keras-hub 0.21.0.dev0__py3-none-any.whl → 0.21.1.dev0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/mixtral/__init__.py +5 -0
- keras_hub/src/models/mixtral/mixtral_presets.py +4 -4
- keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +3 -0
- keras_hub/src/models/qwen/__init__.py +4 -0
- keras_hub/src/models/qwen/qwen_causal_lm.py +124 -0
- keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +66 -0
- keras_hub/src/models/qwen/qwen_presets.py +6 -6
- keras_hub/src/models/qwen_moe/__init__.py +5 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +67 -5
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
- keras_hub/src/version.py +1 -1
- {keras_hub-0.21.0.dev0.dist-info → keras_hub-0.21.1.dev0.dist-info}/METADATA +1 -1
- {keras_hub-0.21.0.dev0.dist-info → keras_hub-0.21.1.dev0.dist-info}/RECORD +15 -14
- {keras_hub-0.21.0.dev0.dist-info → keras_hub-0.21.1.dev0.dist-info}/WHEEL +1 -1
- {keras_hub-0.21.0.dev0.dist-info → keras_hub-0.21.1.dev0.dist-info}/top_level.txt +0 -0
|
@@ -4,8 +4,8 @@ backbone_presets = {
|
|
|
4
4
|
"mixtral_8_7b_en": {
|
|
5
5
|
"metadata": {
|
|
6
6
|
"description": (
|
|
7
|
-
"32-layer Mixtral MoE model with 7 billion"
|
|
8
|
-
"active parameters and 8 experts per MoE layer."
|
|
7
|
+
"32-layer Mixtral MoE model with 7 billion"
|
|
8
|
+
"active parameters and 8 experts per MoE layer."
|
|
9
9
|
),
|
|
10
10
|
"params": 46702792704,
|
|
11
11
|
"path": "mixtral",
|
|
@@ -15,8 +15,8 @@ backbone_presets = {
|
|
|
15
15
|
"mixtral_8_instruct_7b_en": {
|
|
16
16
|
"metadata": {
|
|
17
17
|
"description": (
|
|
18
|
-
"Instruction fine-tuned 32-layer Mixtral MoE model"
|
|
19
|
-
"with 7 billion active parameters and 8 experts per MoE layer."
|
|
18
|
+
"Instruction fine-tuned 32-layer Mixtral MoE model"
|
|
19
|
+
"with 7 billion active parameters and 8 experts per MoE layer."
|
|
20
20
|
),
|
|
21
21
|
"params": 46702792704,
|
|
22
22
|
"path": "mixtral",
|
|
@@ -266,4 +266,7 @@ class MoonshineAudioToTextPreprocessor(AudioToTextPreprocessor):
|
|
|
266
266
|
and 0 <= token < vocab_size
|
|
267
267
|
]
|
|
268
268
|
processed_sequences.append(filtered_tokens)
|
|
269
|
+
processed_sequences = tf.ragged.constant(
|
|
270
|
+
processed_sequences, dtype=tf.int32
|
|
271
|
+
)
|
|
269
272
|
return self.tokenizer.detokenize(processed_sequences)
|
|
@@ -17,6 +17,130 @@ from keras_hub.src.utils.tensor_utils import any_equal
|
|
|
17
17
|
]
|
|
18
18
|
)
|
|
19
19
|
class QwenCausalLM(CausalLM):
|
|
20
|
+
"""An end-to-end Qwen model for causal language modeling.
|
|
21
|
+
|
|
22
|
+
A causal language model (LM) predicts the next token based on previous
|
|
23
|
+
tokens. This task setup can be used to train the model unsupervised on plain
|
|
24
|
+
text input, or to autoregressively generate plain text similar to the data
|
|
25
|
+
used for training. This task can be used for pre-training or fine-tuning a
|
|
26
|
+
Qwen model, simply by calling `fit()`.
|
|
27
|
+
|
|
28
|
+
This model has a `generate()` method, which generates text based on a
|
|
29
|
+
prompt. The generation strategy used is controlled by an additional
|
|
30
|
+
`sampler` argument on `compile()`. You can recompile the model with
|
|
31
|
+
different `keras_hub.samplers` objects to control the generation.
|
|
32
|
+
By default, `"greedy"` sampling will be used.
