keras-nightly 3.12.0.dev2025082003__py3-none-any.whl → 3.12.0.dev2025082203__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. keras/_tf_keras/keras/quantizers/__init__.py +1 -0
  2. keras/quantizers/__init__.py +1 -0
  3. keras/src/applications/convnext.py +20 -20
  4. keras/src/applications/densenet.py +21 -21
  5. keras/src/applications/efficientnet.py +16 -16
  6. keras/src/applications/efficientnet_v2.py +28 -28
  7. keras/src/applications/inception_resnet_v2.py +7 -7
  8. keras/src/applications/inception_v3.py +5 -5
  9. keras/src/applications/mobilenet_v2.py +13 -20
  10. keras/src/applications/mobilenet_v3.py +15 -15
  11. keras/src/applications/nasnet.py +7 -8
  12. keras/src/applications/resnet.py +32 -32
  13. keras/src/applications/xception.py +10 -10
  14. keras/src/backend/common/dtypes.py +3 -3
  15. keras/src/backend/common/variables.py +3 -1
  16. keras/src/backend/jax/export.py +1 -1
  17. keras/src/backend/jax/trainer.py +1 -1
  18. keras/src/backend/openvino/numpy.py +1 -1
  19. keras/src/backend/tensorflow/rnn.py +1 -1
  20. keras/src/backend/tensorflow/trainer.py +19 -1
  21. keras/src/backend/torch/core.py +6 -9
  22. keras/src/backend/torch/trainer.py +1 -1
  23. keras/src/callbacks/backup_and_restore.py +2 -2
  24. keras/src/callbacks/csv_logger.py +1 -1
  25. keras/src/callbacks/model_checkpoint.py +1 -1
  26. keras/src/callbacks/tensorboard.py +6 -6
  27. keras/src/datasets/boston_housing.py +1 -1
  28. keras/src/datasets/california_housing.py +1 -1
  29. keras/src/datasets/cifar10.py +1 -1
  30. keras/src/datasets/cifar100.py +2 -2
  31. keras/src/datasets/imdb.py +2 -2
  32. keras/src/datasets/mnist.py +1 -1
  33. keras/src/datasets/reuters.py +2 -2
  34. keras/src/dtype_policies/dtype_policy.py +1 -1
  35. keras/src/dtype_policies/dtype_policy_map.py +1 -1
  36. keras/src/export/tf2onnx_lib.py +1 -3
  37. keras/src/layers/attention/attention.py +2 -0
  38. keras/src/layers/core/lambda_layer.py +9 -8
  39. keras/src/layers/input_spec.py +6 -6
  40. keras/src/layers/layer.py +1 -1
  41. keras/src/layers/preprocessing/category_encoding.py +3 -3
  42. keras/src/layers/preprocessing/data_layer.py +159 -0
  43. keras/src/layers/preprocessing/discretization.py +3 -3
  44. keras/src/layers/preprocessing/feature_space.py +4 -4
  45. keras/src/layers/preprocessing/image_preprocessing/aug_mix.py +7 -4
  46. keras/src/layers/preprocessing/image_preprocessing/auto_contrast.py +3 -0
  47. keras/src/layers/preprocessing/image_preprocessing/base_image_preprocessing_layer.py +2 -2
  48. keras/src/layers/preprocessing/image_preprocessing/center_crop.py +1 -1
  49. keras/src/layers/preprocessing/image_preprocessing/cut_mix.py +6 -3
  50. keras/src/layers/preprocessing/image_preprocessing/equalization.py +1 -1
  51. keras/src/layers/preprocessing/image_preprocessing/max_num_bounding_box.py +3 -0
  52. keras/src/layers/preprocessing/image_preprocessing/mix_up.py +7 -4
  53. keras/src/layers/preprocessing/image_preprocessing/rand_augment.py +3 -1
  54. keras/src/layers/preprocessing/image_preprocessing/random_brightness.py +1 -1
  55. keras/src/layers/preprocessing/image_preprocessing/random_color_degeneration.py +3 -0
  56. keras/src/layers/preprocessing/image_preprocessing/random_color_jitter.py +3 -0
  57. keras/src/layers/preprocessing/image_preprocessing/random_contrast.py +1 -1
  58. keras/src/layers/preprocessing/image_preprocessing/random_crop.py +1 -1
  59. keras/src/layers/preprocessing/image_preprocessing/random_elastic_transform.py +3 -0
  60. keras/src/layers/preprocessing/image_preprocessing/random_erasing.py +6 -3
  61. keras/src/layers/preprocessing/image_preprocessing/random_flip.py +1 -1
  62. keras/src/layers/preprocessing/image_preprocessing/random_gaussian_blur.py +3 -0
  63. keras/src/layers/preprocessing/image_preprocessing/random_grayscale.py +1 -1
