keras-hub-nightly 0.23.0.dev202510160419__py3-none-any.whl → 0.23.0.dev202510180414__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub/models/__init__.py +24 -0
- keras_hub/src/models/gemma/gemma_presets.py +22 -0
- keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
- keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
- keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
- keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
- keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
- keras_hub/src/utils/transformers/preset_loader.py +3 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.23.0.dev202510160419.dist-info → keras_hub_nightly-0.23.0.dev202510180414.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.23.0.dev202510160419.dist-info → keras_hub_nightly-0.23.0.dev202510180414.dist-info}/RECORD +16 -9
- {keras_hub_nightly-0.23.0.dev202510160419.dist-info → keras_hub_nightly-0.23.0.dev202510180414.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.23.0.dev202510160419.dist-info → keras_hub_nightly-0.23.0.dev202510180414.dist-info}/top_level.txt +0 -0
keras_hub/models/__init__.py
CHANGED
|
@@ -649,6 +649,30 @@ from keras_hub.src.models.siglip.siglip_tokenizer import (
|
|
|
649
649
|
from keras_hub.src.models.siglip.siglip_vision_encoder import (
|
|
650
650
|
SigLIPVisionEncoder as SigLIPVisionEncoder,
|
|
651
651
|
)
|
|
652
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import (
|
|
653
|
+
SmolLM3Backbone as SmolLM3Backbone,
|
|
654
|
+
)
|
|
655
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import (
|
|
656
|
+
SmolLM3Backbone as SmolLMBackbone,
|
|
657
|
+
)
|
|
658
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm import (
|
|
659
|
+
SmolLM3CausalLM as SmolLM3CausalLM,
|
|
660
|
+
)
|
|
661
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm import (
|
|
662
|
+
SmolLM3CausalLM as SmolLMCausalLM,
|
|
663
|
+
)
|
|
664
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
665
|
+
SmolLM3CausalLMPreprocessor as SmolLM3CausalLMPreprocessor,
|
|
666
|
+
)
|
|
667
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
668
|
+
SmolLM3CausalLMPreprocessor as SmolLMCausalLMPreprocessor,
|
|
669
|
+
)
|
|
670
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
671
|
+
SmolLM3Tokenizer as SmolLM3Tokenizer,
|
|
672
|
+
)
|
|
673
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import (
|
|
674
|
+
SmolLM3Tokenizer as SmolLMTokenizer,
|
|
675
|
+
)
|
|
652
676
|
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
|
|
653
677
|
StableDiffusion3Backbone as StableDiffusion3Backbone,
|
|
654
678
|
)
|
|
@@ -206,4 +206,26 @@ backbone_presets = {
|
|
|
206
206
|
},
|
|
207
207
|
"kaggle_handle": "kaggle://keras/vaultgemma/keras/vault_gemma_1b_en/2",
|
|
208
208
|
},
|
|
209
|
+
"c2s_scale_gemma_2_2b_en": {
|
|
210
|
+
"metadata": {
|
|
211
|
+
"description": (
|
|
212
|
+
"A 2 billion parameter, single-cell biology-aware model "
|
|
213
|
+
"built on the Gemma-2 architecture."
|
|
214
|
+
),
|
|
215
|
+
"params": 2614341888,
|
|
216
|
+
"path": "gemma",
|
|
217
|
+
},
|
|
218
|
+
"kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_2b_en/1",
|
|
219
|
+
},
|
|
220
|
+
"c2s_scale_gemma_2_27b_en": {
|
|
221
|
+
"metadata": {
|
|
222
|
+
"description": (
|
|
223
|
+
"A 27 billion parameter, single-cell biology-aware model "
|
|
224
|
+
"built on the Gemma-2 architecture."
