keras-nightly 3.12.0.dev2025081804__py3-none-any.whl → 3.12.0.dev2025081903__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -39,17 +39,17 @@ def add(x1, x2):
39
39
 
40
40
  def bartlett(x):
41
41
  x = convert_to_tensor(x)
42
- return jnp.bartlett(x)
42
+ return cast(jnp.bartlett(x), config.floatx())
43
43
 
44
44
 
45
45
  def hamming(x):
46
46
  x = convert_to_tensor(x)
47
- return jnp.hamming(x)
47
+ return cast(jnp.hamming(x), config.floatx())
48
48
 
49
49
 
50
50
  def hanning(x):
51
51
  x = convert_to_tensor(x)
52
- return jnp.hanning(x)
52
+ return cast(jnp.hanning(x), config.floatx())
53
53
 
54
54
 
55
55
  def heaviside(x1, x2):
@@ -60,7 +60,7 @@ def heaviside(x1, x2):
60
60
 
61
61
  def kaiser(x, beta):
62
62
  x = convert_to_tensor(x)
63
- return jnp.kaiser(x, beta)
63
+ return cast(jnp.kaiser(x, beta), config.floatx())
64
64
 
65
65
 
66
66
  def bincount(x, weights=None, minlength=0, sparse=False):
@@ -497,7 +497,7 @@ def right_shift(x, y):
497
497
 
498
498
  def blackman(x):
499
499
  x = convert_to_tensor(x)
500
- return jnp.blackman(x)
500
+ return cast(jnp.blackman(x), config.floatx())
501
501
 
502
502
 
503
503
  def broadcast_to(x, shape):
@@ -843,9 +843,16 @@ def slice(inputs, start_indices, shape):
843
843
  start = ov_opset.concat(start, axis=0).output(0)
844
844
  stop = ov_opset.concat(stop, axis=0).output(0)
845
845
  axes = ov_opset.constant(axes, Type.i32).output(0)
846
- return OpenVINOKerasTensor(
847
- ov_opset.slice(inputs, start, stop, step, axes).output(0)
848
- )
846
+ result = ov_opset.slice(inputs, start, stop, step, axes).output(0)
847
+
848
+ # Apply reshape to ensure output matches expected shape
849
+ # Convert None (dynamic) dimensions to -1 for OpenVINO compatibility
850
+ if all(dim is None or (isinstance(dim, int) and dim >= 0) for dim in shape):
851
+ reshape_pattern = [(-1 if dim is None else dim) for dim in shape]
852
+ target_shape = ov_opset.constant(reshape_pattern, Type.i32).output(0)
853
+ result = ov_opset.reshape(result, target_shape, False).output(0)
854
+
855
+ return OpenVINOKerasTensor(result)
849
856
 
850
857
 
851
858
  def slice_update(inputs, start_indices, updates):
@@ -201,10 +201,9 @@ class MeanMetricWrapper(Mean):
201
201
  def update_state(self, y_true, y_pred, sample_weight=None):
202
202
  mask = backend.get_keras_mask(y_pred)
203
203
  values = self._fn(y_true, y_pred, **self._fn_kwargs)
204
- if sample_weight is not None and mask is not None:
205
- sample_weight = losses.loss.apply_mask(
206
- sample_weight, mask, dtype=self.dtype, reduction="sum"
207
- )
204
+ sample_weight = losses.loss.apply_mask(
205
+ sample_weight, mask, dtype=self.dtype, reduction="sum"
206
+ )
208
207
  return super().update_state(values, sample_weight=sample_weight)
209
208
 
210
209
  def get_config(self):
keras/src/ops/core.py CHANGED
@@ -8,6 +8,7 @@ from keras.src.backend import KerasTensor
8
8
  from keras.src.backend import any_symbolic_tensors
9
9
  from keras.src.backend.common.backend_utils import slice_along_axis
10
10
  from keras.src.ops.operation import Operation
11
+ from keras.src.saving import serialization_lib
11
12
  from keras.src.utils import traceback_utils
12
13
 
13
14
 
@@ -1105,6 +1106,19 @@ class VectorizedMap(Operation):
1105
1106
  y = tree.map_structure(append_batch_axis, y)
1106
1107
  return y
1107
1108
 
1109
+ def get_config(self):
1110
+ config = super().get_config()
1111
+ config.update({"function": self.function})
1112
+ return config
1113
+
1114
+ @classmethod
1115
+ def from_config(cls, config):
1116
+ config = config.copy()
1117
+ config["function"] = serialization_lib.deserialize_keras_object(
1118
+ config["function"]
1119
+ )
1120
+ return cls(**config)
1121
+
1108
1122
 
1109
1123
  @keras_export("keras.ops.vectorized_map")
1110
1124
  def vectorized_map(function, elements):
keras/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras.src.api_export import keras_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "3.12.0.dev2025081804"
4
+ __version__ = "3.12.0.dev2025081903"
5
5
 