|
|
33
|
+
|
|
34
|
+
This model can optionally be configured with a `preprocessor` layer, in
|
|
35
|
+
which case it will automatically apply preprocessing to string inputs during
|
|
36
|
+
`fit()`, `predict()`, `evaluate()`, and `generate()`. This is done by
|
|
37
|
+
default when creating the model with `from_preset()`.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
backbone: A `keras_hub.models.QwenBackbone` instance.
|
|
41
|
+
preprocessor: A `keras_hub.models.QwenCausalLMPreprocessor` or
|
|
42
|
+
`None`. If `None`, this model will not apply preprocessing, and
|
|
43
|
+
inputs should be preprocessed before calling the model.
|
|
44
|
+
|
|
45
|
+
Examples:
|
|
46
|
+
|
|
47
|
+
Use `generate()` to do text generation.
|
|
48
|
+
```python
|
|
49
|
+
qwen_lm = keras_hub.models.QwenCausalLM.from_preset("qwen2.5_0.5b_en")
|
|
50
|
+
qwen_lm.generate("I want to say", max_length=30)
|
|
51
|
+
|
|
52
|
+
# Generate with batched prompts.
|
|
53
|
+
qwen_lm.generate(["This is a", "Where are you"], max_length=30)
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
Compile the `generate()` function with a custom sampler.
|
|
57
|
+
```python
|
|
58
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen2.5_0.5b_en")
|
|
59
|
+
qwen_lm.compile(sampler="top_k")
|
|
60
|
+
qwen_lm.generate("I want to say", max_length=30)
|
|
61
|
+
|
|
62
|
+
qwen_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
|
|
63
|
+
qwen_lm.generate("I want to say", max_length=30)
|
|
64
|
+
```
|
|
65
|
+
|
|
66
|
+
Use `generate()` without preprocessing.
|
|
67
|
+
```python
|
|
68
|
+
prompt = {
|
|
69
|
+
# Token ids for "<bos> Qwen is".
|
|
70
|
+
"token_ids": np.array([[2, 12345, 678, 0, 0, 0, 0]] * 2),
|
|
71
|
+
# Use `"padding_mask"` to indicate values that should not be overridden.
|
|
72
|
+
"padding_mask": np.array([[1, 1, 1, 0, 0, 0, 0]] * 2),
|
|
73
|
+
}
|
|
74
|
+
|
|
75
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM.from_preset(
|
|
76
|
+
"qwen2.5_0.5b_en",
|
|
77
|
+
preprocessor=None,
|
|
78
|
+
)
|
|
79
|
+
qwen_lm.generate(prompt)
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
Call `fit()` on a single batch.
|
|
83
|
+
```python
|
|
84
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
|
85
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen2.5_0.5b_en")
|
|
86
|
+
qwen_lm.fit(x=features, batch_size=2)
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
Call `fit()` with LoRA fine-tuning enabled.
|
|
90
|
+
```python
|
|
91
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
|
92
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen2.5_0.5b_en")
|
|
93
|
+
qwen_lm.backbone.enable_lora(rank=4)
|
|
94
|
+
qwen_lm.fit(x=features, batch_size=2)
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
Call `fit()` without preprocessing.
|
|
98
|
+
```python
|
|
99
|
+
x = {
|
|
100
|
+
# Token ids for "<bos> Qwen is a language model<eos>"
|
|
101
|
+
"token_ids": np.array([[2, 12345, 678, 543, 9876, 1, 0, 0]] * 2),
|
|
102
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
|
103
|
+
}
|
|
104
|
+
y = np.array([[12345, 678, 543, 9876, 1, 0, 0, 0]] * 2)
|
|
105
|
+
sw = np.array([[1, 1, 1, 1, 1, 0, 0, 0]] * 2)
|
|
106
|
+
|
|
107
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM.from_preset(
|
|
108
|
+
"qwen2.5_0.5b_en",
|
|
109
|
+
preprocessor=None,
|
|
110
|
+
)
|
|
111
|
+
qwen_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
Custom backbone and vocabulary.
