keras-hub-nightly 0.24.0.dev202510280420__py3-none-any.whl → 0.24.0.dev202510300423__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

@@ -181,4 +181,43 @@ backbone_presets = {
181
181
  },
182
182
  "kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_270m/4",
183
183
  },
184
+ "medgemma_instruct_4b": {
185
+ "metadata": {
186
+ "description": (
187
+ "A 4 billion parameter model based on Gemma 3. "
188
+ "This model is trained for performance on medical text"
189
+ "and image comprehension and is optimized for medical"
190
+ "applications that involve a text generation component."
191
+ ),
192
+ "params": 4300079472,
193
+ "path": "gemma3",
194
+ },
195
+ "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_4b/1",
196
+ },
197
+ "medgemma_instruct_27b": {
198
+ "metadata": {
199
+ "description": (
200
+ "A 27 billion parameter model based on Gemma 3. "
201
+ "This model trained for performance on medical text "
202
+ "and image comprehension and is optimized for medical "
203
+ "applications that involve a text generation component."
204
+ ),
205
+ "params": 27432406640,
206
+ "path": "gemma3",
207
+ },
208
+ "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b/1",
209
+ },
210
+ "medgemma_instruct_27b_text": {
211
+ "metadata": {
212
+ "description": (
213
+ "A 27 billion parameter text-only model based on Gemma 3. "
214
+ "This model is trained for performance on medical text "
215
+ "comprehension and is optimized for medical applications "
216
+ "that involve a text generation component."
217
+ ),
218
+ "params": 27009002240,
219
+ "path": "gemma3",
220
+ },
221
+ "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b_text/1",
222
+ },
184
223
  }
@@ -321,4 +321,19 @@ backbone_presets = {
321
321
  },
322
322
  "kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_512/1",
323
323
  },
324
+ "medsiglip_900m_448": {
325
+ "metadata": {
326
+ "description": (
327
+ "A 900 million parameter variant of SigLIP trained to encode "
328
+ "medical images and text into a common embedding space. "
329
+ "MedSigLIP contains a vision encoder and a text encoder, and "
330
+ "supports 448x448 image resolution with up to 64 text tokens."
331
+ ),
332
+ "params": 878301426,
333
+ "official_name": "SigLIP2",
334
+ "path": "siglip",
335
+ "model_card": "https://huggingface.co/google/medsiglip-448#medsiglip-model-card",
336
+ },
337
+ "kaggle_handle": "kaggle://keras/medsiglip/keras/medsiglip_900m_448/1",
338
+ },
324
339
  }
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.24.0.dev202510280420"
4
+ __version__ = "0.24.0.dev202510300423"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.24.0.dev202510280420
3
+ Version: 0.24.0.dev202510300423
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=yazrEg57HafE6Fgr-bfDXR3iFrArx6RytOEnV1CJJS8,
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=7rqqnCyDwFK3d7ru6_WMeE5bvaJXYfghqW2FtmG0SBQ,222
8
+ keras_hub/src/version.py,sha256=Zlai6okkxwYcudEYbi3CWnQJE-jIqQENgrudnvrNXHM,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -247,7 +247,7 @@ keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5
247
247
  keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=CYwYazqwakLNfhOLBl_8Q2TVZcMcOxMtiZtuVlk_hoo,11470
248
248
  keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
249
249
  keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
250
- keras_hub/src/models/gemma3/gemma3_presets.py,sha256=FGAHYE4HTLuiceuiCKBJtc1aNd7OgMB59KD0s6Ba_Fg,6105
250
+ keras_hub/src/models/gemma3/gemma3_presets.py,sha256=1GZSwsGRA19RllhZPR-kFjH5y9A6308V3TYfqHAnXUw,7744
251
251
  keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
252
252
  keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
253
253
  keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
@@ -467,7 +467,7 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
467
467
  keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
468
468
  keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
469
469
  keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
470
- keras_hub/src/models/siglip/siglip_presets.py,sha256=gOzSVhLskAthfzq8jWOtQWv14euaqS2ywcZlNfivDOI,13164
470
+ keras_hub/src/models/siglip/siglip_presets.py,sha256=jtIQrNcq14othG1QgwBEfozEmoHdXXW270qylQEmA8E,13864
471
471
  keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
472
472
  keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
473
473
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
@@ -619,7 +619,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
619
619
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
620
620
  keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
621
621
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
622
- keras_hub_nightly-0.24.0.dev202510280420.dist-info/METADATA,sha256=kJjhjdQPJfwL4qb8d2IpjaIrwfI_4X7pcsyTUGZgJqE,7395
623
- keras_hub_nightly-0.24.0.dev202510280420.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
624
- keras_hub_nightly-0.24.0.dev202510280420.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
625
- keras_hub_nightly-0.24.0.dev202510280420.dist-info/RECORD,,
622
+ keras_hub_nightly-0.24.0.dev202510300423.dist-info/METADATA,sha256=Szw2X97uW3Ri5DT9ZsafJxFPsMVJZuSsNugIKNHYfQE,7395
623
+ keras_hub_nightly-0.24.0.dev202510300423.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
624
+ keras_hub_nightly-0.24.0.dev202510300423.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
625
+ keras_hub_nightly-0.24.0.dev202510300423.dist-info/RECORD,,