keras-hub-nightly 0.23.0.dev202510200427__py3-none-any.whl → 0.23.0.dev202510220425__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub/src/models/mobilenetv5/__init__.py +9 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
- keras_hub/src/models/parseq/__init__.py +5 -0
- keras_hub/src/models/parseq/parseq_presets.py +15 -0
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.23.0.dev202510200427.dist-info → keras_hub_nightly-0.23.0.dev202510220425.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.23.0.dev202510200427.dist-info → keras_hub_nightly-0.23.0.dev202510220425.dist-info}/RECORD +9 -7
- {keras_hub_nightly-0.23.0.dev202510200427.dist-info → keras_hub_nightly-0.23.0.dev202510220425.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.23.0.dev202510200427.dist-info → keras_hub_nightly-0.23.0.dev202510220425.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
from keras_hub.src.models.mobilenetv5.mobilenetv5_backbone import (
|
|
2
|
+
MobileNetV5Backbone,
|
|
3
|
+
)
|
|
4
|
+
from keras_hub.src.models.mobilenetv5.mobilenetv5_presets import (
|
|
5
|
+
backbone_presets,
|
|
6
|
+
)
|
|
7
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
|
8
|
+
|
|
9
|
+
register_presets(backbone_presets, MobileNetV5Backbone)
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
"""MobileNetV5 preset configurations."""
|
|
2
|
+
|
|
3
|
+
backbone_presets = {
|
|
4
|
+
"mobilenetv5_300m_enc_gemma3n": {
|
|
5
|
+
"metadata": {
|
|
6
|
+
"description": (
|
|
7
|
+
"Lightweight 300M-parameter convolutional vision encoder used "
|
|
8
|
+
"as the image backbone for Gemma 3n"
|
|
9
|
+
),
|
|
10
|
+
"params": 294_284_096,
|
|
11
|
+
"path": "mobilenetv5",
|
|
12
|
+
},
|
|
13
|
+
"kaggle_handle": "kaggle://keras/mobilenetv5/keras/mobilenetv5_300m_enc_gemma3n/1",
|
|
14
|
+
}
|
|
15
|
+
}
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
"""PARSeq preset configurations."""
|
|
2
|
+
|
|
3
|
+
backbone_presets = {
|
|
4
|
+
"parseq": {
|
|
5
|
+
"metadata": {
|
|
6
|
+
"description": (
|
|
7
|
+
"Permuted autoregressive sequence (PARSeq) base "
|
|
8
|
+
"model for scene text recognition"
|
|
9
|
+
),
|
|
10
|
+
"params": 23_832_671,
|
|
11
|
+
"path": "parseq",
|
|
12
|
+
},
|
|
13
|
+
"kaggle_handle": "kaggle://keras/parseq/keras/parseq/1",
|
|
14
|
+
}
|
|
15
|
+
}
|
keras_hub/src/version.py
CHANGED
|
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=yazrEg57HafE6Fgr-bfDXR3iFrArx6RytOEnV1CJJS8,
|
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
|
8
|
-
keras_hub/src/version.py,sha256=
|
|
8
|
+
keras_hub/src/version.py,sha256=gvEyUYh8Xz8YBLXJ3md3oE7tfU59XBZ6l12HQk2bzV4,222
|
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
|
@@ -321,7 +321,7 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
|
|
|
321
321
|
keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
|
|
322
322
|
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
|
|
323
323
|
keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
|
|
324
|
-
keras_hub/src/models/mobilenetv5/__init__.py,sha256=
|
|
324
|
+
keras_hub/src/models/mobilenetv5/__init__.py,sha256=UBySIjlMZeXRpef3FJMpA8w--XbPDcO-up-4zwYJQG0,305
|
|
325
325
|
keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py,sha256=rH4cp1B5_r8g7gKvDdMvfEGfmMHUB2OMEbWQbX9yUMg,26499
|
|
326
326
|
keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py,sha256=y19FpVh0M3w9jSmP34E-GixdjMsU2cEJKrtjLcFfGZU,17167
|
|
327
327
|
keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py,sha256=aw2H-duaCkxGSHB-nKnG8nQhAPxNkmlPUn0FHDb_cTs,34026
|
|
@@ -330,6 +330,7 @@ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py,sha256=BvL0yCla
|
|
|
330
330
|
keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py,sha256=4yhM71JqOzQWiCXTidWAMCNaaIO8QVq5vXl_129ylsI,602
|
|
331
331
|
keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py,sha256=HroX3OOwajIz9CIqlcGf9K9MYUEQ86wifABy9ZGRql4,381
|
|
332
332
|
keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py,sha256=wLyR_gTcqiNLUt86fhxhEbbhZH3YA9CbvMSPnA4vTvg,15889
|
|
333
|
+
keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py,sha256=fkWhfnoXxalYFLCsnuT1_aMrP_A5txx8s41MgMVe_ro,481
|
|
333
334
|
keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py,sha256=ij2Dfguotb6RGSXuX-MsxF8JBXBWLdSi0LfDOKGp2rk,4868
|
|
334
335
|
keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
|
|
335
336
|
keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
|
|
@@ -357,12 +358,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
|
|
|
357
358
|
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
|
|
358
359
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
|
359
360
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
|
|
360
|
-
keras_hub/src/models/parseq/__init__.py,sha256=
|
|
361
|
+
keras_hub/src/models/parseq/__init__.py,sha256=BedkGhH5vJ-sm0gxGi3xfDiS0JN-CkOvGGQUBeYFwV4,257
|
|
361
362
|
keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
|
|
362
363
|
keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
|
|
363
364
|
keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
|
|
364
365
|
keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
|
|
365
366
|
keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
|
|
367
|
+
keras_hub/src/models/parseq/parseq_presets.py,sha256=DAZuTCWcWe_1kxI8edhlYQ9xcwHNCtlDg4cTjg5GY8M,405
|
|
366
368
|
keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
|
|
367
369
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
|
368
370
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
|
|
@@ -617,7 +619,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
|
|
|
617
619
|
keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
|
|
618
620
|
keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
|
|
619
621
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
|
620
|
-
keras_hub_nightly-0.23.0.
|
|
621
|
-
keras_hub_nightly-0.23.0.
|
|
622
|
-
keras_hub_nightly-0.23.0.
|
|
623
|
-
keras_hub_nightly-0.23.0.
|
|
622
|
+
keras_hub_nightly-0.23.0.dev202510220425.dist-info/METADATA,sha256=o-ChrLOkyFpxd4BQcBs8WW6ba-AXAWmbRWXBs8L1rBQ,7395
|
|
623
|
+
keras_hub_nightly-0.23.0.dev202510220425.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
624
|
+
keras_hub_nightly-0.23.0.dev202510220425.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
|
625
|
+
keras_hub_nightly-0.23.0.dev202510220425.dist-info/RECORD,,
|
|
File without changes
|