|
|
115
|
+
```python
|
|
116
|
+
tokenizer = keras_hub.models.QwenMoeTokenizer(
|
|
117
|
+
proto="qwen_moe_vocab.spm",
|
|
118
|
+
)
|
|
119
|
+
preprocessor = keras_hub.models.QwenMoeCausalLMPreprocessor(
|
|
120
|
+
tokenizer=tokenizer,
|
|
121
|
+
sequence_length=128,
|
|
122
|
+
)
|
|
123
|
+
backbone = keras_hub.models.QwenMoeBackbone(
|
|
124
|
+
vocabulary_size=151936,
|
|
125
|
+
num_layers=28,
|
|
126
|
+
num_query_heads=16,
|
|
127
|
+
num_key_value_heads=8,
|
|
128
|
+
hidden_dim=2048,
|
|
129
|
+
intermediate_dim=4096,
|
|
130
|
+
moe_intermediate_dim=128,
|
|
131
|
+
shared_expert_intermediate_dim=4096,
|
|
132
|
+
num_experts=60,
|
|
133
|
+
top_k=4,
|
|
134
|
+
max_sequence_length=4096,
|
|
135
|
+
)
|
|
136
|
+
qwen_lm = keras_hub.models.QwenMoeCausalLM(
|
|
137
|
+
backbone=backbone,
|
|
138
|
+
preprocessor=preprocessor,
|
|
139
|
+
)
|
|
140
|
+
qwen_lm.fit(x=features, batch_size=2)
|
|
141
|
+
```
|
|
142
|
+
"""
|
|
143
|
+
|
|
20
144
|
backbone_cls = QwenBackbone
|
|
21
145
|
preprocessor_cls = QwenCausalLMPreprocessor
|
|
22
146
|
|
|
@@ -11,6 +11,72 @@ from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
|
|
|
11
11
|
]
|
|
12
12
|
)
|
|
13
13
|
class QwenCausalLMPreprocessor(CausalLMPreprocessor):
|
|
14
|
+
"""Qwen Causal LM preprocessor.
|
|
15
|
+
|
|
16
|
+
This preprocessing layer is meant for use with
|
|
17
|
+
`keras_hub.models.QwenCausalLM`. By default, it will take in batches of
|
|
18
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
|
19
|
+
`y` label is the next token id in the `x` sequence.
|
|
20
|
+
|
|
21
|
+
For use with generation, the layer also exposes two methods
|
|
22
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
|
23
|
+
is attached to a `keras_hub.models.QwenCausalLM` instance, these methods
|
|
24
|
+
will be called implicitly in `generate()`. They can also be called
|
|
25
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
|
26
|
+
separate process).
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
tokenizer: A `keras_hub.models.QwenTokenizer` instance.
|
|
30
|
+
sequence_length: The length of the packed inputs.
|
|
31
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
|
32
|
+
start token to each input sequence. Default is `True`.
|
|
33
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
|
34
|
+
end token to each input sequence. Default is `False`.
|
|
35
|
+
|
|
36
|
+
Call arguments:
|
|
37
|
+
x: A string, `tf.Tensor` or list of python strings.
|
|
38
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
|
39
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
|
40
|
+
generates label weights.
|
|
41
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
|
42
|
+
the layer.
|
|
43
|
+
|
|
44
|
+
Examples:
|
|
45
|
+
```python
|
|
46
|
+
# Load the preprocessor from a preset.
|
|
47
|
+
preprocessor = keras_hub.models.QwenCausalLMPreprocessor.from_preset(
|
|
48
|
+
"qwen2.5_0.5b_en"
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# Tokenize and pack a single sentence.
|
|
52
|
+
sentence = tf.constant("League of legends")
|
|
53
|
+
preprocessor(sentence)
|
|
54
|
+
# Same output.
|
|
55
|
+
preprocessor("League of legends")
|
|
56
|
+
|
|
57
|
+
# Tokenize a batch of sentences.
|
|
58
|
+
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
|
|
59
|
+
preprocessor(sentences)
|
|
60
|
+
# Same output.
|
|
61
|
+
preprocessor(["Taco tuesday", "Fish taco please!"])
|
|
62
|
+
|
|
63
|
+
# Map a dataset to preprocess a single sentence.
|
|
64
|
+
features = tf.constant(
|
|
65
|
+
[
|
|
66
|
+
"Avatar 2 is amazing!",
|
|
67
|
+
"Well, I am not sure.",
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
labels = tf.constant([1, 0])
|
|
71
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
|
72
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
73
|
+
|
|
74
|
+
# Map a dataset to preprocess unlabled sentences.
|
|
75
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
|
76
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
77
|
+
```
|
|
78
|
+
"""
|
|
79
|
+
|
|
14
80
|
backbone_cls = QwenBackbone
|
|
15
81
|
tokenizer_cls = QwenTokenizer
|
|
16
82
|
|
|
@@ -28,8 +28,8 @@ backbone_presets = {
|
|
|
28
28
|
"qwen2.5_instruct_0.5b_en": {
|
|
29
29
|
"metadata": {
|
|
30
30
|
"description": (
|
|
31
|
-
"Instruction fine-tuned 24-layer Qwen model with 0.5 "
|
|
32
|
-
"billion parameters."
