keras-hub-nightly 0.23.0.dev202510190425__py3-none-any.whl → 0.23.0.dev202510210421__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

@@ -0,0 +1,9 @@
1
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_backbone import (
2
+ MobileNetV5Backbone,
3
+ )
4
+ from keras_hub.src.models.mobilenetv5.mobilenetv5_presets import (
5
+ backbone_presets,
6
+ )
7
+ from keras_hub.src.utils.preset_utils import register_presets
8
+
9
+ register_presets(backbone_presets, MobileNetV5Backbone)
@@ -0,0 +1,15 @@
1
+ """MobileNetV5 preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "mobilenetv5_300m_enc_gemma3n": {
5
+ "metadata": {
6
+ "description": (
7
+ "Lightweight 300M-parameter convolutional vision encoder used "
8
+ "as the image backbone for Gemma 3n"
9
+ ),
10
+ "params": 294_284_096,
11
+ "path": "mobilenetv5",
12
+ },
13
+ "kaggle_handle": "kaggle://keras/mobilenetv5/keras/mobilenetv5_300m_enc_gemma3n/1",
14
+ }
15
+ }
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.parseq.parseq_backbone import PARSeqBackbone
2
+ from keras_hub.src.models.parseq.parseq_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, PARSeqBackbone)
@@ -0,0 +1,15 @@
1
+ """PARSeq preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "parseq": {
5
+ "metadata": {
6
+ "description": (
7
+ "Permuted autoregressive sequence (PARSeq) base "
8
+ "model for scene text recognition"
9
+ ),
10
+ "params": 23_832_671,
11
+ "path": "parseq",
12
+ },
13
+ "kaggle_handle": "kaggle://keras/parseq/keras/parseq/1",
14
+ }
15
+ }
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202510190425"
4
+ __version__ = "0.23.0.dev202510210421"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510190425
3
+ Version: 0.23.0.dev202510210421
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=yazrEg57HafE6Fgr-bfDXR3iFrArx6RytOEnV1CJJS8,
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=prwvwrYrxmvIFIyWOgIskLKJZj33Mluw4iVKP1XNOcM,222
8
+ keras_hub/src/version.py,sha256=31e3uxBUF2ynH1DT-HL6qkl7_p_BEyhfca12cQLOGhA,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -321,7 +321,7 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
321
321
  keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
322
322
  keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
323
323
  keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
324
- keras_hub/src/models/mobilenetv5/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
324
+ keras_hub/src/models/mobilenetv5/__init__.py,sha256=UBySIjlMZeXRpef3FJMpA8w--XbPDcO-up-4zwYJQG0,305
325
325
  keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py,sha256=rH4cp1B5_r8g7gKvDdMvfEGfmMHUB2OMEbWQbX9yUMg,26499
326
326
  keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py,sha256=y19FpVh0M3w9jSmP34E-GixdjMsU2cEJKrtjLcFfGZU,17167
327
327
  keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py,sha256=aw2H-duaCkxGSHB-nKnG8nQhAPxNkmlPUn0FHDb_cTs,34026
@@ -330,6 +330,7 @@ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py,sha256=BvL0yCla
330
330
  keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py,sha256=4yhM71JqOzQWiCXTidWAMCNaaIO8QVq5vXl_129ylsI,602
331
331
  keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py,sha256=HroX3OOwajIz9CIqlcGf9K9MYUEQ86wifABy9ZGRql4,381
332
332
  keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py,sha256=wLyR_gTcqiNLUt86fhxhEbbhZH3YA9CbvMSPnA4vTvg,15889
333
+ keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py,sha256=fkWhfnoXxalYFLCsnuT1_aMrP_A5txx8s41MgMVe_ro,481
333
334
  keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py,sha256=ij2Dfguotb6RGSXuX-MsxF8JBXBWLdSi0LfDOKGp2rk,4868
334
335
  keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
335
336
  keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
@@ -357,12 +358,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
357
358
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
358
359
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
359
360
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
360
- keras_hub/src/models/parseq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
361
+ keras_hub/src/models/parseq/__init__.py,sha256=BedkGhH5vJ-sm0gxGi3xfDiS0JN-CkOvGGQUBeYFwV4,257
361
362
  keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
362
363
  keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
363
364
  keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
364
365
  keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
365
366
  keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
367
+ keras_hub/src/models/parseq/parseq_presets.py,sha256=DAZuTCWcWe_1kxI8edhlYQ9xcwHNCtlDg4cTjg5GY8M,405
366
368
  keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
367
369
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
368
370
  keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
@@ -617,7 +619,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
617
619
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
618
620
  keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
619
621
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
620
- keras_hub_nightly-0.23.0.dev202510190425.dist-info/METADATA,sha256=eK6H5tWE7LC1HvLcbo59rJMB8xdUJ29yHGP2MYHm_B4,7395
621
- keras_hub_nightly-0.23.0.dev202510190425.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
622
- keras_hub_nightly-0.23.0.dev202510190425.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
623
- keras_hub_nightly-0.23.0.dev202510190425.dist-info/RECORD,,
622
+ keras_hub_nightly-0.23.0.dev202510210421.dist-info/METADATA,sha256=ZjkBoVM4sVnb08PqCS9e-24JuO8Uzeu2zrjU_3SeW2E,7395
623
+ keras_hub_nightly-0.23.0.dev202510210421.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
624
+ keras_hub_nightly-0.23.0.dev202510210421.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
625
+ keras_hub_nightly-0.23.0.dev202510210421.dist-info/RECORD,,