  64. keras/src/layers/preprocessing/image_preprocessing/random_hue.py +3 -0
  65. keras/src/layers/preprocessing/image_preprocessing/random_invert.py +3 -0
  66. keras/src/layers/preprocessing/image_preprocessing/random_perspective.py +3 -0
  67. keras/src/layers/preprocessing/image_preprocessing/random_posterization.py +3 -0
  68. keras/src/layers/preprocessing/image_preprocessing/random_rotation.py +1 -1
  69. keras/src/layers/preprocessing/image_preprocessing/random_saturation.py +3 -0
  70. keras/src/layers/preprocessing/image_preprocessing/random_sharpness.py +3 -0
  71. keras/src/layers/preprocessing/image_preprocessing/random_shear.py +3 -0
  72. keras/src/layers/preprocessing/image_preprocessing/random_translation.py +3 -3
  73. keras/src/layers/preprocessing/image_preprocessing/random_zoom.py +3 -3
  74. keras/src/layers/preprocessing/image_preprocessing/resizing.py +3 -3
  75. keras/src/layers/preprocessing/image_preprocessing/solarization.py +3 -0
  76. keras/src/layers/preprocessing/mel_spectrogram.py +29 -25
  77. keras/src/layers/preprocessing/normalization.py +5 -2
  78. keras/src/layers/preprocessing/rescaling.py +3 -3
  79. keras/src/layers/rnn/bidirectional.py +4 -4
  80. keras/src/legacy/backend.py +9 -23
  81. keras/src/legacy/preprocessing/image.py +11 -22
  82. keras/src/legacy/preprocessing/text.py +1 -1
  83. keras/src/legacy/saving/legacy_h5_format.py +7 -2
  84. keras/src/legacy/saving/saving_utils.py +0 -12
  85. keras/src/legacy/saving/serialization.py +0 -14
  86. keras/src/models/functional.py +2 -2
  87. keras/src/models/model.py +21 -3
  88. keras/src/ops/function.py +1 -1
  89. keras/src/ops/numpy.py +5 -5
  90. keras/src/ops/operation.py +3 -2
  91. keras/src/optimizers/base_optimizer.py +3 -4
  92. keras/src/quantizers/gptq.py +350 -0
  93. keras/src/quantizers/gptq_config.py +169 -0
  94. keras/src/quantizers/gptq_core.py +335 -0
  95. keras/src/quantizers/gptq_quant.py +133 -0
  96. keras/src/saving/file_editor.py +22 -20
  97. keras/src/saving/object_registration.py +1 -1
  98. keras/src/saving/saving_api.py +4 -1
  99. keras/src/saving/saving_lib.py +4 -4
  100. keras/src/saving/serialization_lib.py +9 -11
  101. keras/src/trainers/compile_utils.py +1 -1
  102. keras/src/trainers/data_adapters/array_data_adapter.py +9 -3
  103. keras/src/trainers/data_adapters/data_adapter_utils.py +15 -5
  104. keras/src/trainers/data_adapters/generator_data_adapter.py +2 -0
  105. keras/src/trainers/data_adapters/grain_dataset_adapter.py +8 -2
  106. keras/src/trainers/data_adapters/tf_dataset_adapter.py +4 -2
  107. keras/src/trainers/data_adapters/torch_data_loader_adapter.py +3 -1
  108. keras/src/tree/dmtree_impl.py +19 -3
  109. keras/src/tree/optree_impl.py +3 -3
  110. keras/src/tree/tree_api.py +5 -2
  111. keras/src/utils/file_utils.py +13 -5
  112. keras/src/utils/io_utils.py +1 -1
  113. keras/src/utils/model_visualization.py +1 -1
  114. keras/src/utils/progbar.py +5 -5
  115. keras/src/utils/summary_utils.py +4 -4
  116. keras/src/utils/torch_utils.py +4 -4
  117. keras/src/version.py +1 -1
  118. {keras_nightly-3.12.0.dev2025082003.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/METADATA +1 -1
  119. {keras_nightly-3.12.0.dev2025082003.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/RECORD +121 -117
  120. keras/src/layers/preprocessing/tf_data_layer.py +0 -78
  121. {keras_nightly-3.12.0.dev2025082003.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/WHEEL +0 -0
  122. {keras_nightly-3.12.0.dev2025082003.dist-info → keras_nightly-3.12.0.dev2025082203.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,9 @@ class RandomHue(BaseImagePreprocessingLayer):
14
14
  The image hue is adjusted by converting the image(s) to HSV and rotating the
15
15
  hue channel (H) by delta. The image is then converted back to RGB.
16
16
 