|
|
225
|
+
),
|
|
226
|
+
"params": 27227128320,
|
|
227
|
+
"path": "gemma",
|
|
228
|
+
},
|
|
229
|
+
"kaggle_handle": "kaggle://keras/cell2sentence/keras/c2s_scale_gemma_2_27b_en/1",
|
|
230
|
+
},
|
|
209
231
|
}
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
|
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
4
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
|
5
|
+
ReversibleEmbedding,
|
|
6
|
+
)
|
|
7
|
+
from keras_hub.src.models.backbone import Backbone
|
|
8
|
+
from keras_hub.src.models.smollm3.smollm3_layers import SmolLM3DecoderLayer
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@keras_hub_export(
|
|
12
|
+
[
|
|
13
|
+
"keras_hub.models.SmolLM3Backbone",
|
|
14
|
+
"keras_hub.models.SmolLMBackbone",
|
|
15
|
+
]
|
|
16
|
+
)
|
|
17
|
+
class SmolLM3Backbone(Backbone):
|
|
18
|
+
"""SmolLM3 core network with hyperparameters.
|
|
19
|
+
|
|
20
|
+
This network implements a Transformer-based decoder network,
|
|
21
|
+
SmolLM3, as described in the SmolLM3 model architecture.
|
|
22
|
+
It includes the embedding lookups and transformer layers.
|
|
23
|
+
|
|
24
|
+
The default constructor gives a fully customizable, randomly initialized
|
|
25
|
+
SmolLM3 model with any number of layers, heads, and embedding
|
|
26
|
+
dimensions. To load preset architectures and weights, use the `from_preset`
|
|
27
|
+
constructor.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
vocabulary_size: int. The size of the token vocabulary.
|
|
31
|
+
hidden_dim: int. The size of the transformer hidden state at the end
|
|
32
|
+
of each transformer layer.
|
|
33
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
|
34
|
+
the MLP network of each transformer layer.
|
|
35
|
+
num_layers: int. The number of transformer layers.
|
|
36
|
+
num_attention_heads: int. The number of attention heads for each
|
|
37
|
+
transformer layer.
|
|
38
|
+
num_key_value_heads: int. The number of key-value heads for grouped
|
|
39
|
+
query attention in each transformer layer.
|
|
40
|
+
attention_bias: bool. Whether to use bias in the query, key, value, and
|
|
41
|
+
output projection layers in the attention blocks.
|
|
42
|
+
attention_dropout: float. Dropout probability for the attention layers.
|
|
43
|
+
rope_layer_enabled_list: list of bool. List indicating whether RoPE
|
|
44
|
+
(Rotary Position Embedding) is enabled for each layer. Typically,
|
|
45
|
+
some layers may disable RoPE for architectural variations.
|
|
46
|
+
layer_types: list of str. List of layer types for each transformer
|
|
47
|
+
layer (e.g., "attention" or other custom types).
|
|
48
|
+
mlp_bias: bool. Whether to use bias in the MLP (feedforward) layers.
|
|
49
|
+
layer_norm_epsilon: float. Epsilon value for layer normalization layers
|
|
50
|
+
to prevent division by zero.
|
|
51
|
+
max_position_embeddings: int. The maximum sequence length that this
|
|
52
|
+
model might ever be used with.
|
|
53
|
+
rope_theta: float. The base period of the RoPE embeddings.
|
|
54
|
+
partial_rotary_factor: float. The percentage of hidden dimensions to
|
|
55
|
+
rotate in RoPE. A value of 1.0 rotates all dimensions, while values
|
|
56
|
+
less than 1.0 only rotate a subset.
|
|
57
|
+
|
|
58
|
+
Examples:
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
input_data = {
|
|
62
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
|
63
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
# Pretrained SmolLM3 decoder.
|
|
67
|
+
model = keras_hub.models.SmolLM3Backbone.from_preset(
|
|
68
|
+
"hf://HuggingFaceTB/SmolLM3-3B"
|
|
69
|
+
)
|
|
70
|
+
model(input_data)
