERTZ = 700.0
|
@@ -7,7 +7,7 @@ _MEL_HIGH_FREQUENCY_Q = 1127.0
|
|
7
7
|
|
8
8
|
|
9
9
|
@keras_export("keras.layers.MelSpectrogram")
|
10
|
-
class MelSpectrogram(
|
10
|
+
class MelSpectrogram(DataLayer):
|
11
11
|
"""A preprocessing layer to convert raw audio signals to Mel spectrograms.
|
12
12
|
|
13
13
|
This layer takes `float32`/`float64` single or batched audio signal as
|
@@ -24,10 +24,37 @@ class MelSpectrogram(TFDataLayer):
|
|
24
24
|
speech and music processing tasks like speech recognition, speaker
|
25
25
|
identification, and music genre classification.
|
26
26
|
|
27
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
28
|
+
(independently of which backend you're using).
|
29
|
+
|
27
30
|
References:
|
28
31
|
- [Spectrogram](https://en.wikipedia.org/wiki/Spectrogram),
|
29
32
|
- [Mel scale](https://en.wikipedia.org/wiki/Mel_scale).
|
30
33
|
|
34
|
+
Args:
|
35
|
+
fft_length: Integer, size of the FFT window.
|
36
|
+
sequence_stride: Integer, number of samples between successive STFT
|
37
|
+
columns.
|
38
|
+
sequence_length: Integer, size of the window used for applying
|
39
|
+
`window` to each audio frame. If `None`, defaults to `fft_length`.
|
40
|
+
window: String, name of the window function to use. Available values
|
41
|
+
are `"hann"` and `"hamming"`. If `window` is a tensor, it will be
|
42
|
+
used directly as the window and its length must be
|
43
|
+
`sequence_length`. If `window` is `None`, no windowing is
|
44
|
+
used. Defaults to `"hann"`.
|
45
|
+
sampling_rate: Integer, sample rate of the input signal.
|
46
|
+
num_mel_bins: Integer, number of mel bins to generate.
|
47
|
+
min_freq: Float, minimum frequency of the mel bins.
|
48
|
+
max_freq: Float, maximum frequency of the mel bins.
|
49
|
+
If `None`, defaults to `sampling_rate / 2`.
|
50
|
+
power_to_db: If True, convert the power spectrogram to decibels.
|
51
|
+
top_db: Float, minimum negative cut-off `max(10 * log10(S)) - top_db`.
|
52
|
+
mag_exp: Float, exponent for the magnitude spectrogram.
|
53
|
+
1 for magnitude, 2 for power, etc. Default is 2.
|
54
|
+
ref_power: Float, the power is scaled relative to it
|
55
|
+
`10 * log10(S / ref_power)`.
|
56
|
+
min_power: Float, minimum value for power and `ref_power`.
|
57
|
+
|
31
58
|
Examples:
|
32
59
|
|
33
60
|
**Unbatched audio signal**
|
@@ -55,29 +82,6 @@ class MelSpectrogram(TFDataLayer):
|
|
55
82
|
2D (unbatched) or 3D (batched) tensor with
|
56
83
|
shape:`(..., num_mel_bins, time)`.
|
57
84
|
|
58
|
-
Args:
|
59
|
-
fft_length: Integer, size of the FFT window.
|
60
|
-
sequence_stride: Integer, number of samples between successive STFT
|
61
|
-
columns.
|
62
|
-
sequence_length: Integer, size of the window used for applying
|
63
|
-
`window` to each audio frame. If `None`, defaults to `fft_length`.
|
64
|
-
window: String, name of the window function to use. Available values
|
65
|
-
are `"hann"` and `"hamming"`. If `window` is a tensor, it will be
|
66
|
-
used directly as the window and its length must be
|
67
|
-
`sequence_length`. If `window` is `None`, no windowing is
|
68
|
-
used. Defaults to `"hann"`.
|
69
|
-
sampling_rate: Integer, sample rate of the input signal.
|
70
|
-
num_mel_bins: Integer, number of mel bins to generate.
|
71
|
-
min_freq: Float, minimum frequency of the mel bins.
