keras-nightly 3.12.0.dev2025081804__py3-none-any.whl → 3.12.0.dev2025081903__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras/src/backend/jax/numpy.py +5 -5
- keras/src/backend/openvino/core.py +10 -3
- keras/src/metrics/reduction_metrics.py +3 -4
- keras/src/ops/core.py +14 -0
- keras/src/version.py +1 -1
- {keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/METADATA +1 -1
- {keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/RECORD +9 -9
- {keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/WHEEL +0 -0
- {keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/top_level.txt +0 -0
keras/src/backend/jax/numpy.py
CHANGED
@@ -39,17 +39,17 @@ def add(x1, x2):
|
|
39
39
|
|
40
40
|
def bartlett(x):
|
41
41
|
x = convert_to_tensor(x)
|
42
|
-
return jnp.bartlett(x)
|
42
|
+
return cast(jnp.bartlett(x), config.floatx())
|
43
43
|
|
44
44
|
|
45
45
|
def hamming(x):
|
46
46
|
x = convert_to_tensor(x)
|
47
|
-
return jnp.hamming(x)
|
47
|
+
return cast(jnp.hamming(x), config.floatx())
|
48
48
|
|
49
49
|
|
50
50
|
def hanning(x):
|
51
51
|
x = convert_to_tensor(x)
|
52
|
-
return jnp.hanning(x)
|
52
|
+
return cast(jnp.hanning(x), config.floatx())
|
53
53
|
|
54
54
|
|
55
55
|
def heaviside(x1, x2):
|
@@ -60,7 +60,7 @@ def heaviside(x1, x2):
|
|
60
60
|
|
61
61
|
def kaiser(x, beta):
|
62
62
|
x = convert_to_tensor(x)
|
63
|
-
return jnp.kaiser(x, beta)
|
63
|
+
return cast(jnp.kaiser(x, beta), config.floatx())
|
64
64
|
|
65
65
|
|
66
66
|
def bincount(x, weights=None, minlength=0, sparse=False):
|
@@ -497,7 +497,7 @@ def right_shift(x, y):
|
|
497
497
|
|
498
498
|
def blackman(x):
|
499
499
|
x = convert_to_tensor(x)
|
500
|
-
return jnp.blackman(x)
|
500
|
+
return cast(jnp.blackman(x), config.floatx())
|
501
501
|
|
502
502
|
|
503
503
|
def broadcast_to(x, shape):
|
@@ -843,9 +843,16 @@ def slice(inputs, start_indices, shape):
|
|
843
843
|
start = ov_opset.concat(start, axis=0).output(0)
|
844
844
|
stop = ov_opset.concat(stop, axis=0).output(0)
|
845
845
|
axes = ov_opset.constant(axes, Type.i32).output(0)
|
846
|
-
|
847
|
-
|
848
|
-
|
846
|
+
result = ov_opset.slice(inputs, start, stop, step, axes).output(0)
|
847
|
+
|
848
|
+
# Apply reshape to ensure output matches expected shape
|
849
|
+
# Convert None (dynamic) dimensions to -1 for OpenVINO compatibility
|
850
|
+
if all(dim is None or (isinstance(dim, int) and dim >= 0) for dim in shape):
|
851
|
+
reshape_pattern = [(-1 if dim is None else dim) for dim in shape]
|
852
|
+
target_shape = ov_opset.constant(reshape_pattern, Type.i32).output(0)
|
853
|
+
result = ov_opset.reshape(result, target_shape, False).output(0)
|
854
|
+
|
855
|
+
return OpenVINOKerasTensor(result)
|
849
856
|
|
850
857
|
|
851
858
|
def slice_update(inputs, start_indices, updates):
|
@@ -201,10 +201,9 @@ class MeanMetricWrapper(Mean):
|
|
201
201
|
def update_state(self, y_true, y_pred, sample_weight=None):
|
202
202
|
mask = backend.get_keras_mask(y_pred)
|
203
203
|
values = self._fn(y_true, y_pred, **self._fn_kwargs)
|
204
|
-
|
205
|
-
sample_weight =
|
206
|
-
|
207
|
-
)
|
204
|
+