|
|
71
|
+
|
|
72
|
+
# Randomly initialized SmolLM3 decoder with custom config.
|
|
73
|
+
model = keras_hub.models.SmolLM3Backbone(
|
|
74
|
+
vocabulary_size=49152,
|
|
75
|
+
hidden_dim=576,
|
|
76
|
+
intermediate_dim=1536,
|
|
77
|
+
num_layers=30,
|
|
78
|
+
num_attention_heads=9,
|
|
79
|
+
num_key_value_heads=3,
|
|
80
|
+
attention_bias=False,
|
|
81
|
+
attention_dropout=0.0,
|
|
82
|
+
rope_layer_enabled_list=[True] * 30,
|
|
83
|
+
layer_types=["attention"] * 30,
|
|
84
|
+
mlp_bias=False,
|
|
85
|
+
layer_norm_epsilon=1e-5,
|
|
86
|
+
max_position_embeddings=2048,
|
|
87
|
+
rope_theta=10000.0,
|
|
88
|
+
partial_rotary_factor=1.0,
|
|
89
|
+
)
|
|
90
|
+
model(input_data)
|
|
91
|
+
```
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
vocabulary_size,
|
|
97
|
+
hidden_dim,
|
|
98
|
+
intermediate_dim,
|
|
99
|
+
num_layers,
|
|
100
|
+
num_attention_heads,
|
|
101
|
+
num_key_value_heads,
|
|
102
|
+
attention_bias,
|
|
103
|
+
attention_dropout,
|
|
104
|
+
rope_layer_enabled_list,
|
|
105
|
+
layer_types,
|
|
106
|
+
mlp_bias,
|
|
107
|
+
layer_norm_epsilon,
|
|
108
|
+
max_position_embeddings,
|
|
109
|
+
rope_theta,
|
|
110
|
+
partial_rotary_factor,
|
|
111
|
+
**kwargs,
|
|
112
|
+
):
|
|
113
|
+
# === Layers ===
|
|
114
|
+
self.token_embedding = ReversibleEmbedding(
|
|
115
|
+
input_dim=vocabulary_size,
|
|
116
|
+
output_dim=hidden_dim,
|
|
117
|
+
name="token_embedding",
|
|
118
|
+
)
|
|
119
|
+
self.transformer_layers = []
|
|
120
|
+
for i in range(num_layers):
|
|
121
|
+
layer = SmolLM3DecoderLayer(
|
|
122
|
+
hidden_size=hidden_dim,
|
|
123
|
+
num_attention_heads=num_attention_heads,
|
|
124
|
+
num_key_value_heads=num_key_value_heads,
|
|
125
|
+
attention_bias=attention_bias,
|
|
126
|
+
attention_dropout=attention_dropout,
|
|
127
|
+
rope_layer_enabled_list=rope_layer_enabled_list,
|
|
128
|
+
layer_types=layer_types,
|
|
129
|
+
layer_idx=i,
|
|
130
|
+
intermediate_size=intermediate_dim,
|
|
131
|
+
mlp_bias=mlp_bias,
|
|
132
|
+
layer_norm_epsilon=layer_norm_epsilon,
|
|
133
|
+
max_position_embeddings=max_position_embeddings,
|
|
134
|
+
rope_theta=rope_theta,
|
|
135
|
+
partial_rotary_factor=partial_rotary_factor,
|
|
136
|
+
name=f"transformer_layer_{i}",
|
|
137
|
+
)
|
|
138
|
+
self.transformer_layers.append(layer)
|
|
139
|
+
|
|
140
|
+
self.norm = keras.layers.RMSNormalization(
|
|
141
|
+
epsilon=layer_norm_epsilon,
|
|
142
|
+
name="sequence_output_layernorm",
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# === Functional Model ===
|
|
146
|
+
token_id_input = keras.Input(
|
|
147
|
+
shape=(None,), dtype="int32", name="token_ids"
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
padding_mask_input = keras.Input(
|
|
151
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
x = self.token_embedding(token_id_input)
|
|
155
|
+
|
|
156
|
+
for decoder_layer in self.transformer_layers:
|
|
157
|
+
x = decoder_layer(
|
|
158
|
+
x,
|
|
159
|
+
decoder_padding_mask=padding_mask_input,
|
|
160
|
+
**kwargs,
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
sequence_output = self.norm(x)
|
|
164
|
+
super().__init__(
|
|
165
|
+
inputs={
|
|
166
|
+
"token_ids": token_id_input,
|
|
167
|
+
"padding_mask": padding_mask_input,
|
|
168
|
+
},
|
|
169
|
+
outputs=sequence_output,
|
|
170
|
+
**kwargs,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# === Config ===
|
|