|
72
|
-
max_freq: Float, maximum frequency of the mel bins.
|
73
|
-
If `None`, defaults to `sampling_rate / 2`.
|
74
|
-
power_to_db: If True, convert the power spectrogram to decibels.
|
75
|
-
top_db: Float, minimum negative cut-off `max(10 * log10(S)) - top_db`.
|
76
|
-
mag_exp: Float, exponent for the magnitude spectrogram.
|
77
|
-
1 for magnitude, 2 for power, etc. Default is 2.
|
78
|
-
ref_power: Float, the power is scaled relative to it
|
79
|
-
`10 * log10(S / ref_power)`.
|
80
|
-
min_power: Float, minimum value for power and `ref_power`.
|
81
85
|
"""
|
82
86
|
|
83
87
|
def __init__(
|
@@ -5,12 +5,12 @@ import numpy as np
|
|
5
5
|
from keras.src import backend
|
6
6
|
from keras.src import ops
|
7
7
|
from keras.src.api_export import keras_export
|
8
|
-
from keras.src.layers.preprocessing.
|
8
|
+
from keras.src.layers.preprocessing.data_layer import DataLayer
|
9
9
|
from keras.src.utils.module_utils import tensorflow as tf
|
10
10
|
|
11
11
|
|
12
12
|
@keras_export("keras.layers.Normalization")
|
13
|
-
class Normalization(
|
13
|
+
class Normalization(DataLayer):
|
14
14
|
"""A preprocessing layer that normalizes continuous features.
|
15
15
|
|
16
16
|
This layer will shift and scale inputs into a distribution centered around
|
@@ -23,6 +23,9 @@ class Normalization(TFDataLayer):
|
|
23
23
|
variance of the data and store them as the layer's weights. `adapt()` should
|
24
24
|
be called before `fit()`, `evaluate()`, or `predict()`.
|
25
25
|
|
26
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
27
|
+
(independently of which backend you're using).
|
28
|
+
|
26
29
|
Args:
|
27
30
|
axis: Integer, tuple of integers, or None. The axis or axes that should
|
28
31
|
have a separate mean and variance for each index in the shape.
|
@@ -1,11 +1,11 @@
|
|
1
1
|
from keras.src import backend
|
2
2
|
from keras.src.api_export import keras_export
|
3
|
-
from keras.src.layers.preprocessing.
|
3
|
+
from keras.src.layers.preprocessing.data_layer import DataLayer
|
4
4
|
from keras.src.saving import serialization_lib
|
5
5
|
|
6
6
|
|
7
7
|
@keras_export("keras.layers.Rescaling")
|
8
|
-
class Rescaling(
|
8
|
+
class Rescaling(DataLayer):
|
9
9
|
"""A preprocessing layer which rescales input values to a new range.
|
10
10
|
|
11
11
|
This layer rescales every value of an input (often an image) by multiplying
|
@@ -23,7 +23,7 @@ class Rescaling(TFDataLayer):
|
|
23
23
|
of integer or floating point dtype, and by default the layer will output
|
24
24
|
floats.
|
25
25
|
|
26
|
-
**Note:** This layer is safe to use inside a `tf.data` pipeline
|
26
|
+
**Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
|
27
27
|
(independently of which backend you're using).
|
28
28
|
|
29
29
|
Args:
|
@@ -109,16 +109,16 @@ class Bidirectional(Layer):