|
|
31
|
+
"Instruction fine-tuned 24-layer Qwen model with 0.5 "
|
|
32
|
+
"billion parameters."
|
|
33
33
|
),
|
|
34
34
|
"params": 494032768,
|
|
35
35
|
"path": "qwen",
|
|
@@ -39,8 +39,8 @@ backbone_presets = {
|
|
|
39
39
|
"qwen2.5_instruct_32b_en": {
|
|
40
40
|
"metadata": {
|
|
41
41
|
"description": (
|
|
42
|
-
"Instruction fine-tuned 64-layer Qwen model with 32 "
|
|
43
|
-
"billion parameters."
|
|
42
|
+
"Instruction fine-tuned 64-layer Qwen model with 32 "
|
|
43
|
+
"billion parameters."
|
|
44
44
|
),
|
|
45
45
|
"params": 32763876352,
|
|
46
46
|
"path": "qwen",
|
|
@@ -50,8 +50,8 @@ backbone_presets = {
|
|
|
50
50
|
"qwen2.5_instruct_72b_en": {
|
|
51
51
|
"metadata": {
|
|
52
52
|
"description": (
|
|
53
|
-
"Instruction fine-tuned 80-layer Qwen model with 72 "
|
|
54
|
-
"billion parameters."
|
|
53
|
+
"Instruction fine-tuned 80-layer Qwen model with 72 "
|
|
54
|
+
"billion parameters."
|
|
55
55
|
),
|
|
56
56
|
"params": 72706203648,
|
|
57
57
|
"path": "qwen",
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_backbone import QwenMoeBackbone
|
|
2
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_presets import backbone_presets
|
|
3
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
|
4
|
+
|
|
5
|
+
register_presets(backbone_presets, QwenMoeBackbone)
|
|
@@ -4,12 +4,74 @@ from keras_hub.src.models.qwen_moe.qwen_moe_backbone import QwenMoeBackbone
|
|
|
4
4
|
from keras_hub.src.models.qwen_moe.qwen_moe_tokenizer import QwenMoeTokenizer
|
|
5
5
|
|
|
6
6
|
|
|
7
|
-
@keras_hub_export(
|
|
8
|
-
[
|
|
9
|
-
"keras_hub.models.QwenMoeCausalLMPreprocessor",
|
|
10
|
-
]
|
|
11
|
-
)
|
|
7
|
+
@keras_hub_export("keras_hub.models.QwenMoeCausalLMPreprocessor")
|
|
12
8
|
class QwenMoeCausalLMPreprocessor(CausalLMPreprocessor):
|
|
9
|
+
"""Qwen-Moe Causal LM preprocessor.
|
|
10
|
+
|
|
11
|
+
This preprocessing layer is meant for use with
|
|
12
|
+
`keras_hub.models.QwenMoeCausalLM`. By default, it will take in batches of
|
|
13
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
|
14
|
+
`y` label is the next token id in the `x` sequence.
|
|
15
|
+
|
|
16
|
+
For use with generation, the layer also exposes two methods
|
|
17
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
|
18
|
+
is attached to a `keras_hub.models.QwenMoeCausalLM` instance, these methods
|
|
19
|
+
will be called implicitly in `generate()`. They can also be called
|
|
20
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
|
21
|
+
separate process).
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
tokenizer: A `keras_hub.models.QwenMoeTokenizer` instance.
|
|
25
|
+
sequence_length: The length of the packed inputs.
|
|
26
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
|
27
|
+
start token to each input sequence. Default is `True`.
|
|
28
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
|
29
|
+
end token to each input sequence. Default is `False`.
|
|
30
|
+
|
|
31
|
+
Call arguments:
|
|
32
|
+
x: A string, `tf.Tensor` or list of python strings.
|
|
33
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
|
34
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
|
35
|
+
generates label weights.
|
|
36
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
|
37
|
+
the layer.