174
|
+
self.vocabulary_size = vocabulary_size
|
|
175
|
+
self.hidden_dim = hidden_dim
|
|
176
|
+
self.intermediate_dim = intermediate_dim
|
|
177
|
+
self.num_layers = num_layers
|
|
178
|
+
self.num_attention_heads = num_attention_heads
|
|
179
|
+
self.num_key_value_heads = num_key_value_heads
|
|
180
|
+
self.attention_bias = attention_bias
|
|
181
|
+
self.attention_dropout = attention_dropout
|
|
182
|
+
self.rope_layer_enabled_list = rope_layer_enabled_list
|
|
183
|
+
self.layer_types = layer_types
|
|
184
|
+
self.mlp_bias = mlp_bias
|
|
185
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
|
186
|
+
self.max_position_embeddings = max_position_embeddings
|
|
187
|
+
self.rope_theta = rope_theta
|
|
188
|
+
self.partial_rotary_factor = partial_rotary_factor
|
|
189
|
+
|
|
190
|
+
def get_config(self):
|
|
191
|
+
config = super().get_config()
|
|
192
|
+
config.update(
|
|
193
|
+
{
|
|
194
|
+
"vocabulary_size": self.vocabulary_size,
|
|
195
|
+
"hidden_dim": self.hidden_dim,
|
|
196
|
+
"intermediate_dim": self.intermediate_dim,
|
|
197
|
+
"num_layers": self.num_layers,
|
|
198
|
+
"num_attention_heads": self.num_attention_heads,
|
|
199
|
+
"num_key_value_heads": self.num_key_value_heads,
|
|
200
|
+
"attention_bias": self.attention_bias,
|
|
201
|
+
"attention_dropout": self.attention_dropout,
|
|
202
|
+
"rope_layer_enabled_list": self.rope_layer_enabled_list,
|
|
203
|
+
"layer_types": self.layer_types,
|
|
204
|
+
"mlp_bias": self.mlp_bias,
|
|
205
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
|
206
|
+
"max_position_embeddings": self.max_position_embeddings,
|
|
207
|
+
"rope_theta": self.rope_theta,
|
|
208
|
+
"partial_rotary_factor": self.partial_rotary_factor,
|
|
209
|
+
}
|
|
210
|
+
)
|
|
211
|
+
return config
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
from keras import ops
|
|
3
|
+
|
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
5
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
|
6
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
|
|
7
|
+
from keras_hub.src.models.smollm3.smollm3_causal_lm_preprocessor import (
|
|
8
|
+
SmolLM3CausalLMPreprocessor,
|
|
9
|
+
)
|
|
10
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@keras_hub_export(
|
|
14
|
+
[
|
|
15
|
+
"keras_hub.models.SmolLM3CausalLM",
|
|
16
|
+
"keras_hub.models.SmolLMCausalLM",
|
|
17
|
+
]
|
|
18
|
+
)
|
|
19
|
+
class SmolLM3CausalLM(CausalLM):
|
|
20
|
+
backbone_cls = SmolLM3Backbone
|
|
21
|
+
preprocessor_cls = SmolLM3CausalLMPreprocessor
|
|
22
|
+
|
|
23
|
+
def __init__(self, backbone, preprocessor=None, **kwargs):
|
|
24
|
+
# === Layers ===
|
|
25
|
+
self.backbone = backbone
|
|
26
|
+
self.preprocessor = preprocessor
|
|
27
|
+
|
|
28
|
+
# === Functional Model ===
|
|
29
|
+
# This must be "backbone.input" i.e. the full input structure,
|
|
30
|
+
# rather than "backbone.inputs" which is the flattened list of inputs.
|
|
31
|
+
inputs = backbone.input
|
|
32
|
+
hidden_states = backbone(inputs)
|
|
33
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
|
34
|
+
super().__init__(
|
|
35
|
+
inputs=inputs,
|
|
36
|
+
outputs=outputs,
|
|
37
|
+
**kwargs,
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
def call_with_cache(
|
|
41
|
+
self,
|
|
42
|
+
token_ids,
|
|
43
|
+
cache,
|
|
44
|
+
cache_update_index,
|
|
45
|
+
):
|
|
46
|
+
"""Forward pass of `SmolLM3CausalLM` with cache.