17
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
18
+ (independently of which backend you're using).
19
+
17
20
  Args:
18
21
  factor: A single float or a tuple of two floats.
19
22
  `factor` controls the extent to which the
@@ -14,6 +14,9 @@ class RandomInvert(BaseImagePreprocessingLayer):
14
14
  complementary values. Images that are not selected for inversion
15
15
  remain unchanged.
16
16
 
17
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
18
+ (independently of which backend you're using).
19
+
17
20
  Args:
18
21
  factor: A single float or a tuple of two floats.
19
22
  `factor` controls the probability of inverting the image colors.
@@ -20,6 +20,9 @@ class RandomPerspective(BaseImagePreprocessingLayer):
20
20
  corner points, simulating a 3D-like transformation. The amount of distortion
21
21
  is controlled by the `factor` and `scale` parameters.
22
22
 
23
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
24
+ (independently of which backend you're using).
25
+
23
26
  Args:
24
27
  factor: A float or a tuple of two floats.
25
28
  Represents the probability of applying the perspective
@@ -8,6 +8,9 @@ from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing
8
8
  class RandomPosterization(BaseImagePreprocessingLayer):
9
9
  """Reduces the number of bits for each color channel.
10
10
 
11
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
12
+ (independently of which backend you're using).
13
+
11
14
  References:
12
15
  - [AutoAugment: Learning Augmentation Policies from Data](https://arxiv.org/abs/1805.09501)
13
16
  - [RandAugment: Practical automated data augmentation with a reduced search space](https://arxiv.org/abs/1909.13719)
@@ -23,7 +23,7 @@ class RandomRotation(BaseImagePreprocessingLayer):
23
23
  of integer or floating point dtype.
24
24
  By default, the layer will output floats.
25
25
 
26
- **Note:** This layer is safe to use inside a `tf.data` pipeline
26
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
27
27
  (independently of which backend you're using).
28
28
 
29
29
  Input shape:
@@ -13,6 +13,9 @@ class RandomSaturation(BaseImagePreprocessingLayer):
13
13
  This layer will randomly increase/reduce the saturation for the input RGB
14
14
  images.
15
15
 
16
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
17
+ (independently of which backend you're using).
18
+
16
19
  Args:
17
20
  factor: A tuple of two floats or a single float.
18
21
  `factor` controls the extent to which the image saturation
@@ -13,6 +13,9 @@ class RandomSharpness(BaseImagePreprocessingLayer):
13
13
  original image and the processed image. This operation adjusts the clarity
14
14
  of the edges in an image, ranging from blurred to enhanced sharpness.
15
15
 
16
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
17
+ (independently of which backend you're using).
18
+
16
19
  Args:
17
20
  factor: A tuple of two floats or a single float.
18
21
  `factor` controls the extent to which the image sharpness
@@ -23,6 +23,9 @@ class RandomShear(BaseImagePreprocessingLayer):
23
23
  regions created during the transformation are filled according to the
24
24
  `fill_mode` and `fill_value` parameters.
25
25
 
26
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
27
+ (independently of which backend you're using).
28
+
26
29
  Args:
27
30
  x_factor: A tuple of two floats. For each augmented image, a value
28
31
  is sampled from the provided range. If a float is passed, the
@@ -23,6 +23,9 @@ class RandomTranslation(BaseImagePreprocessingLayer):
23
23
  of integer or floating point dtype. By default, the layer will output
24
24
  floats.
25
25
 
26
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
27
+ (independently of which backend you're using).
28
+
26
29
  Input shape:
27
30
  3D (unbatched) or 4D (batched) tensor with shape:
28
31
  `(..., height, width, channels)`, in `"channels_last"` format,
@@ -34,9 +37,6 @@ class RandomTranslation(BaseImagePreprocessingLayer):
34
37
  or `(..., channels, target_height, target_width)`,
35
38
  in `"channels_first"` format.
36
39
 
37
- **Note:** This layer is safe to use inside a `tf.data` pipeline
38
- (independently of which backend you're using).
39
-
40
40
  Args:
41
41
  height_factor: a float represented as fraction of value, or a tuple of
42
42
  size 2 representing lower and upper bound for shifting vertically. A
@@ -24,6 +24,9 @@ class RandomZoom(BaseImagePreprocessingLayer):
24
24
  of integer or floating point dtype.
25
25
  By default, the layer will output floats.
26
26
 
27
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
28
+ (independently of which backend you're using).
29
+
27
30
  Input shape:
28
31
  3D (unbatched) or 4D (batched) tensor with shape:
29
32
  `(..., height, width, channels)`, in `"channels_last"` format,
@@ -35,9 +38,6 @@ class RandomZoom(BaseImagePreprocessingLayer):
35
38
  or `(..., channels, target_height, target_width)`,
36
39
  in `"channels_first"` format.
37
40
 