|
|
38
|
+
|
|
39
|
+
Examples:
|
|
40
|
+
```python
|
|
41
|
+
# Load the preprocessor from a preset.
|
|
42
|
+
preprocessor = keras_hub.models.QwenMoeCausalLMPreprocessor.from_preset(
|
|
43
|
+
"qwen2.5_0.5b_en"
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
# Tokenize and pack a single sentence.
|
|
47
|
+
sentence = tf.constant("League of legends")
|
|
48
|
+
preprocessor(sentence)
|
|
49
|
+
# Same output.
|
|
50
|
+
preprocessor("League of legends")
|
|
51
|
+
|
|
52
|
+
# Tokenize a batch of sentences.
|
|
53
|
+
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
|
|
54
|
+
preprocessor(sentences)
|
|
55
|
+
# Same output.
|
|
56
|
+
preprocessor(["Taco tuesday", "Fish taco please!"])
|
|
57
|
+
|
|
58
|
+
# Map a dataset to preprocess a single sentence.
|
|
59
|
+
features = tf.constant(
|
|
60
|
+
[
|
|
61
|
+
"Avatar 2 is amazing!",
|
|
62
|
+
"Well, I am not sure.",
|
|
63
|
+
]
|
|
64
|
+
)
|
|
65
|
+
labels = tf.constant([1, 0])
|
|
66
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
|
67
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
68
|
+
|
|
69
|
+
# Map a dataset to preprocess unlabled sentences.
|
|
70
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
|
71
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
72
|
+
```
|
|
73
|
+
"""
|
|
74
|
+
|
|
13
75
|
backbone_cls = QwenMoeBackbone
|
|
14
76
|
tokenizer_cls = QwenMoeTokenizer
|
|
15
77
|
|
|
@@ -4,8 +4,8 @@ backbone_presets = {
|
|
|
4
4
|
"qwen1.5_moe_2.7b_en": {
|
|
5
5
|
"metadata": {
|
|
6
6
|
"description": (
|
|
7
|
-
"24-layer Qwen MoE model with 2.7 billion active parameters "
|
|
8
|
-
"and 8 experts per MoE layer."
|
|
7
|
+
"24-layer Qwen MoE model with 2.7 billion active parameters "
|
|
8
|
+
"and 8 experts per MoE layer."
|
|
9
9
|
),
|
|
10
10
|
"params": 14315784192,
|
|
11
11
|
"path": "qwen-1.5-moe",
|
keras_hub/src/version.py
CHANGED
|
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=itSzodVUeuX6HQnmsSXY0Wv-5Htbu397410R-SFW_4I,
|
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
|
8
|
-
keras_hub/src/version.py,sha256=
|
|
8
|
+
keras_hub/src/version.py,sha256=9-4pakvS-20qqoJLPAxs1MpQcXpHuTo0hZidVMHPOG0,211
|
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
|
@@ -252,13 +252,14 @@ keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8Vn
|
|
|
252
252
|
keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
|
|
253
253
|
keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
|
|
254
254
|
keras_hub/src/models/mit/mit_presets.py,sha256=ooLrh2OoGZKxnCGnhB6BynYJtVCXH7nDDFhgQRWt36U,4528
|
|
255
|
+
keras_hub/src/models/mixtral/__init__.py,sha256=Bo-r5hI-ptOoUmz2HN9h9oZBN-C-XeWEL19QblUN0Cs,263
|
|
255
256
|
keras_hub/src/models/mixtral/mixtral_attention.py,sha256=f5aiTtstWeKG_ZwumAlYIzjIN08CpnxNdenxWNJSwZw,8713
|
|
256
257
|
keras_hub/src/models/mixtral/mixtral_backbone.py,sha256=vUAFXvqwVBgKxYbOsqIHzPN59bhaDrGWwOnBCzeUtt0,8034
|
|
257
258
|
keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzdRDG3vndC-Rlwn5fnsbQo,12001
|
|
258
259
|
keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
|
|
259
260
|
keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
|
|
260
261
|
keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
|
|
261
|
-
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=
|
|
262
|
+
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=pi5hHcwVSqr7ytf4dSnU_ew_t7NYw7EsZrmklQDqDVo,852
|
|
262
263
|
keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
|
|
263
264
|
keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
|
|
264
265
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
|
|
@@ -270,7 +271,7 @@ keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOy
|
|
|
270
271
|
keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
|
|
271
272
|
keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
|
|
272
273
|
keras_hub/src/models/moonshine/moonshine_audio_to_text.py,sha256=dXFtjaxL1jpcIAiiZY1-kcNL-S4RiRJiAC2uR_a3Fyc,15865