|
|
47
|
+
|
|
48
|
+
`call_with_cache` adds an additional forward pass for the model for
|
|
49
|
+
autoregressive inference. Unlike calling the model directly, this method
|
|
50
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
|
51
|
+
and avoids recomputing the outputs of seen tokens.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
token_ids: a dense int Tensor with shape `(batch_size, seq_len)`.
|
|
55
|
+
For prefill, `seq_len` is the prompt length. For generation,
|
|
56
|
+
`seq_len` is typically 1.
|
|
57
|
+
cache: a dense float Tensor, the cache of key and value.
|
|
58
|
+
Shape: (batch_size, num_layers, 2, max_seq_len,
|
|
59
|
+
num_key_value_heads, head_dim)
|
|
60
|
+
cache_update_index: int, or int Tensor. The index of current
|
|
61
|
+
inputs in the whole sequence.
|
|
62
|
+
training: Boolean, whether the call is during training or inference.
|
|
63
|
+
attention_mask: Optional attention mask.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
|
67
|
+
language model logits for the input token_ids, `hidden_states` is
|
|
68
|
+
the final hidden representation of the input tokens, and `cache` is
|
|
69
|
+
the decoding cache.
|
|
70
|
+
"""
|
|
71
|
+
x = self.backbone.token_embedding(token_ids)
|
|
72
|
+
|
|
73
|
+
# Each decoder layer has a cache; we update them separately.
|
|
74
|
+
updated_cache = []
|
|
75
|
+
|
|
76
|
+
for i in range(self.backbone.num_layers):
|
|
77
|
+
current_cache = cache[:, i, ...]
|
|
78
|
+
x, next_cache = self.backbone.transformer_layers[i](
|
|
79
|
+
x,
|
|
80
|
+
self_attention_cache=current_cache,
|
|
81
|
+
self_attention_cache_update_index=cache_update_index,
|
|
82
|
+
)
|
|
83
|
+
updated_cache.append(next_cache)
|
|
84
|
+
cache = ops.stack(updated_cache, axis=1)
|
|
85
|
+
hidden_states = x = self.backbone.norm(x)
|
|
86
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
|
87
|
+
return logits, hidden_states, cache
|
|
88
|
+
|
|
89
|
+
def _build_cache(self, token_ids):
|
|
90
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
|
91
|
+
batch_size = ops.shape(token_ids)[0]
|
|
92
|
+
max_length = ops.shape(token_ids)[1]
|
|
93
|
+
num_layers = self.backbone.num_layers
|
|
94
|
+
num_key_value_heads = self.backbone.num_key_value_heads
|
|
95
|
+
head_dim = self.backbone.hidden_dim // self.backbone.num_attention_heads
|
|
96
|
+
shape = [
|
|
97
|
+
batch_size,
|
|
98
|
+
num_layers,
|
|
99
|
+
2,
|
|
100
|
+
max_length,
|
|
101
|
+
num_key_value_heads,
|
|
102
|
+
head_dim,
|
|
103
|
+
]
|
|
104
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
|
105
|
+
index = ops.convert_to_tensor(0, dtype="int32")
|
|
106
|
+
# Seed the cache.
|
|
107
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, index)
|
|
108
|
+
return hidden_states, cache
|
|
109
|
+
|
|
110
|
+
def generate_step(
|
|
111
|
+
self,
|
|
112
|
+
inputs,
|
|
113
|
+
stop_token_ids=None,
|
|
114
|
+
):
|
|
115
|
+
"""A compilable generation function for a single batch of inputs.
|
|
116
|
+
|
|
117
|
+
This function represents the inner, XLA-compilable, generation function
|
|
118
|
+
for a single batch of inputs. Inputs should have the same structure as
|
|
119
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
|
123
|
+
`"padding_mask"` and batched tensor values.
|
|
124
|
+
stop_token_ids: Tuple of id's of the end token to stop on. If all
|
|
125
|
+
sequences have produced a new stop token, generation
|
|
126
|
+
will stop.