38
- **Note:** This layer is safe to use inside a `tf.data` pipeline
39
- (independently of which backend you're using).
40
-
41
41
  Args:
42
42
  height_factor: a float represented as fraction of value, or a tuple of
43
43
  size 2 representing lower and upper bound for zooming vertically.
@@ -21,6 +21,9 @@ class Resizing(BaseImagePreprocessingLayer):
21
21
  format. Input pixel values can be of any range
22
22
  (e.g. `[0., 1.)` or `[0, 255]`).
23
23
 
24
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
25
+ (independently of which backend you're using).
26
+
24
27
  Input shape:
25
28
  3D (unbatched) or 4D (batched) tensor with shape:
26
29
  `(..., height, width, channels)`, in `"channels_last"` format,
@@ -32,9 +35,6 @@ class Resizing(BaseImagePreprocessingLayer):
32
35
  or `(..., channels, target_height, target_width)`,
33
36
  in `"channels_first"` format.
34
37
 
35
- **Note:** This layer is safe to use inside a `tf.data` pipeline
36
- (independently of which backend you're using).
37
-
38
38
  Args:
39
39
  height: Integer, the height of the output shape.
40
40
  width: Integer, the width of the output shape.
@@ -15,6 +15,9 @@ class Solarization(BaseImagePreprocessingLayer):
15
15
  to all values. When created with specified `threshold` the layer only
16
16
  augments pixels that are above the `threshold` value.
17
17
 
18
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
19
+ (independently of which backend you're using).
20
+
18
21
  Args:
19
22
  addition_factor: (Optional) A tuple of two floats or a single float,
20
23
  between 0 and 1.
@@ -1,5 +1,5 @@
1
1
  from keras.src.api_export import keras_export
2
- from keras.src.layers.preprocessing.tf_data_layer import TFDataLayer
2
+ from keras.src.layers.preprocessing.data_layer import DataLayer
3
3
 
4
4
  # mel spectrum constants.
5
5
  _MEL_BREAK_FREQUENCY_HERTZ = 700.0
@@ -7,7 +7,7 @@ _MEL_HIGH_FREQUENCY_Q = 1127.0
7
7
 
8
8
 
9
9
  @keras_export("keras.layers.MelSpectrogram")
10
- class MelSpectrogram(TFDataLayer):
10
+ class MelSpectrogram(DataLayer):
11
11
  """A preprocessing layer to convert raw audio signals to Mel spectrograms.
12
12
 
13
13
  This layer takes `float32`/`float64` single or batched audio signal as
@@ -24,10 +24,37 @@ class MelSpectrogram(TFDataLayer):
24
24
  speech and music processing tasks like speech recognition, speaker
25
25
  identification, and music genre classification.
26
26
 
27
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
28
+ (independently of which backend you're using).
29
+
27
30
  References:
28
31
  - [Spectrogram](https://en.wikipedia.org/wiki/Spectrogram),
29
32
  - [Mel scale](https://en.wikipedia.org/wiki/Mel_scale).
30
33
 
34
+ Args:
35
+ fft_length: Integer, size of the FFT window.
36
+ sequence_stride: Integer, number of samples between successive STFT
37
+ columns.
38
+ sequence_length: Integer, size of the window used for applying
39
+ `window` to each audio frame. If `None`, defaults to `fft_length`.
40
+ window: String, name of the window function to use. Available values
41
+ are `"hann"` and `"hamming"`. If `window` is a tensor, it will be
42
+ used directly as the window and its length must be
43
+ `sequence_length`. If `window` is `None`, no windowing is
44
+ used. Defaults to `"hann"`.
45
+ sampling_rate: Integer, sample rate of the input signal.
46
+ num_mel_bins: Integer, number of mel bins to generate.
47
+ min_freq: Float, minimum frequency of the mel bins.
48
+ max_freq: Float, maximum frequency of the mel bins.
49
+ If `None`, defaults to `sampling_rate / 2`.
50
+ power_to_db: If True, convert the power spectrogram to decibels.
51
+ top_db: Float, minimum negative cut-off `max(10 * log10(S)) - top_db`.
52
+ mag_exp: Float, exponent for the magnitude spectrogram.
53
+ 1 for magnitude, 2 for power, etc. Default is 2.
54
+ ref_power: Float, the power is scaled relative to it
55
+ `10 * log10(S / ref_power)`.
56
+ min_power: Float, minimum value for power and `ref_power`.
57
+
31
58
  Examples:
32
59
 
33
60
  **Unbatched audio signal**
@@ -55,29 +82,6 @@ class MelSpectrogram(TFDataLayer):
55
82
  2D (unbatched) or 3D (batched) tensor with
56
83
  shape:`(..., num_mel_bins, time)`.
57
84
 