6
6
 
7
7
  @keras_export("keras.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-nightly
3
- Version: 3.12.0.dev2025081804
3
+ Version: 3.12.0.dev2025081903
4
4
  Summary: Multi-backend Keras
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License: Apache License 2.0
@@ -126,7 +126,7 @@ keras/regularizers/__init__.py,sha256=542Shphw7W8h4Dyf2rmqMKUECVZ8IVBvN9g1LWhz-b
126
126
  keras/saving/__init__.py,sha256=KvL2GZxjvgFgEhvEnkvqjIR9JSNHKz-NWZacXajsjLI,1298
127
127
  keras/src/__init__.py,sha256=Gi4S7EiCMkE03PbdGNpFdaUYySWDs_FcAJ8Taz9Y1BE,684
128
128
  keras/src/api_export.py,sha256=gXOkBOnmscV013WAc75lc4Up01-Kkg9EylIAT_QWctg,1173
129
- keras/src/version.py,sha256=AqccLKeItJzjB-pkWdwsDXqBu69XF8tGGJlj-42BrMA,204
129
+ keras/src/version.py,sha256=jIhkFIrF_efXcsntiwlP3rpnKtudZLu6Cq5H26XJLBA,204
130
130
  keras/src/activations/__init__.py,sha256=0nL3IFDB9unlrMz8ninKOWo-uCHasTUpTo1tXZb2u44,4433
131
131
  keras/src/activations/activations.py,sha256=mogPggtp4CGldI3VOPNmesRxp6EbiR1_i4KLGaVwzL8,17614
132
132
  keras/src/applications/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -169,7 +169,7 @@ keras/src/backend/jax/layer.py,sha256=QxZeeiimUulsb3j1h3ncNxIoTYdKPO89s0kP49ZwF-
169
169
  keras/src/backend/jax/linalg.py,sha256=dtGHRYCvoVlRX0UwbDDdunA8Vp_mA3sdqoasX4P8SbQ,2532
170
170
  keras/src/backend/jax/math.py,sha256=1IEDpdoF8e5ltu3D4wbDQuihzvJHhMXz8W9Z_E-eJqU,9391
171
171
  keras/src/backend/jax/nn.py,sha256=R0a8-WB0YCl14FpRi2CQ45MFRvHCFtPTedk0Q1LfWYc,45935
172
- keras/src/backend/jax/numpy.py,sha256=tNBmRx0elWIgzOGwx3k-voQ57_xYtXOrvbsGrjx8vpw,36572
172
+ keras/src/backend/jax/numpy.py,sha256=ZUvPpqfwfDOw2n-zo156AhoWzuweCTs6g034A0tqpMs,36687
173
173
  keras/src/backend/jax/optimizer.py,sha256=JSKRkBteb7u-He5rtHwU6Wy5p8IjSsZf-IIL4-eQfsE,4102
174
174
  keras/src/backend/jax/random.py,sha256=Uk2huGIk_dlzMrx5eDVrrr2TeCEMitn2vr4yzA0NXjs,3594
175
175
  keras/src/backend/jax/rnn.py,sha256=Ycq0qfLY4M4jhltvztpLQyywjEM17T7CZQFh4hhHOUE,7767
@@ -189,7 +189,7 @@ keras/src/backend/numpy/random.py,sha256=wx2nE75q7L2cBMjtQlQx8yKMj4Ie3puFMDQsbrZ
189
189
  keras/src/backend/numpy/rnn.py,sha256=thOsMung1qR3lQsR4_D6hqKMFollQgrB0KwsJLk4BMY,7867
190
190
  keras/src/backend/numpy/trainer.py,sha256=MzWr8_LLHa1P6fxdUWirGw_lQwHGF_vkZ7RUGLUzjUs,11126
191
191
  keras/src/backend/openvino/__init__.py,sha256=gltfAbi9LMAAalH1fRIRWS1LRjf5EreWqOMtXqlliwY,1323
192
- keras/src/backend/openvino/core.py,sha256=kg7afXa_0k2UlbZ_8O9ohr53kPfB3R5FzeaT2DirI6w,41466
192
+ keras/src/backend/openvino/core.py,sha256=v5lk59tssLzF-r6gOLd9HNk1Fz1FKJ-o2jdSEDUGX-M,41913
193
193
  keras/src/backend/openvino/export.py,sha256=eDDZmCTXIyii3YXEPMEDXYVUI_z07BlHJaD0NovEoXE,360
194
194
  keras/src/backend/openvino/image.py,sha256=2X7bSb9kMTKkSKKtZ3CW4pOlDo4H2vGyGpWDQUN3tWY,1903
195
195
  keras/src/backend/openvino/layer.py,sha256=5RdvaH1yOyPAphjKiuQAK1H_yZFYKE1Hp7c5bZ1pkRk,30