sample_weight = losses.loss.apply_mask(
|
205
|
+
sample_weight, mask, dtype=self.dtype, reduction="sum"
|
206
|
+
)
|
208
207
|
return super().update_state(values, sample_weight=sample_weight)
|
209
208
|
|
210
209
|
def get_config(self):
|
keras/src/ops/core.py
CHANGED
@@ -8,6 +8,7 @@ from keras.src.backend import KerasTensor
|
|
8
8
|
from keras.src.backend import any_symbolic_tensors
|
9
9
|
from keras.src.backend.common.backend_utils import slice_along_axis
|
10
10
|
from keras.src.ops.operation import Operation
|
11
|
+
from keras.src.saving import serialization_lib
|
11
12
|
from keras.src.utils import traceback_utils
|
12
13
|
|
13
14
|
|
@@ -1105,6 +1106,19 @@ class VectorizedMap(Operation):
|
|
1105
1106
|
y = tree.map_structure(append_batch_axis, y)
|
1106
1107
|
return y
|
1107
1108
|
|
1109
|
+
def get_config(self):
|
1110
|
+
config = super().get_config()
|
1111
|
+
config.update({"function": self.function})
|
1112
|
+
return config
|
1113
|
+
|
1114
|
+
@classmethod
|
1115
|
+
def from_config(cls, config):
|
1116
|
+
config = config.copy()
|
1117
|
+
config["function"] = serialization_lib.deserialize_keras_object(
|
1118
|
+
config["function"]
|
1119
|
+
)
|
1120
|
+
return cls(**config)
|
1121
|
+
|
1108
1122
|
|
1109
1123
|
@keras_export("keras.ops.vectorized_map")
|
1110
1124
|
def vectorized_map(function, elements):
|
keras/src/version.py
CHANGED
{keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/RECORD
RENAMED
@@ -126,7 +126,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
|
|
126
126
|
keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
|
127
127
|
keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
|
128
128
|
keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
|
129
|
-
keras/src/version.py,sha256=
|
129
|
+
keras/src/version.py,sha256=jIhkFIrF_efXcsntiwlP3rpnKtudZLu6Cq5H26XJLBA,204
|
130
130
|
keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
|
131
131
|
keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
|
132
132
|
keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -169,7 +169,7 @@ keras/src/backend/jax/layer.py,sha256=QxZeeiimUulsb3j1h3ncNxIoTYdKPO89s0kP49ZwF-
|
|
169
169
|
keras/src/backend/jax/linalg.py,sha256=dtGHRYCvoVlRX0UwbDDdunA8Vp_mA3sdqoasX4P8SbQ,2532
|
170
170
|
keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
|
171
171
|
keras/src/backend/jax/nn.py,sha256=R0a8-WB0YCl14FpRi2CQ45MFRvHCFtPTedk0Q1LfWYc,45935
|
172
|
-
keras/src/backend/jax/numpy.py,sha256=
|
172
|
+
keras/src/backend/jax/numpy.py,sha256=ZUvPpqfwfDOw2n-zo156AhoWzuweCTs6g034A0tqpMs,36687
|
173
173
|
keras/src/backend/jax/optimizer.py,sha256=JSKRkBteb7u-He5rtHwU6Wy5p8IjSsZf-IIL4-eQfsE,4102
|
174
174
|
keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
|
175
175
|
keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
|
@@ -189,7 +189,7 @@ keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZ
|
|
189
189
|
keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
|
190
190
|
keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
|
191
191
|
keras/src/backend/openvino/__init__.py,sha256=gltfAbi9LMAAalH1fRIRWS1LRjf5EreWqOMtXqlliwY,1323