58
- Args:
59
- fft_length: Integer, size of the FFT window.
60
- sequence_stride: Integer, number of samples between successive STFT
61
- columns.
62
- sequence_length: Integer, size of the window used for applying
63
- `window` to each audio frame. If `None`, defaults to `fft_length`.
64
- window: String, name of the window function to use. Available values
65
- are `"hann"` and `"hamming"`. If `window` is a tensor, it will be
66
- used directly as the window and its length must be
67
- `sequence_length`. If `window` is `None`, no windowing is
68
- used. Defaults to `"hann"`.
69
- sampling_rate: Integer, sample rate of the input signal.
70
- num_mel_bins: Integer, number of mel bins to generate.
71
- min_freq: Float, minimum frequency of the mel bins.
72
- max_freq: Float, maximum frequency of the mel bins.
73
- If `None`, defaults to `sampling_rate / 2`.
74
- power_to_db: If True, convert the power spectrogram to decibels.
75
- top_db: Float, minimum negative cut-off `max(10 * log10(S)) - top_db`.
76
- mag_exp: Float, exponent for the magnitude spectrogram.
77
- 1 for magnitude, 2 for power, etc. Default is 2.
78
- ref_power: Float, the power is scaled relative to it
79
- `10 * log10(S / ref_power)`.
80
- min_power: Float, minimum value for power and `ref_power`.
81
85
  """
82
86
 
83
87
  def __init__(
@@ -5,12 +5,12 @@ import numpy as np
5
5
  from keras.src import backend
6
6
  from keras.src import ops
7
7
  from keras.src.api_export import keras_export
8
- from keras.src.layers.preprocessing.tf_data_layer import TFDataLayer
8
+ from keras.src.layers.preprocessing.data_layer import DataLayer
9
9
  from keras.src.utils.module_utils import tensorflow as tf
10
10
 
11
11
 
12
12
  @keras_export("keras.layers.Normalization")
13
- class Normalization(TFDataLayer):
13
+ class Normalization(DataLayer):
14
14
  """A preprocessing layer that normalizes continuous features.
15
15
 
16
16
  This layer will shift and scale inputs into a distribution centered around
@@ -23,6 +23,9 @@ class Normalization(TFDataLayer):
23
23
  variance of the data and store them as the layer's weights. `adapt()` should
24
24
  be called before `fit()`, `evaluate()`, or `predict()`.
25
25
 
26
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
27
+ (independently of which backend you're using).
28
+
26
29
  Args:
27
30
  axis: Integer, tuple of integers, or None. The axis or axes that should
28
31
  have a separate mean and variance for each index in the shape.
@@ -1,11 +1,11 @@
1
1
  from keras.src import backend
2
2
  from keras.src.api_export import keras_export
3
- from keras.src.layers.preprocessing.tf_data_layer import TFDataLayer
3
+ from keras.src.layers.preprocessing.data_layer import DataLayer
4
4
  from keras.src.saving import serialization_lib
5
5
 
6
6
 
7
7
  @keras_export("keras.layers.Rescaling")
8
- class Rescaling(TFDataLayer):
8
+ class Rescaling(DataLayer):
9
9
  """A preprocessing layer which rescales input values to a new range.
10
10
 
11
11
  This layer rescales every value of an input (often an image) by multiplying
@@ -23,7 +23,7 @@ class Rescaling(TFDataLayer):
23
23
  of integer or floating point dtype, and by default the layer will output
24
24
  floats.
25
25
 
26
- **Note:** This layer is safe to use inside a `tf.data` pipeline
26
+ **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline
27
27
  (independently of which backend you're using).
28
28
 
29
29
  Args:
@@ -109,16 +109,16 @@ class Bidirectional(Layer):
109
109
  # Recreate the forward layer from the original layer config, so that it
110
110
  # will not carry over any state from the layer.
111
111
  config = serialization_lib.serialize_keras_object(layer)
112
- config["config"]["name"] = "forward_" + utils.removeprefix(
113
- layer.name, "forward_"
112
+ config["config"]["name"] = (
113
+ f"forward_{utils.removeprefix(layer.name, 'forward_')}"
114
114
  )
115
115
  self.forward_layer = serialization_lib.deserialize_keras_object(config)
116
116
 
117
117
  if backward_layer is None:
118
118
  config = serialization_lib.serialize_keras_object(layer)
119
119
  config["config"]["go_backwards"] = True
120
- config["config"]["name"] = "backward_" + utils.removeprefix(
121
- layer.name, "backward_"
120
+ config["config"]["name"] = (
121
+ f"backward_{utils.removeprefix(layer.name, 'backward_')}"
122
122
  )
123
123
  self.backward_layer = serialization_lib.deserialize_keras_object(
124
124
  config
@@ -68,11 +68,7 @@ def batch_dot(x, y, axes=None):
68
68
  raise ValueError(
69
69
  "Cannot do batch_dot on inputs "
70
70
  "with rank < 2. "
71
- "Received inputs with tf.shapes "
72
- + str(x_shape)
73
- + " and "
74
- + str(y_shape)
75
- + "."
71
+ f"Received inputs with tf.shapes {x_shape} and {y_shape}."
76
72
  )
77
73
 