|
|
109
109
|
# Recreate the forward layer from the original layer config, so that it
|
110
110
|
# will not carry over any state from the layer.
|
111
111
|
config = serialization_lib.serialize_keras_object(layer)
|
112
|
-
config["config"]["name"] =
|
113
|
-
layer.name,
|
112
|
+
config["config"]["name"] = (
|
113
|
+
f"forward_{utils.removeprefix(layer.name, 'forward_')}"
|
114
114
|
)
|
115
115
|
self.forward_layer = serialization_lib.deserialize_keras_object(config)
|
116
116
|
|
117
117
|
if backward_layer is None:
|
118
118
|
config = serialization_lib.serialize_keras_object(layer)
|
119
119
|
config["config"]["go_backwards"] = True
|
120
|
-
config["config"]["name"] =
|
121
|
-
layer.name,
|
120
|
+
config["config"]["name"] = (
|
121
|
+
f"backward_{utils.removeprefix(layer.name, 'backward_')}"
|
122
122
|
)
|
123
123
|
self.backward_layer = serialization_lib.deserialize_keras_object(
|
124
124
|
config
|
keras/src/legacy/backend.py
CHANGED
@@ -68,11 +68,7 @@ def batch_dot(x, y, axes=None):
|
|
68
68
|
raise ValueError(
|
69
69
|
"Cannot do batch_dot on inputs "
|
70
70
|
"with rank < 2. "
|
71
|
-
"Received inputs with tf.shapes "
|
72
|
-
+ str(x_shape)
|
73
|
-
+ " and "
|
74
|
-
+ str(y_shape)
|
75
|
-
+ "."
|
71
|
+
f"Received inputs with tf.shapes {x_shape} and {y_shape}."
|
76
72
|
)
|
77
73
|
|
78
74
|
x_batch_size = x_shape[0]
|
@@ -84,10 +80,7 @@ def batch_dot(x, y, axes=None):
|
|
84
80
|
"Cannot do batch_dot on inputs "
|
85
81
|
"with different batch sizes. "
|
86
82
|
"Received inputs with tf.shapes "
|
87
|
-
|
88
|
-
+ " and "
|
89
|
-
+ str(y_shape)
|
90
|
-
+ "."
|
83
|
+
f"{x_shape} and {y_shape}."
|
91
84
|
)
|
92
85
|
if isinstance(axes, int):
|
93
86
|
axes = [axes, axes]
|
@@ -101,9 +94,8 @@ def batch_dot(x, y, axes=None):
|
|
101
94
|
if py_any(isinstance(a, (list, tuple)) for a in axes):
|
102
95
|
raise ValueError(
|
103
96
|
"Multiple target dimensions are not supported. "
|
104
|
-
|
105
|
-
|
106
|
-
+ str(axes)
|
97
|
+
"Expected: None, int, (int, int), "
|
98
|
+
f"Provided: {axes}"
|
107
99
|
)
|
108
100
|
|
109
101
|
# if tuple, convert to list.
|
@@ -130,12 +122,8 @@ def batch_dot(x, y, axes=None):
|
|
130
122
|
if d1 is not None and d2 is not None and d1 != d2:
|
131
123
|
raise ValueError(
|
132
124
|
"Cannot do batch_dot on inputs with tf.shapes "
|
133
|
-
|
134
|
-
|
135
|
-
+ str(y_shape)
|
136
|
-
+ " with axes="
|
137
|
-
+ str(axes)
|
138
|
-
+ ". x.shape[%d] != y.shape[%d] (%d != %d)."
|
125
|
+
f"{x_shape} and {y_shape} with axes={axes}. "
|
126
|
+
"x.shape[%d] != y.shape[%d] (%d != %d)."