|
|
127
|
+
"""
|
|
128
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
|
129
|
+
|
|
130
|
+
hidden_states, cache = self._build_cache(token_ids)
|
|
131
|
+
# Compute the lengths of all user inputted tokens ids.
|
|
132
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
|
133
|
+
# Start at the first index that has no user inputted id.
|
|
134
|
+
index = ops.min(row_lengths)
|
|
135
|
+
|
|
136
|
+
def next(prompt, cache, index):
|
|
137
|
+
# The cache index is the index of our previous token.
|
|
138
|
+
cache_update_index = index - 1
|
|
139
|
+
batch_size = ops.shape(prompt)[0]
|
|
140
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
|
141
|
+
|
|
142
|
+
logits, hidden_states, cache = self.call_with_cache(
|
|
143
|
+
prompt,
|
|
144
|
+
cache,
|
|
145
|
+
cache_update_index,
|
|
146
|
+
)
|
|
147
|
+
return (
|
|
148
|
+
ops.squeeze(logits, axis=1),
|
|
149
|
+
ops.squeeze(hidden_states, axis=1),
|
|
150
|
+
cache,
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
token_ids = self.sampler(
|
|
154
|
+
next=next,
|
|
155
|
+
prompt=token_ids,
|
|
156
|
+
cache=cache,
|
|
157
|
+
index=index,
|
|
158
|
+
mask=padding_mask,
|
|
159
|
+
stop_token_ids=stop_token_ids,
|
|
160
|
+
hidden_states=hidden_states,
|
|
161
|
+
model=self,
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
# Compute an output padding mask with the token ids we updated.
|
|
165
|
+
if stop_token_ids is not None:
|
|
166
|
+
# Build a mask of stop token locations not in the original
|
|
167
|
+
# prompt (not in locations where `padding_mask` is True).
|
|
168
|
+
end_locations = any_equal(
|
|
169
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
|
170
|
+
)
|
|
171
|
+
end_locations = ops.cast(end_locations, "int32")
|
|
172
|
+
# Use cumsum to get ones in all locations after end_locations.
|
|
173
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
|
174
|
+
overflow = cumsum - end_locations
|
|
175
|
+
# Our padding mask is the inverse of these overflow locations.
|
|
176
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
|
177
|
+
else:
|
|
178
|
+
# Without early stopping, all locations will have been updated.
|
|
179
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
|
180
|
+
return {
|
|
181
|
+
"token_ids": token_ids,
|
|
182
|
+
"padding_mask": padding_mask,
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
def score(
|
|
186
|
+
self,
|
|
187
|
+
token_ids,
|
|
188
|
+
padding_mask=None,
|
|
189
|
+
scoring_mode="logits",
|
|
190
|
+
layer_intercept_fn=None,
|
|
191
|
+
target_ids=None,
|
|
192
|
+
):
|
|
193
|
+
"""Score a generation represented by the provided token ids.
|
|
194
|
+
|
|
195
|
+
Args:
|
|
196
|
+
token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
|
|
197
|
+
to score. Typically, this tensor captures the output from a call
|
|
198
|
+
to `SmolLM3CausalLM.generate()`, i.e., tokens for both the input
|
|
199
|
+
text and the model-generated text.
|
|
200
|
+
padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
|
|
201
|
+
tokens that should be preserved during generation. This is an
|
|
202
|
+
artifact required by the `SmolLM3Backbone` and isn't influential
|
|
203
|
+
on the computation of this function. If omitted, this function
|
|
204
|
+
uses `keras.ops.ones()` to create a tensor of the appropriate
|
|
205
|
+
shape.
|
|
206
|
+
scoring_mode: The type of scores to return, either "logits" or
|
|
207
|
+
"loss", both will be per input token.