78
74
  x_batch_size = x_shape[0]
@@ -84,10 +80,7 @@ def batch_dot(x, y, axes=None):
84
80
  "Cannot do batch_dot on inputs "
85
81
  "with different batch sizes. "
86
82
  "Received inputs with tf.shapes "
87
- + str(x_shape)
88
- + " and "
89
- + str(y_shape)
90
- + "."
83
+ f"{x_shape} and {y_shape}."
91
84
  )
92
85
  if isinstance(axes, int):
93
86
  axes = [axes, axes]
@@ -101,9 +94,8 @@ def batch_dot(x, y, axes=None):
101
94
  if py_any(isinstance(a, (list, tuple)) for a in axes):
102
95
  raise ValueError(
103
96
  "Multiple target dimensions are not supported. "
104
- + "Expected: None, int, (int, int), "
105
- + "Provided: "
106
- + str(axes)
97
+ "Expected: None, int, (int, int), "
98
+ f"Provided: {axes}"
107
99
  )
108
100
 
109
101
  # if tuple, convert to list.
@@ -130,12 +122,8 @@ def batch_dot(x, y, axes=None):
130
122
  if d1 is not None and d2 is not None and d1 != d2:
131
123
  raise ValueError(
132
124
  "Cannot do batch_dot on inputs with tf.shapes "
133
- + str(x_shape)
134
- + " and "
135
- + str(y_shape)
136
- + " with axes="
137
- + str(axes)
138
- + ". x.shape[%d] != y.shape[%d] (%d != %d)."
125
+ f"{x_shape} and {y_shape} with axes={axes}. "
126
+ "x.shape[%d] != y.shape[%d] (%d != %d)."
139
127
  % (axes[0], axes[1], d1, d2)
140
128
  )
141
129
 
@@ -1129,7 +1117,7 @@ def pool2d(
1129
1117
  x, pool_size, strides, padding=padding, data_format=tf_data_format
1130
1118
  )
1131
1119
  else:
1132
- raise ValueError("Invalid pooling mode: " + str(pool_mode))
1120
+ raise ValueError(f"Invalid pooling mode: {str(pool_mode)}")
1133
1121
 
1134
1122
  if data_format == "channels_first" and tf_data_format == "NHWC":
1135
1123
  x = tf.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
@@ -1169,7 +1157,7 @@ def pool3d(
1169
1157
  x, pool_size, strides, padding=padding, data_format=tf_data_format
1170
1158
  )
1171
1159
  else:
1172
- raise ValueError("Invalid pooling mode: " + str(pool_mode))
1160
+ raise ValueError(f"Invalid pooling mode: {str(pool_mode)}")
1173
1161
 
1174
1162
  if data_format == "channels_first" and tf_data_format == "NDHWC":
1175
1163
  x = tf.transpose(x, (0, 4, 1, 2, 3))
@@ -2150,9 +2138,7 @@ def switch(condition, then_expression, else_expression):
2150
2138
  "Rank of `condition` should be less than or"
2151
2139
  " equal to rank of `then_expression` and "
2152
2140
  "`else_expression`. ndim(condition)="
2153
- + str(cond_ndim)
2154
- + ", ndim(then_expression)="
2155
- + str(expr_ndim)
2141
+ f"{cond_ndim}, ndim(then_expression)={expr_ndim}"
2156
2142
  )
2157
2143
  if cond_ndim > 1:
2158
2144
  ndim_diff = expr_ndim - cond_ndim
@@ -617,17 +617,12 @@ class NumpyArrayIterator(Iterator):
617
617
  channels_axis = 3 if data_format == "channels_last" else 1
618
618
  if self.x.shape[channels_axis] not in {1, 3, 4}:
619
619
  warnings.warn(
620
- 'NumpyArrayIterator is set to use the data format convention "'
621
- + data_format
622
- + '" (channels on axis '
623
- + str(channels_axis)
624
- + "), i.e. expected either 1, 3, or 4 channels on axis "
625
- + str(channels_axis)
626
- + ". However, it was passed an array with shape "
627
- + str(self.x.shape)
628
- + " ("
629
- + str(self.x.shape[channels_axis])
630
- + " channels)."
620
+ f"NumpyArrayIterator is set to use the data format convention"
621
+ f' "{data_format}" (channels on axis {channels_axis})'
622
+ ", i.e. expected either 1, 3, or 4 channels "
623
+ f"on axis {channels_axis}. "
624
+ f"However, it was passed an array with shape {self.x.shape}"
625
+ f" ({self.x.shape[channels_axis]} channels)."
631
626
  )
632
627
  if y is not None:
633
628
  self.y = np.asarray(y)
@@ -1494,17 +1489,11 @@ class ImageDataGenerator:
1494
1489
  if x.shape[self.channel_axis] not in {1, 3, 4}:
1495
1490
  warnings.warn(
1496
1491
  "Expected input to be images (as Numpy array) "
1497
- 'following the data format convention "'
1498
- + self.data_format
1499
- + '" (channels on axis '
1500
- + str(self.channel_axis)
1501
- + "), i.e. expected either 1, 3 or 4 channels on axis "
1502
- + str(self.channel_axis)
1503
- + ". However, it was passed an array with shape "
1504
- + str(x.shape)
1505
- + " ("
1506
- + str(x.shape[self.channel_axis])
1507
- + " channels)."
1492
+ f'following the data format convention "{self.data_format}'
1493
+ f'" (channels on axis {self.channel_axis})'
1494
+ ", i.e. expected either 1, 3 or 4 channels on axis "
1495
+ f"{self.channel_axis}. However, it was passed an array with"
1496
+ f" shape {x.shape} ({x.shape[self.channel_axis]} channels)."
1508
1497
  )
1509
1498
 