|
139
127
|
% (axes[0], axes[1], d1, d2)
|
140
128
|
)
|
141
129
|
|
@@ -1129,7 +1117,7 @@ def pool2d(
|
|
1129
1117
|
x, pool_size, strides, padding=padding, data_format=tf_data_format
|
1130
1118
|
)
|
1131
1119
|
else:
|
1132
|
-
raise ValueError("Invalid pooling mode:
|
1120
|
+
raise ValueError(f"Invalid pooling mode: {str(pool_mode)}")
|
1133
1121
|
|
1134
1122
|
if data_format == "channels_first" and tf_data_format == "NHWC":
|
1135
1123
|
x = tf.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
|
@@ -1169,7 +1157,7 @@ def pool3d(
|
|
1169
1157
|
x, pool_size, strides, padding=padding, data_format=tf_data_format
|
1170
1158
|
)
|
1171
1159
|
else:
|
1172
|
-
raise ValueError("Invalid pooling mode:
|
1160
|
+
raise ValueError(f"Invalid pooling mode: {str(pool_mode)}")
|
1173
1161
|
|
1174
1162
|
if data_format == "channels_first" and tf_data_format == "NDHWC":
|
1175
1163
|
x = tf.transpose(x, (0, 4, 1, 2, 3))
|
@@ -2150,9 +2138,7 @@ def switch(condition, then_expression, else_expression):
|
|
2150
2138
|
"Rank of `condition` should be less than or"
|
2151
2139
|
" equal to rank of `then_expression` and "
|
2152
2140
|
"`else_expression`. ndim(condition)="
|
2153
|
-
|
2154
|
-
+ ", ndim(then_expression)="
|
2155
|
-
+ str(expr_ndim)
|
2141
|
+
f"{cond_ndim}, ndim(then_expression)={expr_ndim}"
|
2156
2142
|
)
|
2157
2143
|
if cond_ndim > 1:
|
2158
2144
|
ndim_diff = expr_ndim - cond_ndim
|
@@ -617,17 +617,12 @@ class NumpyArrayIterator(Iterator):
|
|
617
617
|
channels_axis = 3 if data_format == "channels_last" else 1
|
618
618
|
if self.x.shape[channels_axis] not in {1, 3, 4}:
|
619
619
|
warnings.warn(
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
+ ". However, it was passed an array with shape "
|
627
|
-
+ str(self.x.shape)
|
628
|
-
+ " ("
|
629
|
-
+ str(self.x.shape[channels_axis])
|
630
|
-
+ " channels)."
|
620
|
+
f"NumpyArrayIterator is set to use the data format convention"
|
621
|
+
f' "{data_format}" (channels on axis {channels_axis})'
|
622
|
+
", i.e. expected either 1, 3, or 4 channels "
|
623
|
+
f"on axis {channels_axis}. "
|
624
|
+
f"However, it was passed an array with shape {self.x.shape}"
|
625
|
+
f" ({self.x.shape[channels_axis]} channels)."
|
631
626
|
)
|
632
627
|
if y is not None:
|
633
628
|
self.y = np.asarray(y)
|
@@ -1494,17 +1489,11 @@ class ImageDataGenerator:
|
|
1494
1489
|
if x.shape[self.channel_axis] not in {1, 3, 4}:
|
1495
1490
|
warnings.warn(
|
1496
1491
|
"Expected input to be images (as Numpy array) "
|
1497
|
-
'following the data format convention "'
|
1498
|
-
|
1499
|
-
|
1500
|
-
|
1501
|
-
|
1502
|
-
+ str(self.channel_axis)
|
1503
|
-
+ ". However, it was passed an array with shape "
|
1504
|
-
+ str(x.shape)
|
1505
|
-
+ " ("
|
1506
|
-
+ str(x.shape[self.channel_axis])
|
1507
|
-
+ " channels)."
|
1492
|
+
f'following the data format convention "{self.data_format}'
|
1493
|
+
f'" (channels on axis {self.channel_axis})'
|
1494
|
+
", i.e. expected either 1, 3 or 4 channels on axis "
|
1495
|
+
f"{self.channel_axis}. However, it was passed an array with"
|
1496
|
+
f" shape {x.shape} ({x.shape[self.channel_axis]} channels)."