|
|
208
|
+
layer_intercept_fn: An optional function for augmenting activations
|
|
209
|
+
with additional computation, for example, as part of
|
|
210
|
+
interpretability research. This function will be passed the
|
|
211
|
+
activations as its first parameter and a numeric index
|
|
212
|
+
associated with that backbone layer. _This index _is not_ an
|
|
213
|
+
index into `self.backbone.layers`_. The index -1 accompanies the
|
|
214
|
+
embeddings returned by calling `self.backbone.token_embedding()`
|
|
215
|
+
on `token_ids` in the forward direction. All subsequent indexes
|
|
216
|
+
will be 0-based indices for the activations returned by each of
|
|
217
|
+
the Transformers layers in the backbone. This function must
|
|
218
|
+
return a <float>[batch_size, num_tokens, hidden_dims] tensor
|
|
219
|
+
that can be passed as an input to the next layer in the model.
|
|
220
|
+
target_ids: An <bool>[batch_size, num_tokens] tensor containing the
|
|
221
|
+
predicted tokens against which the loss should be computed. If a
|
|
222
|
+
span of tokens is provided (sequential truthy values along
|
|
223
|
+
axis=1 in the tensor), the loss will be computed as the
|
|
224
|
+
aggregate across those tokens.
|
|
225
|
+
|
|
226
|
+
Raises:
|
|
227
|
+
ValueError: If an unsupported scoring_mode is provided, or if the
|
|
228
|
+
target_ids are not provided when using ScoringMode.LOSS.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
The per-token scores as a tensor of size
|
|
232
|
+
<float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
|
|
233
|
+
<float>[batch_size, num_tokens] in "loss" mode.
|
|
234
|
+
|
|
235
|
+
Example:
|
|
236
|
+
|
|
237
|
+
Compute gradients between embeddings and loss scores with TensorFlow:
|
|
238
|
+
```python
|
|
239
|
+
smol_lm = keras_hub.models.SmolLM3CausalLM.from_preset("...")
|
|
240
|
+
generations = smol_lm.generate(
|
|
241
|
+
["This is a", "Where are you"],
|
|
242
|
+
max_length=30
|
|
243
|
+
)
|
|
244
|
+
preprocessed = smol_lm.preprocessor.generate_preprocess(generations)
|
|
245
|
+
generation_ids = preprocessed["token_ids"]
|
|
246
|
+
padding_mask = preprocessed["padding_mask"]
|
|
247
|
+
target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
|
|
248
|
+
|
|
249
|
+
embeddings = None
|
|
250
|
+
with tf.GradientTape(watch_accessed_variables=True) as tape:
|
|
251
|
+
def layer_intercept_fn(x, i):
|
|
252
|
+
if i == -1:
|
|
253
|
+
nonlocal embeddings, tape
|
|
254
|
+
embeddings = x
|
|
255
|
+
tape.watch(embeddings)
|
|
256
|
+
return x
|
|
257
|
+
|
|
258
|
+
losses = smol_lm.score(
|
|
259
|
+
token_ids=generation_ids,
|
|
260
|
+
padding_mask=padding_mask,
|
|
261
|
+
scoring_mode="loss",
|
|
262
|
+
layer_intercept_fn=layer_intercept_fn,
|
|
263
|
+
target_ids=target_ids,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
grads = tape.gradient(losses, embeddings)
|
|
267
|
+
```
|
|
268
|
+
"""
|
|
269
|
+
if scoring_mode not in ("logits", "loss"):
|
|
270
|
+
raise ValueError(
|
|
271
|
+
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
if scoring_mode == "loss" and target_ids is None:
|
|
275
|
+
raise ValueError(
|
|
276
|
+
"Cannot compute loss without targets. Please provide target "
|
|
277
|
+
"token ids via the target_ids parameter."