1510
1499
  if seed is not None:
@@ -102,7 +102,7 @@ class Tokenizer:
102
102
  num_words = kwargs.pop("nb_words")
103
103
  document_count = kwargs.pop("document_count", 0)
104
104
  if kwargs:
105
- raise TypeError("Unrecognized keyword arguments: " + str(kwargs))
105
+ raise TypeError(f"Unrecognized keyword arguments: {str(kwargs)}")
106
106
 
107
107
  self.word_counts = collections.OrderedDict()
108
108
  self.word_docs = collections.defaultdict(int)
@@ -11,6 +11,7 @@ from keras.src.legacy.saving import json_utils
11
11
  from keras.src.legacy.saving import saving_options
12
12
  from keras.src.legacy.saving import saving_utils
13
13
  from keras.src.saving import object_registration
14
+ from keras.src.saving import serialization_lib
14
15
  from keras.src.utils import io_utils
15
16
 
16
17
  try:
@@ -72,7 +73,9 @@ def save_model_to_hdf5(model, filepath, overwrite=True, include_optimizer=True):
72
73
  f.close()
73
74
 
74
75
 
75
- def load_model_from_hdf5(filepath, custom_objects=None, compile=True):
76
+ def load_model_from_hdf5(
77
+ filepath, custom_objects=None, compile=True, safe_mode=True
78
+ ):
76
79
  """Loads a model saved via `save_model_to_hdf5`.
77
80
 
78
81
  Args:
@@ -128,7 +131,9 @@ def load_model_from_hdf5(filepath, custom_objects=None, compile=True):
128
131
  model_config = model_config.decode("utf-8")
129
132
  model_config = json_utils.decode(model_config)
130
133
 
131
- with saving_options.keras_option_scope(use_legacy_config=True):
134
+ legacy_scope = saving_options.keras_option_scope(use_legacy_config=True)
135
+ safe_mode_scope = serialization_lib.SafeModeScope(safe_mode)
136
+ with legacy_scope, safe_mode_scope:
132
137
  model = saving_utils.model_from_config(
133
138
  model_config, custom_objects=custom_objects
134
139
  )
@@ -1,4 +1,3 @@
1
- import json
2
1
  import threading
3
2
 
4
3
  from absl import logging
@@ -81,10 +80,6 @@ def model_from_config(config, custom_objects=None):
81
80
  function_dict["config"]["closure"] = function_config[2]
82
81
  config["config"]["function"] = function_dict
83
82
 
84
- # TODO(nkovela): Swap find and replace args during Keras 3.0 release
85
- # Replace keras refs with keras
86
- config = _find_replace_nested_dict(config, "keras.", "keras.")
87
-
88
83
  return serialization.deserialize_keras_object(
89
84
  config,
90
85
  module_objects=MODULE_OBJECTS.ALL_OBJECTS,
@@ -231,13 +226,6 @@ def _deserialize_metric(metric_config):
231
226
  return metrics_module.deserialize(metric_config)
232
227
 
233
228
 
234
- def _find_replace_nested_dict(config, find, replace):
235
- dict_str = json.dumps(config)
236
- dict_str = dict_str.replace(find, replace)
237
- config = json.loads(dict_str)
238
- return config
239
-
240
-
241
229
  def _resolve_compile_arguments_compat(obj, obj_config, module):
242
230
  """Resolves backwards compatibility issues with training config arguments.
243
231
 
@@ -2,7 +2,6 @@
2
2
 
3
3
  import contextlib
4
4
  import inspect
5
- import json
6
5
  import threading
7
6
  import weakref
8
7
 