|
192
|
-
keras/src/backend/openvino/core.py,sha256=
|
192
|
+
keras/src/backend/openvino/core.py,sha256=v5lk59tssLzF-r6gOLd9HNk1Fz1FKJ-o2jdSEDUGX-M,41913
|
193
193
|
keras/src/backend/openvino/export.py,sha256=eDDZmCTXIyii3YXEPMEDXYVUI_z07BlHJaD0NovEoXE,360
|
194
194
|
keras/src/backend/openvino/image.py,sha256=2X7bSb9kMTKkSKKtZ3CW4pOlDo4H2vGyGpWDQUN3tWY,1903
|
195
195
|
keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5bZ1pkRk,30
|
@@ -472,7 +472,7 @@ keras/src/metrics/iou_metrics.py,sha256=JRN9h5PquDfY-OPkqo1cFLLT0oiSYbbV7J54PxuO
|
|
472
472
|
keras/src/metrics/metric.py,sha256=1PX_RDtB9PyLGxeUFenPoeVJphFIsNkD_BxFgjl7jvk,8759
|
473
473
|
keras/src/metrics/metrics_utils.py,sha256=YEK52B_liCGFM_VFsGGb-fpNxVsGR4VZjMzfNGP2wPY,26725
|
474
474
|
keras/src/metrics/probabilistic_metrics.py,sha256=cyDuxohv3eqbVjGhTljwo507wzriuXG20OVsCXd0Fo8,10640
|
475
|
-
keras/src/metrics/reduction_metrics.py,sha256
|
475
|
+
keras/src/metrics/reduction_metrics.py,sha256=dWGDRZhts3sPNvnVlVaHsDf2HxSz4S3NiWeGc5XS73M,7274
|
476
476
|
keras/src/metrics/regression_metrics.py,sha256=eLacV_8CKtzA26BJDJuncUDATuL1x8O6SRHqLA9eSFc,19756
|
477
477
|
keras/src/models/__init__.py,sha256=DPbBPSfIGgsufTfJH5U5xJOeN_Ef4FMadT7KKYg3Kjg,143
|
478
478
|
keras/src/models/cloning.py,sha256=jwVtVVVYVasFIrln2hrzJ8bR2Xhsx9wYgEqpF1AjSvE,15786
|
@@ -481,7 +481,7 @@ keras/src/models/model.py,sha256=zsIZUIsXbl_PpMX7GaNOPiT-QeHDZvPIoCteN7Ee2Bs,354
|
|
481
481
|
keras/src/models/sequential.py,sha256=CC9Q1BNB9m7TkgMHRyjOzhQvneng576wJpmdgHrACKY,14352
|
482
482
|
keras/src/models/variable_mapping.py,sha256=FVtcgjBRqOxtvkzOE6kjG9SpcB9keDg2gS5LOTlXvG0,2181
|
483
483
|
keras/src/ops/__init__.py,sha256=aORlvnrqY_eQl0EFLWdpHsXHnQ6JLSw1qhwJMr-VXJ0,644
|
484
|
-
keras/src/ops/core.py,sha256=
|
484
|
+
keras/src/ops/core.py,sha256=t06-MvptYb6ZVwmNj083JyUtzU4M6UTVXOT2vVHtKyU,42781
|
485
485
|
keras/src/ops/einops.py,sha256=-pxW0_AzDQNsR7t2TJrzvYXBJpmLYA3fJoO0U_U96PY,6268
|
486
486
|
keras/src/ops/function.py,sha256=wFt_CZ5_yi9jcLjk5yzyHpXKhreeXo3P8zDFQ9P8yA8,17832
|
487
487
|
keras/src/ops/image.py,sha256=hx1-EEYPiRygVtXqMIQg-8g0iPEu0g9MnSqN5Nr1_Yk,60777
|
@@ -592,7 +592,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
|
|
592
592
|
keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
|
593
593
|
keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
|
594
594
|
keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
|
595
|
-
keras_nightly-3.12.0.
|
596
|
-
keras_nightly-3.12.0.
|
597
|
-
keras_nightly-3.12.0.
|
598
|
-
keras_nightly-3.12.0.
|
595
|
+
keras_nightly-3.12.0.dev2025081903.dist-info/METADATA,sha256=wXQRJnT0-m8WG318qVx3MY6zCsQHLF2RlmBwjrcMcPQ,5970
|
596
|
+
keras_nightly-3.12.0.dev2025081903.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
597
|
+
keras_nightly-3.12.0.dev2025081903.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
|
598
|
+
keras_nightly-3.12.0.dev2025081903.dist-info/RECORD,,
|
{keras_nightly-3.12.0.dev2025081804.dist-info → keras_nightly-3.12.0.dev2025081903.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|