|
1508
1497
|
)
|
1509
1498
|
|
1510
1499
|
if seed is not None:
|
@@ -102,7 +102,7 @@ class Tokenizer:
|
|
102
102
|
num_words = kwargs.pop("nb_words")
|
103
103
|
document_count = kwargs.pop("document_count", 0)
|
104
104
|
if kwargs:
|
105
|
-
raise TypeError("Unrecognized keyword arguments:
|
105
|
+
raise TypeError(f"Unrecognized keyword arguments: {str(kwargs)}")
|
106
106
|
|
107
107
|
self.word_counts = collections.OrderedDict()
|
108
108
|
self.word_docs = collections.defaultdict(int)
|
keras/src/models/functional.py
CHANGED
@@ -773,7 +773,7 @@ def is_input_keras_tensor(x):
|
|
773
773
|
|
774
774
|
def clone_single_keras_tensor(x):
|
775
775
|
return backend.KerasTensor(
|
776
|
-
shape=x.shape, dtype=x.dtype, sparse=x.sparse, name=x.name
|
776
|
+
shape=x.shape, dtype=x.dtype, sparse=x.sparse, name=f"{x.name}_clone"
|
777
777
|
)
|
778
778
|
|
779
779
|
|
@@ -836,7 +836,7 @@ def clone_graph_nodes(inputs, outputs):
|
|
836
836
|
batch_shape=kt_input.shape,
|
837
837
|
dtype=kt_input.dtype,
|
838
838
|
sparse=kt_input.sparse,
|
839
|
-
name=kt_input.name
|
839
|
+
name=f"{kt_input.name}CLONE",
|
840
840
|
)
|
841
841
|
cloned_inputs.append(cloned_input)
|
842
842
|
kt_id_mapping[id(kt_input)] = cloned_input
|
keras/src/models/model.py
CHANGED
@@ -8,6 +8,7 @@ from keras.src import utils
|
|
8
8
|
from keras.src.api_export import keras_export
|
9
9
|
from keras.src.layers.layer import Layer
|
10
10
|
from keras.src.models.variable_mapping import map_saveable_variables
|
11
|
+
from keras.src.quantizers.gptq_config import GPTQConfig
|
11
12
|
from keras.src.saving import saving_api
|
12
13
|
from keras.src.trainers import trainer as base_trainer
|
13
14
|
from keras.src.utils import summary_utils
|
@@ -420,7 +421,7 @@ class Model(Trainer, base_trainer.Trainer, Layer):
|
|
420
421
|
**kwargs,
|
421
422
|
)
|
422
423
|
|
423
|
-
def quantize(self, mode, **kwargs):
|
424
|
+
def quantize(self, mode, config=None, **kwargs):
|
424
425
|
"""Quantize the weights of the model.
|
425
426
|
|
426
427
|
Note that the model must be built first before calling this method.
|
@@ -433,6 +434,23 @@ class Model(Trainer, base_trainer.Trainer, Layer):
|
|
433
434
|
"""
|
434
435
|
from keras.src.dtype_policies import QUANTIZATION_MODES
|
435
436
|
|
437
|
+
if mode == "gptq":
|
438
|
+
if not isinstance(config, GPTQConfig):
|
439
|
+
raise ValueError(
|
440
|
+
"The `config` argument must be of type "
|
441
|
+
"`keras.quantizers.GPTQConfig`."
|
442
|
+
)
|
443
|
+
# The config object's own quantize method drives the process
|
444
|
+
config.quantize(self)
|
445
|
+
return
|
446
|
+
|
447
|
+
# For all other modes, verify that a config object was not passed.
|
448
|
+
if config is not None:
|
449
|
+
raise ValueError(
|
450
|
+
f"The `config` argument is only supported for 'gptq' mode, "
|
451
|
+
f"but received mode='{mode}'."
|
452
|
+
)
|
453
|
+
|
436
454
|
type_check = kwargs.pop("type_check", True)
|
437
455
|
if kwargs:
|
438
456
|
raise ValueError(
|
@@ -854,9 +872,9 @@ class Model(Trainer, base_trainer.Trainer, Layer):
|
|
854
872
|
def _flatten(current_dict, prefix=""):
|
855
873
|
for key, value in current_dict.items():
|
856
874
|
if isinstance(value, dict):
|
857
|
-
_flatten(value, prefix
|
875
|
+
_flatten(value, f"{prefix}{key}/")
|
858
876
|
else:
|
859
|
-
flat_dict[prefix
|
877
|
+
flat_dict[f"{prefix}{key}"] = value
|
860
878
|
|
861
879
|
_flatten(nested_dict)
|
862
880
|
return flat_dict
|
keras/src/ops/function.py
CHANGED
keras/src/ops/numpy.py
CHANGED
@@ -2872,7 +2872,7 @@ class Einsum(Operation):
|
|
2872
2872
|
kept_dims = sorted(kept_dims)
|
2873
2873
|
|
2874
2874
|
if output_spec is None:
|
2875
|
-
target_broadcast_spec = "...