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
batch_shape = ops.shape(token_ids)[:2]
|
|
281
|
+
assert len(batch_shape) == 2
|
|
282
|
+
|
|
283
|
+
if padding_mask is None:
|
|
284
|
+
padding_mask = ops.ones(shape=batch_shape)
|
|
285
|
+
|
|
286
|
+
if layer_intercept_fn is None:
|
|
287
|
+
|
|
288
|
+
def default_layer_intercept_fn(x, unused_i):
|
|
289
|
+
return x
|
|
290
|
+
|
|
291
|
+
layer_intercept_fn = default_layer_intercept_fn
|
|
292
|
+
|
|
293
|
+
token_embeddings = self.backbone.token_embedding(token_ids)
|
|
294
|
+
x = layer_intercept_fn(token_embeddings, -1)
|
|
295
|
+
|
|
296
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
|
297
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask)
|
|
298
|
+
x = layer_intercept_fn(x, i)
|
|
299
|
+
|
|
300
|
+
x = self.backbone.norm(x)
|
|
301
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
|
302
|
+
|
|
303
|
+
if scoring_mode == "logits":
|
|
304
|
+
return logits
|
|
305
|
+
|
|
306
|
+
per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
|
307
|
+
from_logits=True, reduction="none"
|
|
308
|
+
)
|
|
309
|
+
per_token_loss = per_token_loss_fn(target_ids, logits)
|
|
310
|
+
return per_token_loss
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
2
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
|
3
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
|
|
4
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import SmolLM3Tokenizer
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@keras_hub_export(
|
|
8
|
+
[
|
|
9
|
+
"keras_hub.models.SmolLMCausalLMPreprocessor",
|
|
10
|
+
"keras_hub.models.SmolLM3CausalLMPreprocessor",
|
|
11
|
+
]
|
|
12
|
+
)
|
|
13
|
+
class SmolLM3CausalLMPreprocessor(CausalLMPreprocessor):
|
|
14
|
+
"""SmolLM3 Causal LM preprocessor.
|
|
15
|
+
|
|
16
|
+
This preprocessing layer is meant for use with
|
|
17
|
+
`keras_hub.models.SmolLM3CausalLM`. By default, it will take in batches of
|
|
18
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
|
19
|
+
`y` label is the next token id in the `x` sequence.
|
|
20
|
+
|
|
21
|
+
For use with generation, the layer also exposes two methods
|
|
22
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
|
23
|
+
is attached to a `keras_hub.models.SmolLM3CausalLM` instance, these methods
|
|
24
|
+
will be called implicitly in `generate()`. They can also be called
|
|
25
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
|
26
|
+
separate process).
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
tokenizer: A `keras_hub.models.SmolLM3Tokenizer` instance.
|
|
30
|
+
sequence_length: The length of the packed inputs.
|
|
31
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
|
32
|
+
start token to each input sequence. Default is `True`.
|
|
33
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
|
34
|
+
end token to each input sequence. Default is `False`.
|
|
35
|
+
|
|
36
|
+
Call arguments:
|
|
37
|
+
x: A string, `tf.Tensor` or list of python strings.
|
|
38
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
|
39
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
|
40
|
+
generates label weights.
|
|
41
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
|
42
|
+
the layer.
|
|
43
|
+
|
|
44
|
+
Examples:
|
|
45
|
+
```python
|
|
46
|
+
# Load the preprocessor from a preset.
|
|
47
|
+
preprocessor = keras_hub.models.SmolLM3CausalLMPreprocessor.from_preset(
|
|
48
|
+
"..."
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# Tokenize and pack a single sentence.
|
|
52
|
+
sentence = tf.constant("...")
|
|
53
|
+
preprocessor(sentence)
|
|
54
|
+
# Same output.
|
|
55
|
+
preprocessor("...")
|
|
56
|
+
|
|
57
|
+
# Tokenize a batch of sentences.
|
|
58
|
+
sentences = tf.constant(["...", "..."])
|
|
59
|
+
preprocessor(sentences)
|
|
60
|
+
# Same output.
|
|
61
|
+
preprocessor(["...", "..."])
|
|
62
|
+
|
|
63
|
+
# Map a dataset to preprocess a single sentence.
|
|
64
|
+
features = tf.constant(
|
|
65
|
+
[
|
|
66
|
+
"...",
|
|
67
|
+
"...",
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
labels = tf.constant([1, 0])
|
|
71
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
|
72
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
73
|
+
|
|
74
|
+
# Map a dataset to preprocess unlabled sentences.
|
|
75
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
|
76
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
77
|
+
```
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
backbone_cls = SmolLM3Backbone
|
|
81
|
+
tokenizer_cls = SmolLM3Tokenizer
|
|
82
|
+
|
|
83
|
+
def __init__(self, *args, **kwargs):
|
|
84
|
+
super().__init__(*args, **kwargs)
|