@@ -485,12 +484,6 @@ def deserialize_keras_object(
485
484
  arg_spec = inspect.getfullargspec(cls.from_config)
486
485
  custom_objects = custom_objects or {}
487
486
 
488
- # TODO(nkovela): Swap find and replace args during Keras 3.0 release
489
- # Replace keras refs with keras
490
- cls_config = _find_replace_nested_dict(
491
- cls_config, "keras.", "keras."
492
- )
493
-
494
487
  if "custom_objects" in arg_spec.args:
495
488
  deserialized_obj = cls.from_config(
496
489
  cls_config,
@@ -565,10 +558,3 @@ def validate_config(config):
565
558
  def is_default(method):
566
559
  """Check if a method is decorated with the `default` wrapper."""
567
560
  return getattr(method, "_is_default", False)
568
-
569
-
570
- def _find_replace_nested_dict(config, find, replace):
571
- dict_str = json.dumps(config)
572
- dict_str = dict_str.replace(find, replace)
573
- config = json.loads(dict_str)
574
- return config
@@ -773,7 +773,7 @@ def is_input_keras_tensor(x):
773
773
 
774
774
  def clone_single_keras_tensor(x):
775
775
  return backend.KerasTensor(
776
- shape=x.shape, dtype=x.dtype, sparse=x.sparse, name=x.name + "_clone"
776
+ shape=x.shape, dtype=x.dtype, sparse=x.sparse, name=f"{x.name}_clone"
777
777
  )
778
778
 
779
779
 
@@ -836,7 +836,7 @@ def clone_graph_nodes(inputs, outputs):
836
836
  batch_shape=kt_input.shape,
837
837
  dtype=kt_input.dtype,
838
838
  sparse=kt_input.sparse,
839
- name=kt_input.name + "CLONE",
839
+ name=f"{kt_input.name}CLONE",
840
840
  )
841
841
  cloned_inputs.append(cloned_input)
842
842
  kt_id_mapping[id(kt_input)] = cloned_input
keras/src/models/model.py CHANGED
@@ -8,6 +8,7 @@ from keras.src import utils
8
8
  from keras.src.api_export import keras_export
9
9
  from keras.src.layers.layer import Layer
10
10
  from keras.src.models.variable_mapping import map_saveable_variables
11
+ from keras.src.quantizers.gptq_config import GPTQConfig
11
12
  from keras.src.saving import saving_api
12
13
  from keras.src.trainers import trainer as base_trainer
13
14
  from keras.src.utils import summary_utils
@@ -420,7 +421,7 @@ class Model(Trainer, base_trainer.Trainer, Layer):
420
421
  **kwargs,
421
422
  )
422
423
 
423
- def quantize(self, mode, **kwargs):
424
+ def quantize(self, mode, config=None, **kwargs):
424
425
  """Quantize the weights of the model.
425
426
 
426
427
  Note that the model must be built first before calling this method.
@@ -433,6 +434,23 @@ class Model(Trainer, base_trainer.Trainer, Layer):
433
434
  """
434
435
  from keras.src.dtype_policies import QUANTIZATION_MODES
435
436
 
437
+ if mode == "gptq":
438
+ if not isinstance(config, GPTQConfig):
439
+ raise ValueError(
440
+ "The `config` argument must be of type "
441
+ "`keras.quantizers.GPTQConfig`."
442
+ )
443
+ # The config object's own quantize method drives the process
444
+ config.quantize(self)
445
+ return
446
+
447
+ # For all other modes, verify that a config object was not passed.
448
+ if config is not None:
449
+ raise ValueError(
450
+ f"The `config` argument is only supported for 'gptq' mode, "
451
+ f"but received mode='{mode}'."
452
+ )
453
+
436
454
  type_check = kwargs.pop("type_check", True)
437
455
  if kwargs:
438
456
  raise ValueError(
@@ -854,9 +872,9 @@ class Model(Trainer, base_trainer.Trainer, Layer):
854
872
  def _flatten(current_dict, prefix=""):
855
873
  for key, value in current_dict.items():
856
874
  if isinstance(value, dict):
857
- _flatten(value, prefix + key + "/")
875
+ _flatten(value, f"{prefix}{key}/")
858
876
  else:
859
- flat_dict[prefix + key] = value
877
+ flat_dict[f"{prefix}{key}"] = value
860
878
 
861
879
  _flatten(nested_dict)
862
880
  return flat_dict
keras/src/ops/function.py CHANGED
@@ -244,7 +244,7 @@ class Function(Operation):
244
244
 
245
245
 
246
246
  def make_node_key(op, node_index):
247
- return str(id(op)) + "_ib-" + str(node_index)
247
+ return f"{id(op)}_ib-{node_index}"
248
248
 
249
249
 
250
250
  def map_graph(inputs, outputs):