keras-hub-nightly 0.23.0.dev202510270428__py3-none-any.whl → 0.24.0.dev202510290426__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
- keras_hub/src/models/siglip/siglip_presets.py +15 -0
- keras_hub/src/utils/tensor_utils.py +3 -1
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.23.0.dev202510270428.dist-info → keras_hub_nightly-0.24.0.dev202510290426.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.23.0.dev202510270428.dist-info → keras_hub_nightly-0.24.0.dev202510290426.dist-info}/RECORD +8 -8
- {keras_hub_nightly-0.23.0.dev202510270428.dist-info → keras_hub_nightly-0.24.0.dev202510290426.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.23.0.dev202510270428.dist-info → keras_hub_nightly-0.24.0.dev202510290426.dist-info}/top_level.txt +0 -0
|
@@ -181,4 +181,43 @@ backbone_presets = {
|
|
|
181
181
|
},
|
|
182
182
|
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_270m/4",
|
|
183
183
|
},
|
|
184
|
+
"medgemma_instruct_4b": {
|
|
185
|
+
"metadata": {
|
|
186
|
+
"description": (
|
|
187
|
+
"A 4 billion parameter model based on Gemma 3. "
|
|
188
|
+
"This model is trained for performance on medical text"
|
|
189
|
+
"and image comprehension and is optimized for medical"
|
|
190
|
+
"applications that involve a text generation component."
|
|
191
|
+
),
|
|
192
|
+
"params": 4300079472,
|
|
193
|
+
"path": "gemma3",
|
|
194
|
+
},
|
|
195
|
+
"kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_4b/1",
|
|
196
|
+
},
|
|
197
|
+
"medgemma_instruct_27b": {
|
|
198
|
+
"metadata": {
|
|
199
|
+
"description": (
|
|
200
|
+
"A 27 billion parameter model based on Gemma 3. "
|
|
201
|
+
"This model trained for performance on medical text "
|
|
202
|
+
"and image comprehension and is optimized for medical "
|
|
203
|
+
"applications that involve a text generation component."
|
|
204
|
+
),
|
|
205
|
+
"params": 27432406640,
|
|
206
|
+
"path": "gemma3",
|
|
207
|
+
},
|
|
208
|
+
"kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b/1",
|
|
209
|
+
},
|
|
210
|
+
"medgemma_instruct_27b_text": {
|
|
211
|
+
"metadata": {
|
|
212
|
+
"description": (
|
|
213
|
+
"A 27 billion parameter text-only model based on Gemma 3. "
|
|
214
|
+
"This model is trained for performance on medical text "
|
|
215
|
+
"comprehension and is optimized for medical applications "
|
|
216
|
+
"that involve a text generation component."
|
|
217
|
+
),
|
|
218
|
+
"params": 27009002240,
|
|
219
|
+
"path": "gemma3",
|
|
220
|
+
},
|
|
221
|
+
"kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b_text/1",
|
|
222
|
+
},
|
|
184
223
|
}
|
|
@@ -321,4 +321,19 @@ backbone_presets = {
|
|
|
321
321
|
},
|
|
322
322
|
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_512/1",
|
|
323
323
|
},
|
|
324
|
+
"medsiglip_900m_448": {
|
|
325
|
+
"metadata": {
|
|
326
|
+
"description": (
|
|
327
|
+
"A 900 million parameter variant of SigLIP trained to encode "
|
|
328
|
+
"medical images and text into a common embedding space. "
|
|
329
|
+
"MedSigLIP contains a vision encoder and a text encoder, and "
|
|
330
|
+
"supports 448x448 image resolution with up to 64 text tokens."
|
|
331
|
+
),
|
|
332
|
+
"params": 878301426,
|
|
333
|
+
"official_name": "SigLIP2",
|
|
334
|
+
"path": "siglip",
|
|
335
|
+
"model_card": "https://huggingface.co/google/medsiglip-448#medsiglip-model-card",
|
|
336
|
+
},
|
|
337
|
+
"kaggle_handle": "kaggle://keras/medsiglip/keras/medsiglip_900m_448/1",
|
|
338
|
+
},
|
|
324
339
|
}
|
keras_hub/src/version.py
CHANGED
|
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=yazrEg57HafE6Fgr-bfDXR3iFrArx6RytOEnV1CJJS8,
|
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
|
8
|
-
keras_hub/src/version.py,sha256
|
|
8
|
+
keras_hub/src/version.py,sha256=Nh2Aqd9ylzq8xpTrUjN_y4Lw7YmCbHWaDD1gVhHuQ8o,222
|
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
|
@@ -247,7 +247,7 @@ keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5
|
|
|
247
247
|
keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=CYwYazqwakLNfhOLBl_8Q2TVZcMcOxMtiZtuVlk_hoo,11470
|
|
248
248
|
keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
|
|
249
249
|
keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
|
|
250
|
-
keras_hub/src/models/gemma3/gemma3_presets.py,sha256=
|
|
250
|
+
keras_hub/src/models/gemma3/gemma3_presets.py,sha256=1GZSwsGRA19RllhZPR-kFjH5y9A6308V3TYfqHAnXUw,7744
|
|
251
251
|
keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
|
|
252
252
|
keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
|
|
253
253
|
keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
|
|
@@ -467,7 +467,7 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
|
|
|
467
467
|
keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
|
|
468
468
|
keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
|
|
469
469
|
keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
|
|
470
|
-
keras_hub/src/models/siglip/siglip_presets.py,sha256=
|
|
470
|
+
keras_hub/src/models/siglip/siglip_presets.py,sha256=jtIQrNcq14othG1QgwBEfozEmoHdXXW270qylQEmA8E,13864
|
|
471
471
|
keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
|
|
472
472
|
keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
|
|
473
473
|
keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
|
|
@@ -578,7 +578,7 @@ keras_hub/src/utils/openvino_utils.py,sha256=P1ZvedLv91LZD-UAgAo2dy6WC5305elh1qv
|
|
|
578
578
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
|
579
579
|
keras_hub/src/utils/preset_utils.py,sha256=lyCg_PRcYH1Jy8lGKaO8sgpIbMrP-Ik66EbjGD4gizc,37677
|
|
580
580
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
|
581
|
-
keras_hub/src/utils/tensor_utils.py,sha256=
|
|
581
|
+
keras_hub/src/utils/tensor_utils.py,sha256=tULr53SZLCczN_BD7XvbAq9c9bFVZTn7aYcLbqmbfx8,16982
|
|
582
582
|
keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
583
583
|
keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
|
|
584
584
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -619,7 +619,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
|
|
|
619
619
|
keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
|
|
620
620
|
keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
|
|
621
621
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
|
622
|
-
keras_hub_nightly-0.
|
|
623
|
-
keras_hub_nightly-0.
|
|
624
|
-
keras_hub_nightly-0.
|
|
625
|
-
keras_hub_nightly-0.
|
|
622
|
+
keras_hub_nightly-0.24.0.dev202510290426.dist-info/METADATA,sha256=Y9Nc7kh3_7VHQ-I4ovpOj-ozM_cTCyhHFKgXvceNQCI,7395
|
|
623
|
+
keras_hub_nightly-0.24.0.dev202510290426.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
624
|
+
keras_hub_nightly-0.24.0.dev202510290426.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
|
625
|
+
keras_hub_nightly-0.24.0.dev202510290426.dist-info/RECORD,,
|
|
File without changes
|