@@ -472,7 +472,7 @@ keras/src/metrics/iou_metrics.py,sha256=JRN9h5PquDfY-OPkqo1cFLLT0oiSYbbV7J54PxuO
472
472
  keras/src/metrics/metric.py,sha256=1PX_RDtB9PyLGxeUFenPoeVJphFIsNkD_BxFgjl7jvk,8759
473
473
  keras/src/metrics/metrics_utils.py,sha256=YEK52B_liCGFM_VFsGGb-fpNxVsGR4VZjMzfNGP2wPY,26725
474
474
  keras/src/metrics/probabilistic_metrics.py,sha256=cyDuxohv3eqbVjGhTljwo507wzriuXG20OVsCXd0Fo8,10640
475
- keras/src/metrics/reduction_metrics.py,sha256=-imgCBWg9Kdfx_k4Shq81h07feoHDquB_J704NgFQ1g,7345
475
+ keras/src/metrics/reduction_metrics.py,sha256=dWGDRZhts3sPNvnVlVaHsDf2HxSz4S3NiWeGc5XS73M,7274
476
476
  keras/src/metrics/regression_metrics.py,sha256=eLacV_8CKtzA26BJDJuncUDATuL1x8O6SRHqLA9eSFc,19756
477
477
  keras/src/models/__init__.py,sha256=DPbBPSfIGgsufTfJH5U5xJOeN_Ef4FMadT7KKYg3Kjg,143
478
478
  keras/src/models/cloning.py,sha256=jwVtVVVYVasFIrln2hrzJ8bR2Xhsx9wYgEqpF1AjSvE,15786
@@ -481,7 +481,7 @@ keras/src/models/model.py,sha256=zsIZUIsXbl_PpMX7GaNOPiT-QeHDZvPIoCteN7Ee2Bs,354
481
481
  keras/src/models/sequential.py,sha256=CC9Q1BNB9m7TkgMHRyjOzhQvneng576wJpmdgHrACKY,14352
482
482
  keras/src/models/variable_mapping.py,sha256=FVtcgjBRqOxtvkzOE6kjG9SpcB9keDg2gS5LOTlXvG0,2181
483
483
  keras/src/ops/__init__.py,sha256=aORlvnrqY_eQl0EFLWdpHsXHnQ6JLSw1qhwJMr-VXJ0,644
484
- keras/src/ops/core.py,sha256=OjawYtGqKRZem0gW6r6gjsZtKO3Oa_iwHRmXX3yEJJU,42370
484
+ keras/src/ops/core.py,sha256=t06-MvptYb6ZVwmNj083JyUtzU4M6UTVXOT2vVHtKyU,42781
485
485
  keras/src/ops/einops.py,sha256=-pxW0_AzDQNsR7t2TJrzvYXBJpmLYA3fJoO0U_U96PY,6268
486
486
  keras/src/ops/function.py,sha256=wFt_CZ5_yi9jcLjk5yzyHpXKhreeXo3P8zDFQ9P8yA8,17832
487
487
  keras/src/ops/image.py,sha256=hx1-EEYPiRygVtXqMIQg-8g0iPEu0g9MnSqN5Nr1_Yk,60777
@@ -592,7 +592,7 @@ keras/utils/bounding_boxes/__init__.py,sha256=jtvQll4u8ZY0Z96HwNhP1nxWEG9FM3gI-6
592
592
  keras/utils/legacy/__init__.py,sha256=oSYZz6uS8UxSElRaaJYWJEoweJ4GAasZjnn7fNaOlog,342
593
593
  keras/visualization/__init__.py,sha256=UKWmiy6sps4SWlmQi9WX8_Z53cPpLlphz2zIeHdwJpQ,722
594
594
  keras/wrappers/__init__.py,sha256=QkS-O5K8qGS7C3sytF8MpmO6PasATpNVGF8qtb7Ojsw,407
595
- keras_nightly-3.12.0.dev2025081804.dist-info/METADATA,sha256=0WzHzaCWMRbl5mrtjHaDa9jX9HWaEXOHlizpxLKc6fE,5970
596
- keras_nightly-3.12.0.dev2025081804.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
597
- keras_nightly-3.12.0.dev2025081804.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
598
- keras_nightly-3.12.0.dev2025081804.dist-info/RECORD,,
595
+ keras_nightly-3.12.0.dev2025081903.dist-info/METADATA,sha256=wXQRJnT0-m8WG318qVx3MY6zCsQHLF2RlmBwjrcMcPQ,5970
596
+ keras_nightly-3.12.0.dev2025081903.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
597
+ keras_nightly-3.12.0.dev2025081903.dist-info/top_level.txt,sha256=ptcw_-QuGZ4ZDjMdwi_Z0clZm8QAqFdvzzFnDEOTs9o,6
598
+ keras_nightly-3.12.0.dev2025081903.dist-info/RECORD,,