|
2875
|
+
target_broadcast_spec = f"...{''.join(kept_dims)}"
|
2876
2876
|
else:
|
2877
2877
|
target_broadcast_spec = output_spec
|
2878
2878
|
|
@@ -2894,18 +2894,18 @@ class Einsum(Operation):
|
|
2894
2894
|
)
|
2895
2895
|
for size, s in zip(x_shape, split_spec[0]):
|
2896
2896
|
# Replace the letter with the right shape.
|
2897
|
-
expanded_shape = expanded_shape.replace(s, str(size)
|
2897
|
+
expanded_shape = expanded_shape.replace(s, f"{str(size)} ")
|
2898
2898
|
expanded_shape = expanded_shape.replace("...", "")
|
2899
2899
|
else:
|
2900
2900
|
# In this case, the input spec has "...", e.g., "i...j", "i...",
|
2901
2901
|
# or "...j".
|
2902
2902
|
for i in range(len(split_spec[0])):
|
2903
2903
|
expanded_shape = expanded_shape.replace(
|
2904
|
-
split_spec[0][i],
|
2904
|
+
split_spec[0][i], f"{x_shape[i]} "
|
2905
2905
|
)
|
2906
2906
|
for i in range(len(split_spec[1])):
|
2907
2907
|
expanded_shape = expanded_shape.replace(
|
2908
|
-
split_spec[1][-i - 1],
|
2908
|
+
split_spec[1][-i - 1], f"{x_shape[-i - 1]} "
|
2909
2909
|
)
|
2910
2910
|
# Shape matched by "..." will be inserted to the position of
|
2911
2911
|
# "...".
|
@@ -2919,7 +2919,7 @@ class Einsum(Operation):
|
|
2919
2919
|
wildcard_shape_start_index:wildcard_shape_end_index
|
2920
2920
|
]
|
2921
2921
|
wildcard_shape_str = (
|
2922
|
-
"
|
2922
|
+
f"{' '.join([str(size) for size in wildcard_shape])} "
|
2923
2923
|
)
|
2924
2924
|
expanded_shape = expanded_shape.replace(
|
2925
2925
|
"...", wildcard_shape_str
|
keras/src/ops/operation.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1
1
|
import inspect
|
2
|
+
import os.path
|
2
3
|
import textwrap
|
3
4
|
|
4
5
|
from keras.src import backend
|
@@ -19,10 +20,10 @@ class Operation(KerasSaveable):
|
|
19
20
|
def __init__(self, name=None):
|
20
21
|
if name is None:
|
21
22
|
name = auto_name(self.__class__.__name__)
|
22
|
-
if not isinstance(name, str) or
|
23
|
+
if not isinstance(name, str) or os.path.sep in name:
|
23
24
|
raise ValueError(
|
24
25
|
"Argument `name` must be a string and "
|
25
|
-
"cannot contain character
|
26
|
+
f"cannot contain character `{os.path.sep}`. "
|
26
27
|
f"Received: name={name} (of type {type(name)})"
|
27
28
|
)
|
28
29
|
self.name = name
|
@@ -310,13 +310,12 @@ class BaseOptimizer(KerasSaveable):
|
|
310
310
|
"""
|
311
311
|
name = name or "var"
|
312
312
|
if hasattr(reference_variable, "path"):
|
313
|
-
name = reference_variable.path.replace(
|
313
|
+
name = f"{reference_variable.path.replace('/', '_')}_{name}"
|
314
314
|
else:
|
315
|
-
|
315
|
+
sanitised_ref_name = (
|
316
316
|
str(reference_variable.name).replace("/", "_").replace(":", "_")
|
317
|
-
+ "_"
|
318
|
-
+ name
|
319
317
|
)
|
318
|
+
name = f"{sanitised_ref_name}_{name}"
|
320
319
|
return self.add_variable(
|
321
320
|
shape=reference_variable.shape,
|
322
321
|
initializer=initializer,
|