|
|
273
|
-
keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py,sha256=
|
|
274
|
+
keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py,sha256=Syv_rF81hmN63fnkC1ALiXZbpEK8aoFHOiNvELF3iw0,10124
|
|
274
275
|
keras_hub/src/models/moonshine/moonshine_backbone.py,sha256=XtRUBe_VusXsFRk7-t1JNXM0lxp2UBOJk9v7gfTNDhA,19623
|
|
275
276
|
keras_hub/src/models/moonshine/moonshine_decoder.py,sha256=Exf5Gg1gsCBST53wxOgBetKkhjS8E8QIUIlUwHlOkIY,11816
|
|
276
277
|
keras_hub/src/models/moonshine/moonshine_encoder.py,sha256=NjjMO_FEBlWFSv6Appv8a3V7XovW2afvxxjXwQRgV60,8148
|
|
@@ -303,23 +304,23 @@ keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3
|
|
|
303
304
|
keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8qhlN-Ea8d6J7k,1366
|
|
304
305
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
|
305
306
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
|
306
|
-
keras_hub/src/models/qwen/__init__.py,sha256=
|
|
307
|
+
keras_hub/src/models/qwen/__init__.py,sha256=C2NncZC-NIg29cQwbHUsrLsA6JAFXtco3hwP7VFgy9M,245
|
|
307
308
|
keras_hub/src/models/qwen/qwen_attention.py,sha256=SrUYESCg27ksuDKZHKJ5Wmnkbr6WZdF7nHv0AHFfWR8,13014
|
|
308
309
|
keras_hub/src/models/qwen/qwen_backbone.py,sha256=i39_LoKu6hcYWV6KFh2OzUDaXjV7g1WLNGF2-JD_tqI,13015
|
|
309
|
-
keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=
|
|
310
|
-
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=
|
|
310
|
+
keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=2ugwuJsoxO8WpKX8iuWQPwc7SOAks7YHNvLeaJfLqG4,16722
|
|
311
|
+
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va6LPa0GoLSxPripWOngw6jVNI-nQSFMdaja_BcfWmY,3195
|
|
311
312
|
keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
|
|
312
313
|
keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
|
|
313
|
-
keras_hub/src/models/qwen/qwen_presets.py,sha256=
|
|
314
|
+
keras_hub/src/models/qwen/qwen_presets.py,sha256=1FkKV6M3yqJz4EP1xa7bEvfIQ721xXT-_ikjWX0xvww,1992
|
|
314
315
|
keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
|
|
315
|
-
keras_hub/src/models/qwen_moe/__init__.py,sha256=
|
|
316
|
+
keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
|
|
316
317
|
keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=pE79_iHUm2LGkoWL6zMJw_pNfzIvmyq3yJaiq47W2TY,13242
|
|
317
318
|
keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
|
|
318
319
|
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpqgmFVgaYAosSecZiSQVlJvU,13256
|
|
319
|
-
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=
|
|
320
|
+
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=9P6TT7W_fqf4HsXcmlHF-DW_anR-XoDrRN2ZFGA7Ai4,3168
|
|
320
321
|
keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
|
|
321
322
|
keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
|
|
322
|
-
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=
|
|
323
|
+
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=LhOA3Ow-z3cNTan4AOrtyCXS58EgfvO_gtqiZt5cUQc,455
|
|
323
324
|
keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
|
|
324
325
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
|
325
326
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
|
@@ -501,7 +502,7 @@ keras_hub/src/utils/transformers/preset_loader.py,sha256=1nfS5xVsl-JROGXJXltTqV1
|
|
|
501
502
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
|
502
503
|
keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
|
|
503
504
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
|
504
|
-
keras_hub-0.21.
|
|
505
|
-
keras_hub-0.21.
|
|
506
|
-
keras_hub-0.21.
|
|
507
|
-
keras_hub-0.21.
|
|
505
|
+
keras_hub-0.21.1.dev0.dist-info/METADATA,sha256=hPQjOgZ3VecWAQ8VAKLvr8CyBwQA4zW53rlD-xJEGjM,7374
|
|
506
|
+
keras_hub-0.21.1.dev0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
507
|
+
keras_hub-0.21.1.dev0.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
|
508
|
+
keras_hub-0.21.1.dev0.dist-info/RECORD,,
|
|
File without changes
|